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We propose a system that can recognize daily human activities with a Kinect-style depth camera. Our system utilizes a set of view-
invariant features and the hidden state conditional random field (HCRF) model to recognize human activities from the 3D body
pose stream provided by MS Kinect API or OpenNI. Many high-level daily activities can be regarded as having a hierarchical
structure where multiple subactivities are performed sequentially or iteratively. In order to model effectively these high-level daily
activities, we utilized a multiclass HCRF model, which is a kind of probabilistic graphical models. In addition, in order to get
view-invariant, but more informative features, we extract joint angles from the subject’s skeleton model and then perform the
feature transformation to obtain three different types of features regarding motion, structure, and hand positions.Through various
experiments using two different datasets, KAD-30 and CAD-60, the high performance of our system is verified.

1. Introduction

Vision-based activity recognition has found many applica-
tions such as human-computer interaction [1, 2], surveillance
[3, 4], robot learning [5, 6], and user interface design [7,
8]. Recently many researchers tend to use depth cameras
like Microsoft Kinect to detect human activities. Unlike
conventional RGB cameras, Kinect-style depth cameras can
provide us with the depth information in addition to colors of
the target object. Depth information can be used to estimate
the 3D body poses of a human and to recognize his/her real-
time activities. In this paper, we propose a system that can
effectively recognize daily human activities with a Kinect-
style depth camera. Our systemutilizes a set of view-invariant
features and the hidden state conditional random fields
(HCRF) [9, 10] model to recognize human activities from the
dynamic body pose estimates provided by MS Kinect API or
OpenNI. Many high-level daily activities can be regarded as
having a hierarchical structure, where multiple subactivities
are performed sequentially or iteratively. Our system utilizes
a multiclass HCRFmodel to represent effectively hierarchical
nature of such activities.

Many existing systems often make use of only 3D coor-
dinates of individual body joints as a feature set for activity
recognition. However, these joint coordinates can be affected

easily by change of Kinect’s viewpoint [11, 12]. In order tomeet
the view variance problem and get more informative features,
our system extracts joint angles from the subject’s skeleton
model and then performs the feature transformation to get
three different types of features regarding motion, structure,
and hand positions.

The remainder of this paper is structured as follows. In
Section 2, we briefly introduce the related works. Section 3
presents a comparison of various probabilistic graphical
models including HMM,MEMM, CRF, andHCRF. Section 4
concentrates on the design of our activity system. Section 5
presents the conducted experiments using two different
datasets and results obtained with our system. Finally,
Section 6 summarizes our work and outlines the future work.

2. Related Works

The most important factors to affect the performance of
vision-based activity recognition systems are both the set of
features and the recognition model to capture the unique
characteristics of individual activities. Previous works adopt
different features and models from each other, resulting in
distinct strength and weakness in performance.

In Xia et al.’s work [13], histograms were extracted from
the joint coordinates as features using modified spherical
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Figure 1: Probabilistic graphical models.

coordinate systems in order to overcome the view variance
problem. However, for different activities that involve similar
positions of the joints, the system could generate similar
histograms, hence making it difficult to distinguish between
the two activities. In this work, activities are modeled with
Hidden Markov Model (HMM). The HMM is a widely
used probabilistic graphical model to process a time-series
data. However, this model has a limitation that current
observations are only dependent on the current state, not on
any previous states or observations. Moreover, it has another
limitation on training efficiency since it requires supervised
training to maximize the joint probability of observation and
state sequences. On the other hand, in Sung et al.’s work [14],
joint angles are used as features instead of the corresponding
joint coordinates to overcome the view variance problem.The
hierarchical Maximum Entropy Markov Models (MEMMs)
are adopted to model the hierarchical nature of activities as
well as enhance the training efficiency. However,MEMMs are
well known to suffer from the label bias problem.

In Zhang and Tian’s study [15], spatiotemporal features
and Support VectorMachines (SVMs) were used to represent
activities. However, the features do not consider the view
variance problem and SVMs are limited in training human
activity patterns over time in comparison with probabilistic
graphical models. In Ong et al.’s work [16], features based
on the human range of movement were extracted from
joint poses and 𝑘-means clustering which is an unsupervised
learning method is applied to recognize daily activities.
However, the features of this work are sensitive to camera
view variance and the range of motion of joints may vary
from person to person. It recognizes activities through 𝑘-
means clustering without training a model. However, 𝑘-
means clustering has several limitations that the number of

clusters should be predetermined and the resulting clusters
may be varied depending on the given initial clusters as well.

3. Probabilistic Graphical Models

Probabilistic graphical models [17] can be considered as
one of the best ways to represent hierarchical structures of
high-level daily activities, where multiple subactivities are
performed sequentially or iteratively. Among the widely used
probabilistic graphical models for activity recognition are
the Hidden Markov Model (HMM), the Maximum Entropy
Markov Model (MEMM), and the Conditional Random
Fields (CRF) as shown in Figures 1(a)–1(c), respectively.

The HMM in Figure 1(a) is a generative graphical model
in which the target system to be modeled is assumed to be
a Markov process. In the figure, the variables 𝑥

𝑡
, 𝑠
𝑡
, and 𝑦

𝑡

represent the observation, the hidden state, and the class
label, respectively. This model assumes that the conditional
probability distribution of the hidden variable 𝑠

𝑡
at time

𝑡 depends only on the value of the hidden variable 𝑠
𝑡−1

.
Similarly, it assumes that the value of the observation variable
𝑥
𝑡
only depends on the value of the hidden variable 𝑠

𝑡
.

This means that the HMM presumes independence of the
observations. Therefore, this model cannot represent long-
range dependencies among observations. Additionally, it has
another limitation on training efficiency since it requires
supervised training to maximize the joint probability of
observation and state sequences.

The MEMM in Figure 1(b) is a discriminative graphical
model that combines the features of the HMM and the Max-
imum Entropy (MaxEnt) model. An advantage of MEMM
over HMM is that it provides increased freedom in choosing
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features to represent observations. Another advantage of
MEMM over HMM is that training can be considerably
more efficient. In MEMM, estimating the parameters of
the maximum-entropy distributions used for the transition
probabilities can be done for each transition distribution
in isolation. However, the MEMM has a drawback that it
potentially suffers from the label bias problem, inwhich states
with low-entropy transition distributions effectively ignore
their observations.

The CRF model in Figure 1(c) is a discriminative undi-
rected graphical model. In the figure, 𝑋 represents the
observation sequence and 𝑦

𝑡
represents the random variable

which, conditioned on 𝑋, obeys the Markov property. The
CRF model can contain any number of feature functions
and the feature functions can inspect the entire observation
input sequence𝑋. This means that the CRFmodel avoids the
independence assumption between observations and allows
nonlocal dependencies between state and observation [18].
Moreover, this model has no label bias problem in contrast
with the MEMM. However, the CRF model should assign a
label 𝑦

𝑡
to each time 𝑡 and do not directly provide a way to

estimate the conditional probability of a class label 𝑦 for an
entire sequence𝑋.

The HCRF model shown in Figure 1(d) is a generalized
CRF model with hidden states 𝑠

𝑡
. It incorporates hidden

state variables in a discriminative multiclass random field
model. By allowing a classification model with hidden states,
no a priori segmentation into substructures is needed, and
labels at individual observations are optimally combined to
form a class conditional estimate. As an augmentation of
the CRF, this model can represent long-range dependencies
among observations without the label bias problem. The
HCRFmodel was introduced by Quattoni and Gunawardana
and has been successfully applied for gesture recognition
and phone classification [9, 10]. Due to its advantageous
characteristics, however, we believe that the HCRF model
can be also successfully applied to vision-based daily activity
recognition.

4. Activity Recognition System

We design a system that can recognize high-level daily
activities based on the 3D body pose data acquired from
Microsoft’s Kinect API. A high-level daily activity can be
regarded as a hierarchical activity structure consisting ofmul-
tiple subactivities activities that are performed sequentially or
iteratively. For example, the activity of picking up an object on
the floor consists of three subsequent subactivities: stooping
down, grasping the object, and standing up, as described in
Figure 2.

For the purpose of our research work, we collect the
training data of such high-level daily activities to construct
the KAD-30 dataset.The KAD-30 dataset consists of 10 activ-
ities in total: opening a lid, drinking water, tying shoelaces,
stretching, eating cereal, making a phone call, grasping an
object on the floor, putting on and taking off a coat, cleaning
the floor and writing on a whiteboard. The proposed activity

Stooping down Grasping an object Standing up

Picking up an object

Figure 2: The hierarchical structure in an activity.

recognition system consists of three steps: feature extraction,
model learning, and activity recognition.

4.1. Feature Extraction. In this step, view-invariant features
are extracted based on 3D position data from 15 joints of the
humanbody, including the head, neck, and torso, and two sets
of joint directional data that correspond to the head and torso.
Asmentioned before, the set of 3D joint positions are directly
provided by Microsoft’s Kinect API, which can be estimated
from the depth images acquired from the Kinect sensor.
However, the 3D position (𝑥, 𝑦, 𝑧) of each joint provided by
Kinect API is represented based on the Cartesian coordinate
system of which origin (0, 0, 0) is on the center of the Kinect
sensor. Thus, the 3D position data of a joint can be easily
changed if at least either the Kinect sensor or the target
object changes its position. This means that the 3D joint
coordinates of joints directly acquired from Kinect API are
very sensitive to Kinect’s view variance, and so they are not
proper features used to distinguish daily human activities
robustly under various environmental conditions. Figure 3
illustrates the view variance problem. As shown in the figure,
if Kinect’s view is changed, the corresponding position value
of the same elbow joint captured by the Kinect sensor will
be also changed. In order to meet the view variance problem
and get more informative features, our system extracts joint
angles from the subject’s skeleton model and then performs
the feature transformation to get three different types of
features regarding motion, structure, and hand positions.

While performing one of the daily activities, each joint
of the performer moves according to a specific pattern over
time. These temporal patterns of joint movement may be
effectively captured by using motion features. In addition,
daily activities are considered to be performed through
multiple interactions between distinct joints. For example,
grasping an object on the floor is mainly accomplished
through interaction between the joints of the knee and
the hand. We try to capture these spatial patterns through
structure features. A lot of human daily activities include
hand movement. Unlike other animals, humans use their
hands very much to work in daily life. For example, consider
when drinkingwater and opening the lid of a container. Hand
position features, which represent the position of both hands
relative to the head and the torso, can help distinguish human
daily activities using hands.
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Figure 3: The view variance problem.

Figure 4 illustrates the process of extracting the motion
and the structure features. As shown in Figure 4, the 3D
Cartesian coordinates of the form (𝑥, 𝑦, 𝑧) is first transformed
into 2D spherical coordinates of the form (𝜃, 𝜙) for each joint,
where 𝜃 is the polar angle and 𝜙 is the azimuthal angle of
the joint. The following equation shows how to compute the
polar 𝜃 and the azimuthal angles 𝜙 from the corresponding
3D joint coordinates (𝑥, 𝑦, 𝑧). In the equation, 𝑟 is the radial
distance, which is the Euclidean distance from the origin to
the joint. In our work, the radial distance 𝑟 is omitted and
only the polar 𝜃 and the azimuthal angles 𝜙 are used to extract
features through subsequent processes:

𝜃 = cos−1 𝑧
𝑟
,

𝜙 = tan−1
𝑦

𝑥
.

(1)

From the transformed 2D spherical coordinates 𝑎
𝑡,𝑛

of
each joint 𝑛, motion features 𝑚

𝑡,𝑛
and structure features 𝑠

𝑡,𝑛

are calculated through the following equations. Below, 𝑡 and
𝑛 refer to the frame and joint indexes, respectively:

motion (𝑚
𝑡,𝑛
) = 𝑎
𝑡,𝑛
− 𝑎
𝑡−1,𝑛
,

structure (𝑠
𝑡,𝑛
) = 𝑎
𝑡,𝑛
− 𝑎
𝑡,𝑘
.

(2)

The motion features 𝑚
𝑡,𝑛

of joint 𝑛 are obtained from
the 𝑡th input frame by computing the difference between
the current 𝑎

𝑡,𝑛
and the previous position 𝑎

𝑡−1,𝑛
of the joint

𝑛. Hence the motion features 𝑚
𝑡,𝑛

represent the positional
change of each joint 𝑛 from the (𝑡 − 1)th frame to the 𝑡th
frame. On the other hand, the structure features 𝑠

𝑡,𝑛
of joint

𝑛 are extracted from the 𝑡th input frame by computing the
difference between the current position 𝑎

𝑡,𝑛
of the joint 𝑛 and

the current position 𝑎
𝑡,𝑘

of the other joint 𝑘. Here assume
that the joint 𝑛 is, for example, the center of the head, the
joint 𝑘 can be one of the other joints, such as the neck or the
torso. Hence the structure features 𝑠

𝑡,𝑛
represent the relative

position of the joint 𝑛 based on the other joint 𝑘 at the 𝑡th
frame. It is assumed that the position 𝑎

𝑡,𝑛
of each joint 𝑛

at frame 𝑡 has already been transformed into 2D spherical
coordinates (𝜃

𝑡,𝑛
, 𝜙
𝑡,𝑛
) in the aforementioned way.

Figure 5 describes the process of extracting the hand
position features. The position features of each hand are
obtained by computing its relative positions with respect to
both the head and the torso. For example, while the relative
position features ℎ

𝑡,left,head of the left hand with respect to the
head are computed through (3), its relative position features
ℎ
𝑡,left,torso with respect to the torso are calculated through

(5). Similarly, the relative position features ℎ
𝑡,right,head and

ℎ
𝑡,right,torso of the right hand are computed through (4) and

(6), respectively. In the equations, 𝑗
𝑡,left hand, 𝑗𝑡,right hand, 𝑗𝑡,head,

and 𝑗
𝑡,torso represent the 3D position vector of the left hand,

the right hand, the head, and the torso, respectively. On the
other hand, 𝑜

𝑡,head and 𝑜𝑡,torso are the 3 × 3 orientation matrix
of the head and the torso, respectively:

relative left hand position wrt head (ℎ
𝑡,left,head)

= (𝑗
𝑡,left hand − 𝑗𝑡,head) ∗ 𝑜𝑡,head,

(3)

relative right hand position wrt head (ℎ
𝑡,right,head)

= (𝑗
𝑡,right hand − 𝑗𝑡,head) ∗ 𝑜𝑡,head,

(4)

relative left hand position wrt torso (ℎ
𝑡,left,torso)

= (𝑗
𝑡,left hand − 𝑗𝑡,torso) ∗ 𝑜𝑡,torso,

(5)

relative rightt hand position wrt torso (ℎ
𝑡,right,torso)

= (𝑗
𝑡,right hand − 𝑗𝑡,torso) ∗ 𝑜𝑡,torso.

(6)

In general, the higher the number of feature vec-
tor dimensions, the higher the computational complexity
required for model learning and activity recognition. The
feature vectors acquired from the feature extraction process
have 252 dimensions. Vector quantization is executed by
applying 𝑘-mean clustering to the high dimensional feature
vectors to increase the efficiency of model learning and
activity recognition. Through vector quantization, each high
dimensional feature vector is replaced into an integer index
indicating the cluster the feature vector belongs to. As a result,
one-dimensional integer type time-series data is generated
while performing an activity. Here, because the length of
the time-series data is determined by performing time per
activity, a different length per activity is generated. The
subsequent processes of the proposed activity recognition
system, modeling learning, and activity recognition use these
time-series feature data of each activity for the purpose of
model training and testing.

4.2. Model Learning. As mentioned before, many high-level
daily activities can be regarded as having a hierarchical struc-
ture, where multiple subactivities are performed sequentially
or iteratively. Our system utilizes the hidden state conditional
random field (HCRF) model to represent effectively the
hierarchical nature of such activities. In order to recognize a
number of activities with a single trained model, our system
uses a multiclass HCRF model. A state variable in this HCRF
model represents a subactivity belonging to a high-level
activity and it is assumed to be hidden. Therefore, there is no
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Figure 6: Learning parameters of the HCRF model.

need to designate a label for each subactivity in the training
data.

Figure 6 shows the process to learn the optimized param-
eters 𝜃∗ = ⟨𝜃

𝑒
, 𝜃
𝑦
, 𝜃
𝑠
⟩ of the HCRF model. The parameter

vector 𝜃∗ is made up of three different components: 𝜃
𝑒
, 𝜃
𝑦
,

and 𝜃
𝑠
. 𝜃
𝑠
refers to the parameters corresponding to state 𝑠

𝑗
.

Similarly, 𝜃
𝑦
stands for the parameters corresponding to class

𝑦 and state 𝑠
𝑗
. 𝜃
𝑒
refers to the parameters corresponding to

class 𝑦 and the pair of states 𝑠
𝑗
and 𝑠
𝑘
. In order to learn the

optimized parameters 𝜃∗ from the initial parameters 𝜃, the
training data of the form (𝑥

𝑖
, 𝑦
𝑖
) are used, where 𝑥

𝑖
is an

observation sequence and 𝑦
𝑖
is the label of activity class.

In the model learning process, the optimized parameters
𝜃
∗ are searched tomaximize the objective function 𝐿(𝜃) using
the training dataset. The first term of the objective function
𝐿(𝜃) includes the conditional probability 𝑃(𝑦

𝑖
| 𝑥
𝑖
, 𝜃). The

conditional probability 𝑃(𝑦 | 𝑥, 𝜃) of a class label 𝑦 given the
observation 𝑥 is defined as in the following equation:

𝑃 (𝑦 | 𝑥, 𝜃) = ∑

𝑠

𝑃 (𝑦, 𝑠 | 𝑥, 𝜃) =
∑
𝑠
𝑒
Ψ(𝑦,𝑠,𝑥;𝜃)

∑
𝑦
󸀠
∈𝑌, 𝑠∈𝑆

𝑚 𝑒Ψ(𝑦
󸀠
,𝑠,𝑥;𝜃)

. (7)

Theobjective function𝐿(𝜃)depends on the potential function
Ψ(𝑦, 𝑠, 𝑥; 𝜃), parameterized by 𝜃, whichmeasures the compat-
ibility among a label, a set of observations and a configuration
of the hidden states. Using the gradient ascent method, the
optimized parameters 𝜃∗ are found tomaximize the objective
function 𝐿(𝜃), as in the following equation:

𝜃
∗
= arg max

𝜃

𝐿 (𝜃) . (8)

Thenumber of hidden states ℎ and the size of history𝜔 are
determined in advance in order to train the HCRF model. In
our system, the number of hidden states of the HCRF model
is set to 7, considering the complexity of the target activities.
The history size, which determines dependency range, is
set to 1. As the optimization function to adjust the weight
of feature vectors in the HCRF model, Limited-Memory
Broyden-Fletcher-Goldfarb-Shanno (LBFGS) is used.

4.3. Activity Recognition. In the activity recognition step, the
conditional probability of each activity, 𝑃(𝑦 | 𝑥, 𝜔, 𝜃∗), is
calculated using the trained HCRF model 𝜃∗ and the test
sequence data 𝑥. And then the test data 𝑥 is recognized as
the activity 𝑦∗ with the highest conditional probability, as in
the following equation:

𝑦
∗
= arg max
𝑦∈𝑌

𝑃 (𝑦 | 𝑥, 𝜔, 𝜃
∗
) . (9)

5. Performance Evaluation

Based on the design explained before, our activity recog-
nition system was implemented using C++ and MATLAB
on Windows 7. Several experiments were conducted to
evaluate the performance of our proposed activity recog-
nition system. In the experiments, two different datasets
are used: the KAD-30 dataset from Kyonggi University
and the CAD-60 dataset from Cornell University. Figure 7
shows 10 common daily activities included in the KAD-30
dataset. The activities in the KAD-30 dataset are opening a
lid, drinking water, tying shoelaces, stretching, eating cereal,
making a phone call, picking up an object on the floor, putting
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Figure 7: Activities included in the KAD-30 dataset.

Figure 8: Activities included in the CAD-60 dataset.

on and taking off a coat, wiping the floor, and writing on
a whiteboard. To collect the KAD-30 dataset, 3 different
subjects performed 10 different activities ten times in front
of the Kinect sensor. 3D body pose data for each activity
were recorded for 30 to 40 seconds at 30 frames/second
speed.

Figure 8 shows 12 daily human activities in the CAD-
60 dataset provided by Cornell University. The activities
included in the CAD-60 dataset are brushing teeth, cooking
(stirring), writing on a whiteboard, working on computer,
talking on the phone, wearing contact lens, relaxing on couch,
opening pill container, drinking water, cooking (chopping),
talking on couch, and rinsing the mouth.

To analyze the performance of our activity recognition
system, three different experiments were conducted using
the KAD-30 and CAD-60 datasets. In the first experiment,
we compared the recognition performance of two different
HCRF models: one-versus-all HCRF model and multiclass
HCRF model. A one-versus-all HCRF model is able to dis-
tinguish only one activity from others. In order to recognize
𝑁 different activities, a total of 𝑁 one-versus-all HCRF
models need to be learned. On the other hands, the single
multiclass HCRF model can be learned to recognize 𝑁
different activities. In addition, we conducted the experiment
with different sizes of history 𝜔 to analyze the effect of

Table 1: Performance comparisons between two different HCRF
models.

HCRF models Datasets
KAD-30 CAD-60

HCRF (one-versus-all) 𝜔 = 0 86.33 86.11
HCRF (one-versus-all) 𝜔 = 1 90.67 88.27
HCRF (multiclass) 𝜔 = 0 91.67 90.23
HCRF (multiclass) 𝜔 = 1 92.33 92.18

long-range dependency by setting 𝜔 = 0 for one model and
𝜔 = 1 for the other.

Table 1 summarizes results of the experiment to compare
the recognition performance between the one-versus-all
HCRFmodel and themulticlass HCRFmodel.Themulticlass
HCRF model performs better than the one-versus-all HCRF
model. The performance of HCRFmodels made a significant
improvement when the history size was increased, which
indicates that incorporating long-range dependencies was
useful.

In the second experiment, we analyzed the recognition
performance per activity of the multiclass HCRF model. For
this experiment, we set the history size 𝜔 of the multiclass
HCRF model to 1. Figure 9 shows two confusion matrices
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Figure 9: Confusion matrix for each dataset.

for the KAD-30 and CAD-60 datasets as results of the
experiment. In the case of the KAD-30 dataset, the activity
of writing on the whiteboard showed the lowest recognition
accuracy. This was because the hands of the target subject
were oftenhidden by his/her torsowhilewriting on the board.
For the CAD-60 dataset, opening a pill container and wearing
contact lens activities showed lower recognition accuracies
than other activities. This was due to insufficient available
information as these activities took a shorter time to perform
than the others.

In the third experiment, we compared the recognition
performance among three different probabilistic graphical
models: HMM, CRF, and multiclass HCRF. Due to their
inherent assumptions and structures, these models have
different power of expression. Therefore, we expect that
the activity recognition with different models will result in
different performances. Table 2 summarizes the results of
the experiment to compare the recognition performance
among three different probabilistic graphical models. In this
experiment, our multiclass HCRF model with the history

Table 2: Performance comparisons among three different graphical
models.

Learning models Datasets
KAD-30 CAD-60

HMMs 90.67 90.84
CRFs 𝜔 = 0 86.33 86.88
CRFs 𝜔 = 1 88.00 87.86
HCRF (multiclass) 𝜔 = 0 91.67 90.23
HCRF (multiclass) 𝜔 = 1 92.33 92.18

size set to one (𝜔 = 1) performs better than the HMM,
the CRF, and even the multiclass HCRF model with the
history size set to zero (𝜔 = 0). The HMM performed better
than the CRF model for both the KAD-30 and the CAD-
60 datasets. In this experiment, hidden state models such
as HMM and HCRF perform better than nonhidden state
models like CRF.This result implies that hidden state models
are very effective to learn the hierarchical structure of high-
level human activities. We also found that the CRF and the
multiclass HCRF models made some improvements when
the history size was increased.This result indicates the useful
effect of long-range dependencies in the CRF and the HCRF
models.

6. Conclusions

In this paper, we proposed a daily activity recognition system
that applies the multiclass HCRF model to Kinect sensor
data. The HCRF model is used to represent the hierarchical
structure of high-level daily activities in effect. In addition,
the proposed system extracts three kinds of view-invariant
features from 3D joint coordinates provided by Kinect API.
These features represent various characteristics of high-level
daily activities. These characteristics include the movement
pattern of each joint over time, the structural relationship
between two different joints at an instant time, and the
relative positions of both hands. Through experiments using
the KAD-30 dataset from Kyonggi University and the CAD-
60 dataset from Cornell University, the high recognition
performance of the proposed system was verified.

In the future, our research highlights would be focused
on the following points. On the one hand, we will optimize
our system so as to further improve the performance. On
the other hand, our system will be extended for many
useful applications such as home healthcare, human robot
interaction (HRI), and other context-aware services.
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