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Abstract

Background: Although genome-wide association studies have successfully identified thousands of variants
associated to complex traits, these variants only explain a small amount of the entire heritability of the trait.
Gene-gene interactions have been proposed as a source to explain a significant percentage of the missing
heritability. However, detecting gene-gene interactions has proven to be very difficult due to computational
and statistical challenges. The vast number of possible interactions that can be tested induces very stringent
multiple hypotheses corrections that limit the power of detection. These issues have been mostly highlighted
for the identification of pairwise effects and are even more challenging when addressing higher order interaction effects.
In this work we explore the use of local ancestry in recently admixed individuals to find signals of gene-gene interaction
on human traits and diseases.

Results: We introduce statistical methods that leverage the correlation between local ancestry and the hidden unknown
causal variants to find distant gene-gene interactions. We show that the power of this test increases with the number of
causal variants per locus and the degree of differentiation of these variants between the ancestral populations. Overall,
our simulations confirm that local ancestry can be used to detect gene-gene interactions, solving the computational
bottleneck. When compared to a single nucleotide polymorphism (SNP)-based interaction screening of the same sample
size, the power of our test was lower on all settings we considered. However, accounting for the dramatic increase in
sample size that can be achieve when genotyping only a set of ancestry informative markers instead of the whole
genome, we observe substantial gain in power in several scenarios.

Conclusion: Local ancestry-based interaction tests offer a new path to the detection of gene-gene interaction effects.
It would be particularly useful in scenarios where multiple differentiated variants at the interacting loci act in a synergistic
manner.
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Background
Advances in high-throughput genotyping technologies
have enabled large-scale studies of genetic variation,
from genome-wide association studies (GWAS) to infer-
ence of population history. The most notable use of
high-throughput genotyping has been in GWAS where
researchers have reproducibly identified thousands of
genetic variants associated with many complex traits
and common diseases. Despite the great success in iden-
tifying variants that contribute risk to disease, the major-
ity of the genetic component of human traits and

diseases remains unexplained. A potential source for this
missing heritability is gene-gene interactions that alter
disease risk in a coordinated fashion, for example when
several genes are acting synergistically on a trait.
Although of potential great interest, robust identification
of gene-gene interactions has largely remained elusive,
and despite numerous studies only a few interaction
effects have been detected in human data [1–3]. Most
genetic association studies of gene-gene interaction have
focused on the joint effect on pairs of single nucleotide
polymorphisms (SNPs) and used brute force approaches
to evaluate a large number of pairs on homogenous pop-
ulations (e.g. individuals of European ancestry only),
while alternative strategies using heterogeneous popula-
tions have been seldom considered [4, 5].
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The development of accurate methods for discerning
population structure have allowed for studies across
different ethnicities including admixed populations (i.e.
populations with recent ancestry from more than one
continent such as African Americans). In addition to the
standard linkage disequilibrium (LD) between nearby
markers (used by GWAS to tag hidden causal variants)
admixed populations exhibit another form of correlation
among variants at a coarser scale due to chromosomal
segments of distinct ancestry that is commonly referred
to as admixture-LD [6]. This enables admixture mapping
to be an effective approach for identifying disease loci
that differ in frequency across populations [7–11]. A key
component of such studies is the inference of ancestry at
each locus in the genome. Several computational and
statistical tools, including HAPMIX [12], LAMP-LD
[13], EILA [14], and LANC-CSVs [15] can now be used
to reliably call local ancestry. Although local ancestry
has been traditionally used in admixture mapping, re-
cent works use analyses of local ancestry to yield novel
insights into the dynamics of recombination rate across
the genome, to make demographic inferences from gen-
etic data of admixed populations, as well as to under-
stand the genetic basis of complex traits [16–18].
In this work we explore the use of local ancestry in

recently admixed populations to find signals of gene-
gene interaction that affect disease risk. We introduce
an approach that leverages the correlation between local
ancestry and the hidden unknown causal variants to find
distant –e.g. on different chromosomes– gene-gene in-
teractions. Our proposed approach uses multiple linear
regression to model the interaction effect between pairs
of local ancestry segments. Hence, as opposed to the
standard approaches that test all pairs of SNPs assayed
in GWAS (e.g. on the order of 1012 pairs for a standard
GWAS of 2.5 million SNPs), we propose to test inter-
action only between pairs of local ancestries (on the
order of 5×105 pairs for recent admixtures). By perform-
ing a much smaller number of statistical tests, our
approach solves the computational bottleneck and
reduces the multiple testing correction burden. We de-
rive the analytical formulation for our test assuming a
single causal variant for each interacting locus and inves-
tigate its performance across a wide range of parameter
values. Motivated by recent works that show ever-
increasing evidence for multiple causal variants per locus
[19–21], we extend our approach to allow for multiple
causal variants at each interacting locus. We find that
local ancestry can be used to find gene-gene interac-
tions, with power increasing with the number of causal
variants per locus and the degree of differentiation in
the frequency of the causal variants between the ances-
tral populations. Assuming equal sample size, the test
based on pairwise genotyped SNPs appears to be more

powerful than the ancestry-based interaction test in
most scenarios. However, when accounting for the in-
crease in sample size that can be achieved for a fixed
budget when measuring local ancestry only (e.g. based
on ancestry informative markers, AIMs), we observed a
substantial increase in power under various scenarios.

Results and discussion
Overview of the approach
A standard approach for finding pairwise SNP interac-
tions is to test for non-zero effect size of the product
term of the two SNPs considered. The underlying as-
sumption is that the SNPs tested in the model are either
the interacting causal variants or correlated to the actual
causal variants through LD. Indeed, only a finite number
of SNPs are assayed in GWAS (today’s genotyping arrays
assay a few million SNPs), with true biologically causal
variants likely remaining untyped. While a number of
additional SNPs can be imputed on a genome-wide
scale, the presence of the causal variants in the data can
only be assumed for whole-genome sequence data. It is
likely the causal variants will only be tagged by the SNPs
analyzed. In admixed populations, correlation between
SNPs also exists at a coarse level due to the segments of
recent ancestry (admixture-LD). Similar to the pairwise
SNP interaction screening, we can tag the hidden causal
variants using admixture-LD and test for the presence of
interaction at hidden causal variants by testing for inter-
action at the level of local ancestry.

Testing for interaction under a single causal variant per
locus assumption
We first considered a scenario where two common SNPs
are located on two physically distant segments in the
genome, thus independent from each other, and have an
interactive effect on a quantitative phenotype, while all
other SNPs at the locus harboring these two causals
have no effect (Fig. 1a). We derived the performances of
three interaction tests, based on full sequence data (SS),
genotypic data from a 1 M (1 million) SNPs chip (SG)
and local ancestry (SL). Figure 2 presents the sample size
required for each of the three interaction tests to achieve
a significance level of 5 % with 80 % power after correc-
tion for multiple testing. The sample sizes are plotted
for a range of correlation levels between the causal vari-
ant and the tagging SNP or tagging ancestry segment.
More specifically, we refer to ρGC for the correlation
between the true interaction term and the interaction
term derived from the best tag from the genotyping
chip, and to ρLC for the correlation between the true
interaction term and the local ancestry interaction term
between the two segments harboring the causals. For
simplicity we assumed here that local ancestry is inferred
with high accuracy (r2 between true ancestry and
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Fig. 1 Simulation schemes. Main and interaction effects are simulated assuming either a single genetic variant per locus (a) or multiple genetic
variants per locus (b). In the latter case, the main and interaction effects on the outcome Y are moderated through two latent variables Z1 and Z2
that directly depend on the causal variants. Example of local ancestry derived for the two haplotypes of three individuals (c)

Fig. 2 Power comparison for a single causal SNP per locus. Upper panels show the sample size required for 80 % power for the interaction test
based on 1 M genotyped GWAS SNPs (SG) (a), and the interaction test based on local ancestry segment (SL) assuming a total of 1 K local ancestry
segments (b) against the interaction test based on full sequencing data (SS) assuming a total of 20 M genetic variants (blue curve). Sample size is
plotted for increasing ρGC and ρGL (defined by the red gradient), the correlation between the true interaction term and the best tag from 1 M
genotyped SNPs, and the best tag from local ancestries, respectively. The variance explained by the interaction effect is unrealistically large for
illustration purposes and varied between 1 and 10 %. Lower panels show the observed distribution of ρGC (c) and ρGL (d) for a randomly selected
region from the 1 M Illumina chip and local ancestry, respectively
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inferred ancestry ≥0.99), and therefore does not differ
from true local ancestry. This will likely be the case for
African Americans [15], but might be too optimistic for
other populations such as Latino Americans (see below).
Figure 2 shows that for GWAS-based test (SG) to out-
perform the test based on the true causal variants (SS), it
requires ρGC to be above 0.9. For the local ancestry test,
ρLC has to be above 0.7. Moreover, for ρLC above 0.8, the
ancestry based interaction test would also outperform
the GWAS-based interaction test even if the causal vari-
ants were genotyped. As expected, the maximum poten-
tial gain is achieved when the interaction term is
perfectly tagged by either GWAS SNPs or local ancestry.
We considered unrealistically large interaction effects in
Fig. 2 for illustration purposes. When analyzing 20,000
samples, the smallest interaction effect (as measured by
the proportion of variance explained) that can be de-
tected with 80 % power is 0.8, 0.5 and 0.3 % for SS, SG
and SL, respectively.
We then estimated the empirical distribution of ρGC

and ρLC using African-American individuals simulated
using the 1,000 Genomes data (see Methods) [22]. From
this simulation we randomly choose 20,000 independent
SNPs, and built 10,000,000 hypothetical pairs of interact-
ing SNPs. Bottom panels of Fig. 2 shows the distribution
of these two correlation terms when using tagging SNPs
from the 1 M Illumina chip and the simulated local an-
cestry. Despite the large potential increase in power
shown in the upper panels of Fig. 2, improvement may
actually exists only in very few real situations. For ex-
ample we observed that the probability of ρGC to be
above the 0.9 threshold is 0.05. For ρLC the “increased
power” threshold of 0.7 is achieved only once in 107

times. Hence, even if interaction effects are extremely
common in the architecture of complex trait, there is a
low probability for the local ancestry–based test to do
better than other approaches in the presence of a single
causal variant per locus when assuming equal sample
size for both tests.

Multiple causal SNPs per segment
Accounting for increasing evidence of multiple causal
variants per locus [19–21], we then considered scenarios
where gene-gene interaction effects involved multiple
genetic variants per locus. For example when multiple
SNPs contribute to gene transcript abundance and the
interaction is taking place between the gene products.
Such interaction would be challenging to identify using
SNP data due to the vast search area among all possible
combinations of SNPs. On the other hand, local ancestry
offers a more appropriate and natural way to test for
such models as it captures a form of an individual’s gen-
etic background at each locus (i.e. genetic variants share
the same local ancestry at a given locus in the genome).

To evaluate this assumption we defined a simulation
model where multiple SNPs at two independent loci
contribute to two latent variables Z1 and Z2 that have an
interaction effect on the outcome (Fig. 1b). The power
of the pairwise SNPs test depends on the best tagging
SNPs for Z1 at locus 1 and for Z2 at locus 2. This would
be either the strongest causal variants for Z1 or Z2, or
the best tag of these causals. The power the local
ancestry-based test to detect this interaction depends on
all parameters influencing ρLiZi

, the correlation between
Zi and Li, the latent variable and the local ancestry at
locus i, respectively. This includes the number of causal
SNPs for Zi, and the distribution of βi, the effects of the
causal SNPs of Zi. Assuming the causal SNPs are a ran-
dom sample of the variants in the segment, power is also
bounded by the average difference in minor allele fre-
quency between the two founder populations. Figure 3
presents the empirical distribution of this correlation in
a simple scenario, when Zi depends on 1 to 50 SNPs.
Overall, ρLiZi

, increases with the number of SNPs in-

volved and with increased homogeneity of genetic effect.
For example if the βi = (βi1,… βiK) are distributed around
the null, the expected value of ρLiZi

is null and a local

ancestry-based test would have no power. Conversely, if
the coded alleles from the causal variants tend to in-
crease the outcome value (while the reference allele has
no contribution), ρLiZi

can be substantial (e.g. >0.2,

Fig. 3b).
We performed a simulation study to compare the per-

formance of the pairwise SNP-based approach (SG),
when using both genotyped and imputed common SNPs
(MAF > 1 %), and the local ancestry approach (SL) while
increasing K the number of causal SNPs per locus. For
simplicity we assumed the number of causal variants
was the same in the two interacting regions, and only
considered common variants (minor allele frequency,
MAF > 0.10). We explored scenarios where the causal
SNPs were either slightly differentiated or highly differ-
entiated between the two ancestral populations. When
assuming equal sample size, SL is underpowered as com-
pared to SG, despite a dramatic increase in the total
number of tests performed (Fig. 4). Hence when GWAS
data exists, deriving local ancestry segments would be of
limited interest for gene-gene interaction testing unless
the number of causal variants is large (e.g. >10). How-
ever, when considering de novo genotyping with a fixed
budget, an increase in sample size can be achieved when
measuring local ancestry only, SL can be more powerful
than SG. In particular, assuming a 6 fold decrease in cost,
SL outperform SG if either the differentiation is moderate
or the number of causals is large (>5), or if the causal
SNPs are highly differentiated (e.g. correlation between
local ancestry and the causal >0.5, Fig. 4c).
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We assumed in these simulations that true local ances-
try is available. To evaluate the impact of additional
noise introduced by ancestry inference, we analyzed the
same data but using ancestry inferred using LAMP-LD.
As shown in Additional file 1: Figure S1, using the in-
ferred ancestry has only minor impact on power. This is

partly expected thanks to the high accuracy of inference
in African Americans [15]. The accuracy of SNP imput-
ation could also impact the power of the SNP-based test,
however the quality of imputation depends on more
parameters, varying across allele frequencies and the
chips used for genotyping [23]; it would therefore be

Fig. 3 Tagging interaction effects in a multiple causal model. A latent variable Z is generated as a function of an increasing number of SNPs at a
single locus, explaining altogether 50 % of its variance. The average value of Z across 20,000 replicates of 10,000 admixed samples is plotted for
each three local ancestry classes. The effect of the SNPs is drawn from a normal (a) and left-truncated normal (b) distribution with a mean of 0
(upper panel). When the SNP effects are null on average, the average values of Z do not differ by local ancestry and ρZL, the correlation between
Z and local ancestry, is also null on average. Conversely, when the average effect of the SNPs is not null, ρZL increases with an increasing number
of causal variants (lower panel)

Fig. 4 Power comparison for multiple causal SNPs per locus. Power across 25,000 replicates using a Bonferroni correction resulting in p-value
thresholds of 1 × 10−7 and 1 × 10−15 for the local ancestry-based interaction test (SL) and the SNP-based interaction test (SG), respectively. One to
five common causals SNPs were selected per interacting locus while assuming either low (a), moderate (b) or high (c) differentiation of those
SNPs between the two admixed populations. We considered three case scenarios for the additional increase in sample size that would be achieve
when using local ancestry derived from AIMs, no increase (pink), a lower bound of six fold increase (light red) and an upper bound of 10 fold
increase. We varied the baseline sample size (for SG) across scenarios to emphasize the differences between the tests
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more difficult to evaluate thoroughly. Instead we
applied the SNP-based test using the genotyped SNPs
only found on the Illumina Human1M-Duo BeadChip
(Additional file 1: Figure S1). We observed a substan-
tial decrease in power, highlighting both the import-
ance of using imputed variants and the need for high
quality imputation for the SNP-based test, which
might be a concern for rare causal variants.
Finally, we evaluated how the relative power of the SL

and SG tests is impacted when applying a two-steps pro-
cedure where SNPs and ancestry segments are first pre-
selected for interaction testing based on their marginal
effects [24]. For simplicity we assume that the vast ma-
jority of SNPs are not involved in interaction, so that for
a p-value threshold t at step 1, the total number of inter-

action tests at step 2 can be approximated by
n� t
2

� �
,

where n is the number of predictor (either SNP or local
ancestry segment). Additional file 1: Figure S2 shows the
results from this strategy when applied to a case similar
to Fig. 4, but adding a main effect to each causal SNPs
of the same magnitude as the interaction effect, and
using t = 0.01 at step 1. In this specific scenario, the 2-
step approach mostly benefits to the ancestry-based test,
which outperform the SNP-based test in many more sce-
narios, including cases where sample size was the same
for the 2 analyses.

Conclusions
We explored the performance of a local ancestry-based
interaction test to capture non-linear effects from two
independent loci. The strategy is similar to a standard
SNP-based pairwise interaction screening but uses local
ancestry segments instead of SNPs. One major under-
lying motivation for such an approach is that the total
number of tests to be conducted is dramatically lower
than for a standard pairwise SNP interaction test, redu-
cing both the computational burden and the correction
for multiple testing. We demonstrate that such a test
would indeed capture interaction effects between two
loci as long as the individual effects of the causal vari-
ants at each locus do not cancel each other. For existing
datasets that only contain local ancestry data derived
from AIMs and for de novo genotyping studies looking
for the optimal cost/power ratio, our approach (SL) can
be highly relevant as it can outperform the pairwise SNP
screening from standard GWAS data (SG). Conversely,
when GWAS genotyping data does exists, in most sce-
narios we explored, SG outperforms SL when the number
of causal variants at the locus was small. As the number
of causals grows beyond 10, the power of SL increases
but does not substantially exceed SG unless the differen-
tiation of the causal SNPs between the two populations

is very high. Interestingly, as the differentiation increases
so does the relative power of SG, which explains the
underperformances of SL. We found that, as differenti-
ation increases, many genetic variants become good tags
for local ancestry, and so SG benefits from the increase
in differentiation as well. Overall, the relative perfor-
mances of our approach depends on the balance be-
tween the gain in power achieved thanks to the
decreasing number of test and the decrease in power
due to low correlation between local ancestry and the
causal variant(s) at the interacting loci.
Furthermore, we used the whole genome sequence-

based test (SS) as a reference to compare the relative
performance of the two alternative approaches. While
such a test might have higher power than SL and SG
(Fig. 2), testing all possible pairs of SNPs would requires
extremely intensive computational power in practice,
and the implementation of such tests, which have been
rarely explored to our knowledge, would require sub-
stantial software development and hardware structures
(e.g. graphics processing units [25]). This confirms that,
as of today, GWAS-based pairwise interaction tests re-
main a relevant approach for identifying interactions as
compared to whole genome sequence-based approaches.
Regarding power comparison between SL and SG, the

power of the local-ancestry based interaction test was
derived based on 1,000 local ancestry regions. However,
the number of segments depends on the number of an-
cestral populations and the number of generations since
admixture, and will therefore differ across admixed pop-
ulations. Increase in the total number of segments can
impact the correlation between local ancestry and the
causal variants within these segments, as well as the total
number of tests that have to be performed for an inter-
action screening. Using the inferred local ancestry had
very limited impact on power in our simulation as the ac-
curacy of inference is very high in African Americans.
However, for other populations, the impact might be
substantial. For example Brown et al. reported squared
correlation between true and inferred local ancestry
of 0.63, and 0.81 for Mexican and Puerto Rican popu-
lation when using LANC-CSV, which had similar re-
sults to other methods [15]. While further analysis
might explore such situations, we believe the results
described in this study would remain valid. Finally,
additional work might also include extensive explora-
tions of scenarios where interaction factors (either
single SNPs or single local ancestry segments) are se-
lected based on their marginal association with the
phenotype of interest. When applied in our simula-
tion framework we observed a strong improvement of
the ancestry-based test over the SNP-based test, how-
ever this needs to be confirmed across a broader
range of scenarios.

Aschard et al. BMC Genetics  (2015) 16:124 Page 6 of 9



Overall, while our approach shows some limitations
when genome-wide genotypic data are available and
when the number of causal variants per region is
small and contains mostly undifferentiated variants,
we highlight that genome-wide local-ancestry based
interaction screening remains relevant. First, because
some datasets only generated local ancestry data
through AIMs, and do not have GWAS data. Second,
considering budget constraint for de novo genotyping,
and assuming a 6 fold decrease in cost for genotyping
AIMs as compared to a standard GWAS, substantial
additional gain in power can be achieved through
local-ancestry based tests.

Methods
Genetic model
We considered a genetic model similar to the one de-
scribed in Chatterjee et al. [26], which can be easily
adapted to the local ancestry context. It consists in two
independent sets of adjacent SNPs from two loci on dif-
ferent genomic regions, which represent in this study
two local ancestry segments. Several SNPs within seg-
ment i have an indirect association with the outcome of
interest through a latent variable Zi, an unmeasured
quantitative biological phenotype partially governed by
SNPs within the locus. Interaction effects between the
genetic variants on the outcome is introduced through
an interaction term between the Z1 and Z2 variables (i.e.
the cumulative effect of the genetic variants within a
locus depends on the cumulative effect of the variants in
a distant locus). More specifically the outcome Y is
defined as follows:

Y ¼ θ1Z1 þ θ2Z2 þ θ12Z1Z2 þ ε ð1Þ

where Z1 and Z2 are the two latent variables that each
depend on K SNPs and θ1, θ2, θ12 respectively represent
the main effect of Z1, Z2, and the interaction of Z1 and
Z2 on Y; ε is the residual noise and is normally distrib-
uted with mean 0. The latent variables Zi are defined as
follows:

Zi ¼
XK
k¼1

Gik � βik ð2Þ

where Gik and βik is the standardized genotype of SNP k
in locus i and its main effect respectively. The SNP
effects βi = (βi1,… βiK) were randomly drawn from either
normal or left-truncated normal depending on the sce-
nario explored. For simplicity, as the main effect of the
latent variable has no impact on the interaction test [27],
we set θ1 and θ2 to 0, and set θ12 to 1. Except when spe-
cified otherwise we scaled the variance of ε so that the
proportion of the variance of Y explained by the

interaction equals 1 % (to reflect values observed in
GWAS for common complex traits).

A single major causal SNP per segment
We first assumed the genetic effect of a segment is
driven by a single causal variant, while the effect of other
potential SNPs is null or negligible. This is equivalent to
assuming K = 1 in equation (2). The effect of the SNPs
on Y can then be re-written:

Y ¼ βG1
G1 þ βG2

G2 þ βintGG1G2 þ ε ð3Þ

Assume G1 and G2 are tagged by L1 and L2 respect-
ively, where Li is the local ancestry measured at the seg-
ment harboring SNP Gi. Note that G1 and G2 do not
necessarily need to be typed to correctly identify local
ancestry (local ancestry spans many MB’s in recently
admixed populations and can be reliably identified using
a small set of variants). For simplicity, we considered
only the case of a two-way admixed population, so that
local ancestry would be typically coded as an ordinal
variable with value corresponding to the number of
chromosomes harboring a particular ancestry. Hence,
for African-American, L. equals 0, 1 or 2. When the
population under study is an admixture of more than
two ancestries, testing for interaction would be more
complex because of additional combinations of ances-
tries (e.g. for 3 ancestries A, B and C, an individual can
have any of the six following ancestries at a given seg-
ment: AA, AB, AC, BB, BC and CC). To our knowledge
there is no established standard to handle such situa-
tions, the simplest solution consists of testing one ances-
try versus the rest [17].
We compared the relative performances of the stand-

ard test of interaction of βintG (equation (3)) versus the
test of βintL (equation (4)), the interaction effect ob-
served between L1 and L2 on Y, which can be obtained
from the model:

Y ¼ βL1L1 þ βL2L2 þ βintLL1L2 þ ε
0 ð4Þ

Note that both equation (3) and (4) are standard 1 ° of
freedom tests of interaction effect estimates obtained
from multiple linear regression (see our R script ex-
ample in Additional file 2). The only difference being
that the later test uses local ancestry instead of ge-
notyped SNPs. When the causal SNPs are available
(e.g. from whole genome sequence data) and have
been standardized, the Wald test of βintG is defined

as SS ¼ β̂intG=σ̂ βintG

� �2
. Similarly the test of βintL is

defined as SL ¼ β̂intL=σ̂ βintL

� �2
. Under the null hy-

pothesis of no association both SS and SL follow a
chi-square distribution with one degree of freedom.
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Let ρ denote the correlation between two variables.
The two scores can be written as:

SS ¼ N � ρ2 Y ;G1 � G2ð Þ ð5Þ
SL ¼ N � ρ2 Y ;G1 � G2ð Þ � ρ2LC ð6Þ

where ρLC
2 = ρ2(G1 ×G2, L1 × L2) is the squared-

correlation between the true interaction G1 ×G2 term
and the local ancestry interaction term L1 × L2.
In another scenario, one would test for interaction ef-

fects between pairs of SNPs from a standard GWAS
chip, which implies that the tested SNPs, say G1

* and G2
*

are tagging the two causals, but (likely) at a higher level
than the local ancestry. We denote this test SG:

SG ¼ N � ρ2 Y ;G1 � G2ð Þ � ρ2GC ð7Þ
where ρGC

2 = ρ2(G1 ×G2,G1
* ×G2

* ) is the squared-
correlation between the true interaction G1 ×G2 term
and the GWAS interaction term G1

* ×G2
* . The power of

the three tests can be derived as:

PowerS: ¼ 1−F χ21;1−α;0j1; S:
� �

ð8Þ

where F(χ2|d, S.) is the cumulative probability function
of the non-central chi-square distribution with d degrees
of freedom and non-centrality parameter S.; χd,p,0

2 is the
inverse of F under the null, i.e. the quantiles of the non-
central chi-square distribution, and α is the type I error
rate. The relative performances of the three strategies
can then be evaluated by comparing the sample size N
needed to identify the interaction at the 5 % significance
level (α) after accounting for nS, nL, and nG the number
of tests that has to be performed respectively in the
whole genome setting, the local ancestry setting and the
GWAS setting, respectively. Therefore, the alpha levels
for tests SS SL and SG were set at α/nS, α/nL, and α/nG,
respectively.
For the test SS, we assumed the true causal variants

are available as part of a whole genome sequence data of
nS = 20M SNPs, so that the total number of pairwise test
equals 2x10−14. We assumed a total of nL = 1, 000 local
ancestry segments for the test SL, and nG = 1M SNPs for
test SG. We considered values of ρLC and ρGC in the
range [0.3; 1], so that the minimum squared-correlation
was 0.09. A correlation of 1 corresponding to the highest
potential increase in power that can be achieve, since it
will be equivalent to testing the interaction with the true
causals while dramatically reducing the multiple testing
corrections.

Multiple causal SNPs per segment
We used models from equation (1) and (2) and gener-
ated outcome data across 1,000 replicates while using
simulated genetic and local ancestry data (see further

section on simulation). For ease of computation, we con-
sidered the number of causal SNPs per segment to be
equal between the two interacting loci. The βi were ran-
domly drawn from a left-truncated normal (cut at 0) dis-
tribution with mean 0 and variance 1. The causal alleles
were chosen to be minor in one of the populations so
that all effects go in the same direction in one popula-
tion. We considered scenarios including 1 to 5 causal
SNPs per locus, and selected the variants so that cor-
relation between local ancestry and each SNP was
either >0.1, >0.2 or >0.5, assuming low, moderate or
high differentiation at the causal SNPs, respectively.
We perform both the local ancestry interaction and

the pairwise SNP interaction test in a standard linear
regression. However, instead of testing all combin-
ation of SNP, we first find the best combined tag in

each locus (i.e. the single SNP j that maximizes
X
K

βikρjk

� �
across the K causal variants at locus i, where

ρjk is the correlation between the tag SNP Gj
* and the

causal variant Gk) and then test only the product of
that genotype with the best tag genotype at the sec-
ond locus. Power was defined as the number of repli-
cates for which the pairwise SNP interaction is

significant at p ¼ 0:05=
nG
2

� �
, where nG the number

of SNPs tested equals 1 M when including genotyped
SNPs only and equals 10 M when including common
imputed SNPs from 1000 Genomes. For the local

ancestry-based test, the threshold was p ¼ 0:05=

nL
2

� �
¼ 1� 10−7, corresponding to the test of nL = 1,

000 local ancestry segments.

Simulation of admixed populations from the 1000
genome project
Similar to previous work [15], we simulated admixed
chromosomes of African-Americans as a random walk
over 1000 Genomes haplotypes [22]. CEU and FIN pop-
ulations were used to represent European haplotypes
and the YRI population represented the African haplo-
types. We assumed that between any two base pairs
there was a 10−8 chance of recombination. At a recom-
bination event, the next haplotype was selected with a
20 % chance of being European and an 80 % chance of
being African to reflect the estimated admixture propor-
tions in the literature [12, 28]. Haplotypes were sampled
with replacement. We simulated 20,000 haplotypes each
for chromosomes 19 and 20 in this manner and added
them together to form 10,000 unphased genotypes and
true local ancestries. Local ancestry was then inferred
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using LAMP-LD [13] with default settings and with the
GBR and TSI populations representing Europeans and
the LWK representing Africans. LAMP-LD was run only
using variants found on the Human1M-Duo BeadChip.

Availability of supporting data
All supporting data are included as additional files.

Additional files

Additional file 1: Figures S1 and S2. Power comparison between
SNP-based and local ancestry-based interaction tests when using inferred
ancestry and 1 M genotyped SNPs. Figure S2. Power comparison be-
tween SNP-based and local ancestry-based interaction tests when using a
two steps approach. (PDF 555 kb)

Additional file 2: R script and corresponding input files to perform
1 ° of freedom interaction test between ancestry segments.
(ZIP 40 kb)
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