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This paper presents a historical review of the many behavioral models actually used to model radio frequency power amplifiers
and a new classification of these behavioral models. It also discusses the evolution of these models, from a single polynomial to
multirate Volterra models, presenting equations and estimation methods. New trends in RF power amplifier behavioral modeling
are suggested.

1. Introduction

Modeling nonlinear systems has shown to be a challenge
in different areas of science. Most natural phenomena and
physical devices present a nonlinear behavior. In this sense, it
is very useful to classify nonlinear systems, so the rightmodel
can be used for each system.

In [1], a complete classification of nonlinear systems is
given. If any of the following phenomena occurs, a nonlinear
dynamic model has to be used:

(1) asymmetric responses to symmetric input signal
changes (ASYM),

(2) generation of higher-order harmonics in response to
a sinusoidal input (HARM),

(3) input multiplicity, meaning that one steady-state
response corresponds to more than one steady-state
input (IM),

(4) output multiplicity, meaning that one steady-state
input corresponds to more than one steady-state
output (OM),

(5) generation of subharmonics in response to any peri-
odic input (SHAM),

(6) highly irregular responses to simple inputs like
impulses, steps, or sinusoids (CHAOS),

(7) input-dependent stability (IDS).

A nonlinear system is classified due to phenomena
presence as follows:

(i) mild: ASYM, HARM, and IM,

(ii) intermediate: IDS,

(iii) strong: OM, SHAM, and CHAOS.

In electrical engineering, signal amplifiers are very often
used for different purposes. One of the main uses is for signal
transmission, where a power amplifier (PA) is needed. A
radio frequency (RF) power amplifier is a typical nonlinear
system. Even when the transistor is operating in a quasilinear
region, driven with small variance input signals, the output
signal has nonlinear components, due to the physics of the
transistor.

A PA behavioral model (BM) remains in the mildly
nonlinear class. The known PAs to be modeled present
these characteristics in normal operation conditions, when
tested with sinusoid stimuli. None of the other phenomena
(OM, SHAM, CHAOS, or IDS), which imply the need of
intermediate or strong nonlinear dynamic models, were
observed in amplifier measurements.

This paper will present a classification of BMs and discuss
the evolution of BMs based on VS used in the modeling of
RF PAs, from some of the simplest models to recent ones
reported in the literature.
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Figure 1: A PA representation using a nonlinear feedback structure
[2].

2. Classification of Power Amplifier
Behavioral Models

The classification of PA BMs used in this work is as in [2]:

(i) memoryless (ML): the output envelope reacting
instantaneously to variations in the input envelope,

(ii) linear memory (LM): BMs that account for envelope
memory effects attributable to the input and output
matching networks’ frequency characteristics,

(iii) nonlinear memory (NLM): dynamic interaction of
nonlinearities through a dynamic network.

Figure 1 is used by the authors to classify the various
BMs. Memoryless models are represented by the block
“nonlinear/memoryless.” Linear memory models are models
that account for the “linear dynamic”:𝐻(𝜔) and𝑂(𝜔) blocks
(matching networks).Models that care for nonlinearmemory
contain all previously mentioned blocks and the feedback
path with the block 𝐹(𝜔), attributed to electrothermal and/or
bias circuitry dynamics.

Although this classification was very complete by the
time of this paper [2], further developments in the field were
noticed, and so an extension of this classification has to be
done. Some models were recently reported:

(i) the pruned Volterra series (rVS1) [3],
(ii) the pruned Volterra series (rVS2) [4],
(iii) a parallel cascade model (PCM) composed of a static

nonlinearity and a reduced Volterra model (PNLrVS)
[5],

(iv) a parallel cascade subsampled reduced Volterra series
with the first branch composed of a static nonlinearity
and a rVS model and other branches being rVS
models, all with the same memory depth (PssVS), as
detailed in [5].

The last model (PssVS) is a multirate parallel reduced VS.
This model presented the best performance among all BMs
reported in the literature, in an extensive comparison pre-
sented in [6].

A timeline of publications related to the accuracy of VS
models is presented in Figure 2, based on a search in the
database of the IEEE Xplore. This search was focused on PA
BMs.

A graphical representation of all these models from the
initial classification of nonlinear systems to the modern VS
models is presented in Figure 3.
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Figure 2: A timeline of Volterra series models based on accuracy.
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3. Evolution of Power Amplifier
Behavioral Models

This section presents the evolution of PA BMs and their
equations from nonlinear memoryless models to reduced
Volterra Series models.
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Figure 4: Frequency-domain response of a nonlinear amplifier supplied with a two-tone test input signal.

3.1. NonlinearMemoryless. Thenonlinear part of an amplifier
model represents the intermodulation distortion (IMD), or
the static part, and is usually composed of polynomials or
other nonlinear functions (e.g., tangent-sigmoids, look-up
tables). These models do not account for dynamics of the
system.

In this section, some of thememoryless nonlinearmodels
will be covered.

3.1.1. Power Series. A nonlinear system can be represented by
a power series:

𝑦 (𝑘) =

𝑃

∑

𝑝=0

𝑐
𝑝
𝑢
𝑝
(𝑘) , (1)

where 𝑐
𝑝
are the polynomial coefficients and 𝑃 is the order.

A simple form to estimate a power series is using linear
regression methods, as polynomial coefficients are linear
in parameters. The polynomial regression matrix U for 𝑁

measurements, a polynomial degree 𝑃, and the parameter
vector 𝜃̂

𝑃
is [7]
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(2)

Then LS equation can be applied:

𝜃̂
𝑃

= (U𝐻U)
−1

U𝐻y. (3)

This regression matrix results in a Hessian with a high
condition number (CN), defined as the ratio of the largest to
smallest singular value in the singular value decomposition
of a matrix [8]. A large CN is not desirable in the estimation

process, as it implies that small errors in the input can cause
large errors in the output. For very high CN, orthogonaliza-
tion of the regression matrix is required to find the solution.

The Hessian CN can be improved if orthogonal poly-
nomials are used. These polynomials are derived based on
the input signal used in the system. Thus, the regressors are
closer to the ideal situation for a Hessian (regressorsmutually
orthogonal).

For real valued input signals, Chebyshev (derived for
single tones) andHermite (derived for Gaussian distribution)
polynomials are typically applied.

3.1.2. Baseband Power Series. Although polynomial LS esti-
mation is a reasonable possibility to calculate the IMD
components, it generates also “out-of-band” harmonics, as
shown as an example in Figure 4. The numbers above show
the respective IMD products (second, third, and so on) of a
Taylor series expansion when a two-tone excitation is applied
[9].

These are uninteresting for predistortion purposes, the
main objective of behavioralmodeling. To solve this problem,
the first-zone equivalent (or baseband) polynomial is neces-
sary. It can be derived writing the input signal as [10]

𝑢 (𝑘) = Re [𝑢 (𝑘) 𝑒
𝑗𝑤𝑘

] (4)
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] . (5)
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Only the terms where 𝑝 is odd and 2𝑠 − 𝑝 = ±1 can
contribute for the first-zone output or 𝑠 = (𝑝 + 1)/2 and
𝑠 = (𝑝 − 1)/2. Then (7) can be written as
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Using the binomial property and the relation observed in
(5),
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Finally the first-zone filtered input signal can be found as

𝑢
𝑝
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The component (1/2
𝑝−1

) (
𝑝

(𝑝+1)/2
) corresponds to the

baseband power series coefficients.
If no bias is present in the input/output signals, the

regression matrix for the estimation of the coefficients of the
baseband polynomial can be written as
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The baseband polynomial can be written in a compact form:

𝜙
𝑝 [𝑢 (𝑘)] =

𝑃

∑

𝑝=1

𝑐
𝑝 |𝑢 (𝑘)|

2(𝑝−1)
𝑢 (𝑘) . (12)

For complex Gaussian baseband input signals, a derivation of
orthogonal polynomials is found in [11].

3.1.3. Bessel-Fourier Model. The complex Bessel approxima-
tion of a memoryless RF power amplifier is obtained by
the periodic extension of the instantaneous voltage transfer
characteristics by a complex Fourier series expansion. This
derivation was extracted from [12]:

𝑦 (𝑘) =

∞
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𝑐
𝑝
⋅ 𝑒
𝑗𝛼𝑘𝑢(𝑘)
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where 𝑢(𝑘) is the input signal and 𝑦(𝑘) the output signal,
both with finite dynamic range, and 𝑐

𝑝
are Fourier series

coefficients.The parameter 𝛼 is determined by the maximum
dynamic range of the input, 𝐷,

𝛼 =
2𝜋

𝐷
, (14)

which defines the period of the Fourier series periodic
extension. Hence, for the general 𝑁-carrier input

𝑢 (𝑘) =
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And, employing the Bessel function series approximation,
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Rearranging some terms,
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and 𝐽
𝑛𝑙
denotes the 𝑛

𝑙
th-order Bessel function of the first

kind. The coefficients 𝑏
𝑘
may be obtained by using a LS

approximation.

3.1.4. Look-Up Tables. Look-up tables (LUTs) are the most
common type of nonlinear static models in real-world
implementations [7]. An advantage in comparisonwith other
methods is the configuration possibility of the interpolation
and extrapolation behavior. LUTs also present good accuracy
and very fast evaluation. The drawbacks are poor physical
interpretation, high number of parameters, and being not
continuously differentiable. Linear interpolation is normally
used to determine the points among intervals, but also other
methods as cubic interpolation and splines are possible [13].
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3.2. Linear Memory. The two-box modeling techniques are
a possibility to represent the linear memory of an amplifier.
They are also known as modular approaches [14] or feed-
forward block orientedmodels [1].They are obtained by com-
bining components from the following two classes: static (or
memoryless) nonlinearities and causal, linear time-invariant
dynamic subsystems. Parametric and nonparametric mod-
eling methodologies can be used. Flexible arrangements of
block structured models in two possibilities are feasible:
Wiener model (linear-nonlinear) and Hammerstein model
(nonlinear-linear) [15].

The most frequently used configuration for the linear
block of this model is a FIR filter. The nonlinear block is
commonly represented by a polynomial [1]. Examples of these
structures are shown in Figure 5.

If the linear dynamic block is represented by a FIR filter,
the output of this block for the Wiener model is

𝑦WL (𝑘) =

𝑀−1

∑

𝜏=0

ℎ (𝜏) 𝑢 (𝑘 − 𝜏) . (21)

For the Hammerstein model, the FIR filter output is

𝑦HL (𝑘) =

𝑀−1

∑

𝜏=0

ℎ (𝜏) V (𝑘 − 𝜏) . (22)

If the static nonlinearity block is represented by a power
series, the output of this block can be formulated for the
Wiener Model and for the Hammerstein Model as follows:

𝑦WNL (𝑘) =

𝑃

∑

𝑝=0

𝑐
𝑝
𝑥
𝑝
(𝑘) , (23)

𝑦HNL (𝑘) =

𝑃

∑

𝑝=0

𝑐
𝑝
𝑧
𝑝
(𝑘) . (24)

The overall model output is then the combination of these
equations for each model:

𝑦W (𝑘) =

𝑃

∑

𝑝=0

𝑐
𝑝

(

𝑀−1

∑

𝜏=0

ℎ (𝜏) 𝑢 (𝑘 − 𝜏))

𝑝

,

𝑦H (𝑘) =

𝑀−1

∑

𝜏=0

ℎ (𝜏) (

𝑃

∑

𝑝=0

𝑐
𝑝
𝑧
𝑝
(𝑘 − 𝜏)) .

(25)

Equations (25) are a simple way to model a nonlinear
amplifier with memory.
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Figure 6: Example of a parallel Wiener model.

3.3. Nonlinear Memory. More complex models are necessary
to estimate the nonlinear memory, like parallel models or
Volterra series. Examples of these models are parallel cascade
models.

Any system that can be represented by a truncated VS
(26) can be also modeled exactly using parallel cascaded
structures [16].

This technique is the association in branches of various
models (Wiener, Hammerstein, Wiener-Hammerstein, etc.).
The overall model structure becomes more complicated with
each iteration, as each branch is composed of a single model.
The value of the cost function decreases or stays constant with
each additional branch [17]. An example of this configuration
is seen in Figure 6.

Thismethod combines the following favorable properties:

(i) computationally efficient even for high-order models
with large memory-bandwidth products,

(ii) allowing the direct extraction of the Volterra kernels,
(iii) offering the convenience to use different methods for

the identification of the linear and nonlinear blocks
[17].

As a drawback, thismethod is very sensitive to noise if too
many paths are used [14]. Consequently, a proper selection of
the paths using parametric FOMs and the system order of the
nonlinearity should be made, in order to achieve low noise
and good convergence models.

Although the best estimation methods to identify the
parallel Wiener model’s coefficients would be the nonlinear
ones, Korenberg proposed initially linear methods with
acceptable results, as described in his paper [17].

3.4. Volterra Series. Volterra series accounts for a mildly
nonlinear class of nonlinear systems and has the property of
dynamic interaction of nonlinearities, so it is well suited for
the description of PAs.
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The finite, discrete VS model is given by [18]

𝑦
𝑉 (𝑘) =

𝑃

∑

𝑝=0

𝑀−1

∑

𝜏1=0

⋅ ⋅ ⋅

𝑀−1

∑

𝜏𝑝=0

ℎ
𝑝
(𝜏
1
, . . . , 𝜏

𝑝
)

⋅ 𝑢 (𝑘 − 𝜏
1
) ⋅ ⋅ ⋅ 𝑢 (𝑘 − 𝜏

𝑝
) ,

(26)

where ℎ
𝑝
is the kernel of order 𝑃, 𝑘 and 𝜏 are discrete

indices of the sampling interval, and𝑀 is thememory length.
The sampling interval must be selected to cover the needed
input/output signal’s bandwidth.

The main disadvantage of a VS based BM is the number
of parameters necessary to estimate and consequently to
represent the model. A VS model using 5 delay taps needs
5, 125, 625, and 3125 parameters for the 1st, 3rd, 5th,
and 7th order kernels, respectively. These values are not
practical, since an estimation using so many coefficients is
very computational intensive, even for actual computers.

By using the symmetry condition, the complexity of the
Volterra kernels as a function of the order of nonlinearity is
given by the binomial [19]:

(

𝑀 + 𝑝 − 1

𝑝
) , (27)

where 𝑀 is the number of delay taps used and 𝑝 is the order
of the kernel. Using (27), the above cited model is reduced to
5, 45, 126, and 330 parameters. Unfortunately, this equation
is valid only for real valued signals.

3.4.1. Complex Valued Baseband Volterra Series. In order
to obtain the best model performance, it is necessary to
adapt the BMs under study to the modern PA input/output
industry standard signals, once these models are designed
for linearization purposes. The excitation signals are com-
plex valued, and as a practical issue only first-zone filtered
(baseband) equivalent BMs are frequently used, due to the
difficulties to implement bandpass models in hardware.

A closed form for determining the number of indepen-
dent terms for baseband VS using complex signals is the
binomial [20]:

(

𝑀 + ⌊
𝑝

2
⌋

⌊
𝑝

2
⌋

)(

𝑀 + ⌊
𝑝

2
⌋

⌊
𝑝

2
⌋ + 1

)
1

𝑀 + ⌊𝑝/2⌋
, (28)

where ⌊⋅⌋ is the floor operation.
As an example, the numbers of parameters of a complex

valued baseband VS using 4 delay taps are 4, 40, 200, and 700

for the 1st, 3rd, 5th, and 7th order symmetric kernels. The
use of the Volterra kernels symmetry property is necessary
in the model extraction process, since it eliminates the linear
dependent columns of the kernel to be estimated.

Several techniques are employed to estimate VS. If the
system is memoryless, VS are reduced to a Taylor series and
can be estimated as described in Section 3.1. If the system has
only linear memory, it can be estimated using the techniques

+

+

+

+

NL

rVS

rVS

rVS

↓ ssf1

↓ ssf2

umeas(k)

yNL(k)

ymeas(k) yres1(k)

ydyn1(k)

yres2(k)

ydyn2(k)

yres3(k)

ydyn3(k)

...
...

Figure 7: APAbehavioralmodel representation usingmultirate and
reduced Volterra series in a cascade configuration.

listed in Section 3.2. If the system presents only nonlinear
memory or linear and nonlinear memory, some strategies
described in Section 3.3 can be employed.

As shown above, VS presents a very high number of
coefficients.This can lead to ill-conditionedHessianmatrices,
as shown in [20].The best way to estimate a BMusing VS is to
prune some terms, losing the minimum accuracy as possible.
This simplification includes the use of only main diagonals
terms of the VS kernels, the popular parallel Hammerstein
models (PH) [21].

3.4.2. Pruned Volterra Series. There are other models that
take into account some physical knowledge of the device
and include important interactions of the input signal, as
in [4, 22, 23]. These are the pruned or reduced VS models,
because they include interactions different than the terms in
the main diagonal. The accuracy is naturally higher than the
PH models, but they also use more coefficients in the model.

3.4.3. Cascade Multirate Pruned Volterra Series. Joining
pruning techniques of VS, multirate techniques, and also
parallelization of models (cascade), a new model was devel-
oped. This model presented different models composing the
cascade. The first branch is a nonlinear static block, and the
next branches are reduced Volterra series, each one estimated
at a different subsampling rate (PssVS). This model and its
estimation method are fully explained in [5], and it is shown
in Figure 7.

Based on Figure 7 and considering the input signal
as 𝑢meas(𝑘), the output signal 𝑦NL(𝑘) is the output of an
estimated baseband polynomial (or a look-up table) as in (12).
The first residue is

𝑦res1 (𝑘) = 𝑦meas (𝑘) − 𝑦NL (𝑘) . (29)
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The second output signal, 𝑦dyn1(𝑘), is the output of an
estimated reduced Volterra series BM. Its input signal is
𝑢meas(𝑘), and its output signal is the first residue, 𝑦res1(𝑘).
Then the second residue is

𝑦res2 (𝑘) = 𝑦res1 (𝑘) − 𝑦dyn1 (𝑘) . (30)

So the 𝑖th residue for 𝑖 ⩾ 2 is

𝑦res(𝑖) (𝑘) = 𝑦res(𝑖−1) (𝑘) − 𝑦dyn(𝑖−1) (𝑘) . (31)

The overall output of the PssVS model is described as

𝑦tot (𝑘) = 𝑦NL (𝑘) + 𝑦dyn1 (𝑘) + 𝑦dyn2 (𝑘) + 𝑦dyn3 (𝑘) + ⋅ ⋅ ⋅ .

(32)

This equation is also described as in (33). This equation
is linear in parameters and its coefficients can be found using
linear regression methods such as least-squares (LS) [6]:

𝑦 (𝑘) =
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) .

(33)

The excitation signals are complex valued, and thus a first-
zone filtered odd-order model was designed. This approach
is expressed by the polynomial basis function showing only
odd terms [24]. The input vector is 𝑢(𝑘), 𝐵 is the number of
branches used in the model, 𝑃 is the NL order of the model,
and 𝑀 is the memory depth. A higher order can be used in
the static nonlinear branch, as it can also be replaced by any
other static nonlinear block. The advantage of this model is
that it can account for different memory effects existing in a
PA also at different sampling rates. Applying the input signal
at different rates emphasizes the flexibility of the model.

A comparison of this model with other models here
cited using simulated and measured data obtained from a
LDMOSRF PA is firstly presented in [5], using only one FOM
(NMSE). Further on, a comparisonwas presented in [6] using
five different FOMs, namely, normalized mean square error
(NMSE) [21], normalized root mean square error (NRMSE)
[25], mean absolute error (MAE) [26], maximal absolute
error (MaxAE) [27], and coefficient of efficiency (𝑒) [28].
Final results show a superior performance of the PssVS.

These results show a trend in LDMOS RF PA behavioral
models that can not be override. Multirate models allow
simpler hardware to be used in linearization devices that are
the end products of BM.They also present a higher accuracy
than any other model reported so far for LDMOS RF PAs.
Further efforts in this research direction can reveal even
more accuratemodels that use fewer coefficients with simpler
hardware.

4. Conclusion

This paper presented a classification of nonlinear systems
and also a modern classification of behavioral models of RF
power amplifiers. Then an evolution of behavioral models
was also presented, including all equations that characterize
these models. This review showed several models, from basic
baseband power series to the recent parallel multirate pruned
Volterra series models, commenting also on their accuracy.
Remarks about future trends in power amplifiers behavioral
models were also made.
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