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Differential evolution algorithm is a simple yet efficient metaheuristic for global optimization over continuous spaces. However,
there is a shortcoming of premature convergence in standardDE, especially inDE/best/1/bin. In order to take advantage of direction
guidance information of the best individual ofDE/best/1/bin and avoid getting into local trap, based onmultiplemutation strategies,
an enhanced differential evolution algorithm, named EDE, is proposed in this paper. In the EDE algorithm, an initialization
technique, opposition-based learning initialization for improving the initial solution quality, and a new combinedmutation strategy
composed of DE/current/1/bin together with DE/pbest/bin/1 for the sake of accelerating standard DE and preventing DE from
clustering around the global best individual, as well as a perturbation scheme for further avoiding premature convergence, are
integrated. In addition, we also introduce two linear time-varying functions, which are used to decide which solution search
equation is chosen at the phases of mutation and perturbation, respectively. Experimental results tested on twenty-five benchmark
functions show that EDE is far better than the standard DE. In further comparisons, EDE is compared with other five state-of-
the-art approaches and related results show that EDE is still superior to or at least equal to these methods on most of benchmark
functions.

1. Introduction

Optimization problems are ubiquitous in the various areas
including production, life, and scientific community. These
optimization problems are usually nonlinear and nondiffer-
entiable. Particularly, the number of their local optima may
increase exponentially with the problem size. Thus, evolu-
tionary algorithms (EAs) only needing the value information
of objective functions have many more advantages and have
drawn more and more attention of many researchers all over
the world. In this way, a lot of researchers have developed
a great number of evolutionary algorithms, such as genetic
algorithms (GAs), particle swarm optimization (PSO), ant
colony optimization (ACO), and differential evolution (DE)
algorithm. Among them, differential evolution is one of
the most powerful stochastic real-parameter optimization
algorithms [1]. It was originally developed by Storn and Price
[2, 3] in 1995.

Due to its simple implementation, few control param-
eters, and fast convergence, DE has been widely and

successfully applied in function optimization problems [2–
26], constrained optimization problems [27–29], multiob-
jective optimization problems [30], scheduling [31–33], and
others [34–39].

According to the aforementioned statements, it can be
seen that DE has been very successful in solving various
optimization problems. As far as the type of optimization
problems is concerned, more researches mainly focus on
continuous function optimization.However, the convergence
precision and convergence speed over function optimization
are still to be improved. That is, the exploration ability
and exploitation ability of DE cannot be well balanced. To
overcome the shortage of imbalance of the two abilities,
more and more researchers have developed a large number
of DE variants. For example, Noman and Iba [11] proposed
a kind of accelerated differential evolution by incorporating
an adaptive local search technique. Rahnamayan et al. [13]
proposed an opposition-based differential evolution (ODE
for short), in which a novel opposition-based learning (OBL)
technique and a generation-jumping scheme are employed.
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Qin et al. [14] proposed a self-adaptive differential evolution
algorithm, called SaDE, in which both trial vector generation
strategies and their associated parameter values are dynam-
ically self-adapted during the process of producing promis-
ing solutions. Zhang and Sanderson [15] proposed a novel
differential evolution referred to as JADE, in which a novel
self-adaptive parameters scheme and a newmutation strategy
with optional archive are proposed. And these improvements
made JADE achieve a very fast convergence speed and high-
quality solutions. Subsequently, Gong et al. [22, 23] proposed
a few enhanced DE versions based on JADE by introducing
adaptive strategy selection schemes or control parameters
adaption mechanisms. In summary, all these state-of-the-art
DE variants have achieved better convergence performance
than the traditional DE.

Unfortunately, up to now, there exists no specific DE
version to substantially achieve the best solution for all opti-
mization problems because the exploration and the exploita-
tion oftenmutually contradict in reality. Hence, searching for
better approaches is very necessary. In order to solve con-
tinuous optimization problems more efficiently, an enhanced
differential evolution algorithm based on multiple mutation
strategies, called EDE for short, is presented in this paper.

The structure of the paper is organized as follows. The
standard differential evolution algorithm is described briefly
in Section 2. In Section 3, an enhanced differential evolution
algorithm is presented and described in detail. Subsequently,
Section 4 employs a set of benchmark functions to com-
prehensively investigate the performance of the proposed
algorithm through experimental results of these functions
and comparisons with other well-known evolutionary algo-
rithms. Finally, conclusions and further study directions are
given in Section 5.

2. Differential Evolution Algorithm

Differential evolution algorithm was first proposed by Storn
and Price [2, 3]. Like other evolutionary algorithms, an
initialization phase is its first task. In addition, it also consists
of three major operations: mutation, crossover, and selection.
Meanwhile, there exist a few mutation strategies proposed in
the work [3]. In order to distinguish the different DE ver-
sions with various mutation strategies or different crossover
schemes, the famous notation DE/𝑥/𝑦/𝑧 was introduced in
the literature [3], where 𝑥 represents the vector to bemutated,
𝑦 is the number of differential vectors used, and 𝑧 denotes the
crossover scheme employed. DE/rand/1/binwas appliedmost
commonly and it was also usually considered as the canonical
DE version. To be specific, the canonical DE version can be
described as follows.

2.1. Initialization. At the first step, a population of NP
individuals is generated randomly by the following form:

𝑥
𝑖𝑗
= 𝑥

min
𝑗

+ (𝑥
max
𝑗

−𝑥
min
𝑗

) ⋅ rand (0, 1) , (1)

where 𝑖 = 1, 2, . . . ,NP, 𝑗 = 1, 2, . . . , 𝐷; 𝑥min
𝑗

and 𝑥
max
𝑗

are the lower bound and upper bounds of the parameter

𝑗, respectively. Then, the cost function of each solution is
evaluated.

2.2. Mutation. Mutation strategy is very important in DE.
At the step, a mutant vector V

𝑖
is generated by the following

formula for each𝐷-dimensional target vector 𝑥
𝑖
:

V
𝑖
= 𝑥
𝑎
+𝐹 ⋅ (𝑥

𝑏
−𝑥
𝑐
) , (2)

where 𝑖 = 1, 2, . . . ,NP, 𝑎, 𝑏, 𝑐 ∈ {1, 2, . . . ,NP} are mutually
different random integer number, and they are such that
𝑎 ̸= 𝑏 ̸= 𝑐 ̸= 𝑖. The mutation scale factor 𝐹 is a real and
constant factor ∈ [0, 2] which controls the amplification of
the differential variation (𝑥

𝑏
− 𝑥
𝑐
) [3].

2.3. Crossover. In order to exchange information between a
mutant vector V

𝑖
and the current target vector 𝑥

𝑖
, crossover

operation is introduced. At this time, a trial vector 𝑢
𝑖
=

(𝑢
𝑖1, 𝑢𝑖2, . . . , 𝑢𝑖𝐷) is produced by the following form:

𝑢
𝑖𝑗
=

{

{

{

V
𝑖𝑗
, if rand [0, 1]𝑗 ≤ Cr ∨ 𝑗 == 𝑗rand,

𝑥
𝑖𝑗
, otherwise,

(3)

where 𝑗 = 1, 2, . . . , 𝐷, rand[0, 1]
𝑗
is a random real number

between [0, 1], and 𝑗rand ∈ {1, 2, . . . , 𝐷} is a randomly chosen
index, which ensures that the trial vector 𝑢

𝑖
obtains at least

one parameter from the mutant vector V
𝑖
. Crossover rate Cr

is a predefined constant within the range [0, 1] and it controls
the fraction of parameter values copied from the mutant
vector.

2.4. Selection. After crossover operation, the trial vector 𝑢
𝑖
is

compared to the target vector 𝑥
𝑖
through a greedy selection

mechanism. The winner is retained and it will become a
member of next generation. For a minimization problem, the
selection process can be described according to the following
equation:

𝑥
⋆

𝑖
=

{

{

{

𝑢
𝑖
, if 𝑓 (𝑢

𝑖
) < 𝑓 (𝑥

𝑖
) ,

𝑥
𝑖
, otherwise,

(4)

where 𝑓(𝑥) denotes the objective of solution 𝑥 and 𝑥⋆
𝑖
is an

offspring corresponding to the target vector 𝑥
𝑖
.

In a word, except for the initialization phase, the afore-
mentioned steps will be repeated in turn until a stopping
criterion is reached.

3. An Enhanced Differential
Evolution Algorithm

3.1. Initialization Based on Opposition-Based Learning.
Recently, Rahnamayan et al. [12, 13] proposed a new scheme
for generating random numbers, called opposition-based
learning (OBL), which can effectively make use of random
numbers and their opposites. Moreover, the ability of OBL
accelerating the optimization, search, or learning process
in many soft computing techniques has been reported in
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(1) for 𝑖 = 1 to NP do
(2) for 𝑗 = 1 to𝐷 do
(3) 𝑥

𝑖,𝑗
= 𝑥

min
𝑗

+ rand(0, 1) ⋅ (𝑥max
𝑗

− 𝑥
min
𝑗
)

(4) 𝑜𝑥
𝑖,𝑗
= 𝑥

min
𝑗

+ 𝑥
max
𝑗

− 𝑥
𝑖,𝑗

//opposition-based learning
(5) end for
(6) end for

Algorithm 1: Initialization based on opposition-based learning.

the literatures [12, 13]. At first, a state-of-the-art algorithm,
named ODE, was proposed by applying the OBL scheme
to accelerate DE [13]. After that, the OBL scheme has been
successfully used in other evolutionary algorithms such
as artificial bee colony algorithm [40], harmony search
algorithm [41], particle swarm optimization [42, 43], and
teaching learning based algorithm [44]. A comprehensive
survey about the OBL scheme can be found in [45].

In order to improve the solution quality of initial popula-
tion, the OBL scheme is employed to initialize the population
individuals of EDE in the work. The initial process can
be described as shown in Algorithm 1. In Algorithm 1, two
sets, that is, sets 𝑋 and 𝑂𝑋, are generated, where 𝑋 =

{𝑥1, 𝑥2, . . . , 𝑥NP} and 𝑂𝑋 = {𝑜𝑥1, 𝑜𝑥2, . . . , 𝑜𝑥NP}. The initial
population consists of the top NP individuals chosen from
the set𝑋 ∪ 𝑂𝑋 according to their fitness values.

3.2. Multiple Mutation Strategies. A mutation strategy
DE/current/1/bin is employed. Namely, the target vector 𝑥

𝑖

is employed as the base vector in this DE version. That is, a
mutant vector V

𝑖
will be generated by the following equation:

V
𝑖
= 𝑥
𝑖
+𝐹 ⋅ (𝑥

𝑎
−𝑥
𝑏
) , (5)

where 𝑖 ∈ {1, 2, . . . ,NP} represents the index of current
individual, 𝑎 ∈ {1, 2, . . . ,NP} and 𝑏 ∈ {1, 2, . . . ,NP} are
random integers, and 𝑎 ̸= 𝑏 ̸= 𝑖.

In order to better take advantage of the guiding infor-
mation of best individual, a new version of DE/best/1/bin,
DE/𝑝best/1/bin, proposed by Zhang and Sanderson [15], is
further employed in the work to speed up the convergence
speed of the proposed approach EDE.That is, amutant vector
V
𝑖
is produced as follows:

V
𝑖
= 𝑥
𝑝

best +𝐹 ⋅ (𝑥𝑎 −𝑥𝑏) , (6)

where 𝑝 ∈ {1, 2, . . . ,𝑀} ⊆ {1, 2, . . . ,NP} is a random
number and it denotes the top 𝑝 individuals according to
the fitness values of individuals. It should be noted that 𝑝
of DE/𝑝best/1/bin in JADE [15] is a proportional number
between [0, 1].

More specifically, according to the first mutation strategy,
it can be seen that new generated mutant vectors will be
scattered around the respective target vectors, which can
not only keep good population diversity but also avoid the
overrandomness of classic mutation strategy DE/rand/1/bin.
According to the second mutation strategy DE/𝑝best/1/bin,
owing to the guidance of one of several better individuals

(𝑥
𝑝

best) rather than the only best individual 𝑥best, the used
mutation strategy can drive population towards better indi-
viduals so as to enhance the convergence speed. In addition, it
can also prevent EDE from congregating the vicinity of global
best individual to some extent.

In the meantime, a probabilistic parameter 𝑟1 is time
varying and designed to control which of the two mutation
strategies is to be executed at the mutation step. The parame-
ter 𝑟1 can be described as follows:

𝑟1 = 𝑟max −
FEs

max FEs
⋅ (𝑟max − 𝑟min) , (7)

where 𝑟max and 𝑟min denote the maximum probability value
and the minimum probability value, respectively. FEs is an
iterative variable. max FEs represents the maximum number
of fitness function evaluations.

As a matter of fact, the probability parameter 𝑟1 plays an
important role in balancing the exploration ability and the
exploitation ability. That is, it is hoped that good population
diversity is kept at the beginning of evolution and fast
convergence speed is achieved at the end of search.

3.3. Perturbation. After repeating all operations (mutation,
crossover, and select operations) of differential evolution,
a perturbed scheme is conducted over the best individual
in order to further trade off the searching ability of the
aforementioned solution search equations. During the pro-
cess, two perturbed equations are introduced and the best
individual is perturbed dimension by dimension according
to them, which are described by (8) and (9), respectively. One
has

𝜇
𝑗
= 𝑥best,𝑛 + (2 ⋅ rand (0, 1) − 1) ⋅ (𝑥best,𝑛 −𝑥𝑘,𝑛) , (8)

where 𝑗 = 1, 2, . . . , 𝐷, 𝜇 = (𝜇1, 𝜇2, . . . , 𝜇𝐷) is a temporary
copy of the best individual, best represents the index of best
individual in current population, 𝑘 ∈ {1, 2, . . . ,NP}∧𝑘 ̸= best
is a uniform random number, and 𝑛 ∈ {1, 2, . . . , 𝐷} is also a
random number. One has

𝜇
𝑗
= 𝑥best,𝑗 + (2 ⋅ rand (0, 1) − 1) ⋅ (𝑥best,𝑛 −𝑥𝑘,𝑛) , (9)

where all the notations are the same as those in (8).
From (9), it can be observed that perturbation operation

occurs on the current component 𝑗 of best individual, and the
differential variation (𝑥best,𝑛 − 𝑥𝑘,𝑛) acts as perturbed scales.
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Notice that dimension 𝑛 may be different from 𝑗, which is
helpful to enrich perturbation scales to some extent. That is,
it may increase the probability of getting out of local minima
trap.

What is more, the term 𝑥best,𝑗 of (9) is different from
the first term on the right hand side of formulation (8).
The reason for (8) introduced is that information between
different dimensions of best individual could be shared.Thus,
the EDE algorithm could get out of local optimal trap with a
larger probability.

Like the aforementioned tradeoff scheme, a probability
parameter 𝑟2 is employed. The parameter 𝑟2 is linear time-
varying during the evolution process as follows:

𝑟2 = 𝑤min +
FEs

max FEs
⋅ (𝑤max −𝑤min) , (10)

where𝑤max and𝑤min denote the maximum probability value
and the minimum probability value, respectively. The rest of
these parameters are the same as those in (7).

Concretely speaking, (8) is executed with a probability
value 𝑟2, but (9) is executed with a probability value (1 − 𝑟2).

3.4. Boundary Constraints Handling Technique. In order to
keep solutions subject to boundary constraints, some com-
ponents of a solution violating the predefined boundary
constraints should be repaired. That is, if a parameter value
produced by solution search equations exceeds its predefined
boundaries, the parameter should be set to an acceptable
value. The following repair rule used in the literature [17] is
employed in this work:

𝑥
𝑖𝑗

=

{

{

{

𝑥
min
𝑗

+ rand (0, 1) ⋅ (𝑥max
𝑗

− 𝑥
min
𝑗

) , if 𝑥
𝑖𝑗
< 𝑥

min
𝑗

,

𝑥
max
𝑗

− rand (0, 1) ⋅ (𝑥max
𝑗

− 𝑥
min
𝑗

) , if 𝑥
𝑖𝑗
> 𝑥

max
𝑗

.

(11)

3.5. The Proposed Approach. In order to effectively take use
of the guidance information of best individual, mutation
strategy DE/best/1/bin is considered. In order to prevent a
large number of individuals fromclustering around the global
best individual, inspired by JADE [15], mutation strategy
DE/𝑝best/1/bin is actually used. In addition, another muta-
tion strategy DE/current/1/bin is employed to further trade
off the exploitation ability of DE/𝑝best/1/bin. At the same
time, a selective probability 𝑟1 with linear time-varying nature
is introduced to decide which mutation strategy works at the
mutation phase of DE. Subsequently, a perturbation scheme
for the best individual is incorporated into the modified DE
version. In short, the pseudocode of EDE can be given in
Algorithm 2 based on the above explanation.

4. Experimental Study and Discussion

4.1. Benchmark Functions and Parameter Settings. To verify
the optimization effectiveness of EDE, twenty-five bench-
mark functions with different characteristics taken from Yao
et al. [46],Gong et al. [23], andGao andLiu [40] are employed
here.

These benchmark functions are listed briefly in Table 1, in
which 𝐷 designates the dimensionality of test functions. All
the functions are scalable and high-dimensional problems.
Functions 𝑓01–𝑓05, 𝑓14, and 𝑓15 are unimodal. Function 𝑓06,
that is, the step function, has one minimum and is discontin-
uous. Function𝑓07 is a quartic functionwith noise. Functions
𝑓08–𝑓13 and𝑓16–𝑓19 are difficult multimodal functions where
the number of local minima increases exponentially as the
dimension of test function increases. In addition, six shifted
functions are chosen to evaluate the performance of EDE.
Namely, functions 𝑓20–𝑓25 are shifted functions and 𝑜 =

(𝑜1, 𝑜2, . . . , 𝑜𝐷) representing a shifted vector is generated
randomly in the corresponding search range.

In our experimental study, all benchmark functions
are tested in 30 dimensions and 100 dimensions. The
corresponding maximum number of fitness function evalua-
tions (max FEs) is 15𝑒4 and 50𝑒4, respectively. Moreover, the
other specific parameters of DE and EDE are set as follows.

DE Settings. In canonical DE/rand/1/bin, the scale factor 𝐹
is set to 0.5, the parameter of crossover rate Cr is set to 0.9,
and the population size SN is 100. It should be noted that the
values of three parameters are the same as those of the state-
of-the-art algorithm ODE [13].

EDE Settings. In our proposed algorithm, the scale factor 𝐹 is
set to 0.5.The parameter of crossover rate Cr is set to 0.9. And
the population size SN is 20. A few other parameters are set
as follows: 𝑟max = 1, 𝑟min = 0.1, 𝑤max = 0.2, 𝑤min = 0, and
𝑀 = 4.

For the set of experiments tested on 25 benchmark func-
tions, we use the aforementioned parameter settings unless
a change is mentioned. Furthermore, each test case is opti-
mized thirty runs independently. Then, experimental results
for these well-known problems as well as some comparisons
with other famous methods are reported as follows.

4.2. Comparison between DE and EDE. For the purpose of
validating the enhancing effectiveness of EDE, EDE is first
compared with canonical DE in terms of best, worst, median,
mean, and standard deviation (Std.) values of solutions
achieved by each algorithm in 30 independent runs. The
corresponding results are listed in Table 2. Furthermore,
the Wilcoxon rank sum test is conducted to compare the
significant difference between DE and EDE at 𝛼 = 0.05
significance level. The related test results are also reported
in Table 2. And then, some representatives of convergence
curves of DE and EDE are shown in Figure 1 in order to show
the convergence speed of EDE more clearly.

FromTable 2, it can be seen that EDE is significantly supe-
rior to DE in most cases. To be specific, EDE is significantly
better than DE on 20 functions, that is, 𝑓01, 𝑓02, 𝑓03, 𝑓04, 𝑓05,
𝑓06, 𝑓08, 𝑓09, 𝑓10, 𝑓12, 𝑓13, 𝑓14, 𝑓15, 𝑓16, 𝑓19, 𝑓20, 𝑓21, 𝑓22, 𝑓24,
and 𝑓25, in terms of related Wilcoxon rank sum test results.
In addition, for function 𝑓07 with 𝐷 = 30, EDE is still better
than DE. For function 𝑓07 with𝐷 = 100, EDE is equal to DE;
actually, the mean result achieved by EDE is slightly better
than that of DE. For function 𝑓11 with𝐷 = 30, EDE is similar
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(1) Initialize a population of NP individuals based on the opposition-based learning technique
(2) Set FEs = 2 ∗ NP // FEs represents the iteration counter

// max FEs represents the maximum number of fitness function evaluations
(3) while FEs ⩽ max FEs do
(4) for 𝑖 = 1 to NP do
(5) Sort the population from best to worst
(6) Randomly choose a relatively better individual from the top 𝑝 ∈ {1, 2, . . . ,𝑀} individuals, and let

𝑝best represent the index of chosen individual
(7) Select uniform randomly 𝑎 ̸= 𝑏 ̸= 𝑖

(8) if rand ⩽ 𝑟1 then
(9) Generate a mutant individual V according to (5)
(10) else
(11) Generate a mutant individual V according to (6)

V = 𝑥
𝑝best + 𝐹 ⋅ (𝑥𝑎 − 𝑥𝑏)

(12) end if
(13) Let 𝑢 = 𝑥

𝑖

//rand is a function for generating a random number in the range of [0, 1]
(14) Let 𝑗rand = ⌊𝐷 ∗ rand⌋ + 1
(15) for 𝑗 = 1 to𝐷 do
(16) if rand ⩽ Cr ‖ 𝑗 == 𝑗rand then
(17) 𝑢

𝑗
= V
𝑗

(18) end if
(19) end for
(20) Evaluate the new produced individual 𝑢
(21) Set FEs = FEs + 1
(22) if 𝑓(𝑢) is better than 𝑓(𝑥

𝑖
) then

(23) Replace 𝑥
𝑖
with 𝑢

(24) end if
(25) end for
(26) //Perturb the best individual dimension by dimension
(27) for 𝑗 = 1 to𝐷 do
(28) Set 𝜇 = 𝑥best // best denotes the index of best individual
(29) 𝑘 = ⌊rand ∗ NP⌋ + 1 ∧ 𝑘 ̸= best
(30) 𝑛 = ⌊rand ∗ 𝐷⌋ + 1
(31) if rand < 𝑟2 then
(32) Modify 𝜇

𝑗
according to (8)

(33) else
(34) Modify 𝜇

𝑗
according to (9)

(35) end if
(36) Evaluate the modified individual 𝜇
(37) Set FEs = FEs + 1
(38) Choose a better individual from the set {𝑥best, 𝜇} to represent 𝑥best
(39) end for
(40) Record the best solution found so far
(41) end while

Algorithm 2: The EDE algorithm.

to DE. For the function 𝑓11 with 𝐷 = 100, DE outperforms
EDE. Nevertheless, the results obtained by EDE are very close
to those found by DE. For the functions 𝑓17, 𝑓18 and 𝑓23, DE
is better than EDE. And yet, the results obtained by EDE are
very close to those found by DE on the functions 𝑓17, 𝑓18 at
𝐷 = 30 and 𝑓23 at𝐷 = 100.

From Figure 1, it can also be observed that EDE is far bet-
ter than DE in terms of solutions accuracy and convergence
speed on the representative cases.

According to the aforementioned analyses, it can be
concluded that EDE is better than or approximately equal
to DE on almost all the functions. In other words, multiple
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Table 1: Benchmark functions used in experiments.

Test functions Search space Optimum

𝑓01 (𝑥) =
𝐷

∑

𝑖=1
𝑥
2
𝑖 [−100, 100]𝐷 0

𝑓02 (𝑥) =
𝐷

∑

𝑖=1





𝑥
𝑖





+

𝐷

∏

𝑖=1





𝑥
𝑖




 [−10, 10]𝐷 0

𝑓03 (𝑥) =
𝐷

∑

𝑖=1
(

𝑖

∑

𝑗=1

𝑥
𝑗
)

2

[−100, 100]𝐷 0

𝑓04 (𝑥) = max
𝑖

{




𝑥
𝑖





, 1 ⩽ 𝑖 ⩽ 𝐷} [−100, 100]𝐷 0

𝑓05 (𝑥) =
𝐷−1
∑

𝑖=1
[100 (𝑥

𝑖+1 − 𝑥
2
𝑖
)

2

+ (𝑥
𝑖
− 1)2] [−30, 30]𝐷 0

𝑓06 (𝑥) =
𝐷

∑

𝑖=1
(⌊𝑥
𝑖
+ 0.5⌋)2 [−100, 100]𝐷 0

𝑓07 (𝑥) =
𝐷

∑

𝑖=1
𝑖𝑥

4
𝑖
+ random[0, 1) [−1.28, 1.28]𝐷 0

𝑓08 (𝑥) = −418.98288727243369 × 𝐷 +

𝐷

∑

𝑖=1
[−𝑥
𝑖
sin(√


𝑥
𝑖





)] [−500, 500]𝐷 0

𝑓09 (𝑥) =
𝐷

∑

𝑖=1
(𝑥

2
𝑖
− 10 cos (2𝜋𝑥

𝑖
) + 10) [−5.12, 5.12]𝐷 0

𝑓10 (𝑥) = −20 exp(−0.2√
1
𝐷

𝐷

∑

𝑖=1
𝑥
2
𝑖
)− exp( 1

𝐷

𝐷

∑

𝑖=1
cos (2𝜋𝑥

𝑖
)) + 20 + 𝑒 [−32, 32]𝐷 0

𝑓11 (𝑥) =
1

4000

𝐷

∑

𝑖=1
𝑥
2
𝑖
−

𝐷

∏

𝑖

cos(
𝑥
𝑖

√𝑖

) + 1 [−600, 600]𝐷 0

𝑓12 (𝑥) =
𝜋

𝐷

{10sin2
(𝜋𝑦1) +

𝐷−1
∑

𝑖=1
(𝑦
𝑖
− 1)2 [1 + 10sin2 (𝜋𝑦

𝑖+1)] (𝑦𝑛 + 1)2} +

𝐷

∑

𝑖=1
𝑢 (𝑥
𝑖
, 10, 100, 4),

[−50, 50]𝐷 0
where 𝑦

𝑖
= 1 + 1

4
(𝑥
𝑖
+ 1), 𝑢 (𝑥

𝑖
, 𝑎, 𝑘, 𝑚) =

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

𝑘 (𝑥
𝑖
− 𝑎)
𝑚

, 𝑥
𝑖
> 𝑎;

0, −𝑎 ⩽ 𝑥
𝑖
⩽ 𝑎;

𝑘 (−𝑥
𝑖
− 𝑎)
𝑚

, 𝑥
𝑖
< −𝑎.

𝑓13 (𝑥) = 0.1{sin2
(3𝜋𝑥1) +

𝐷

∑

𝑖=1
(𝑥
𝑖
− 1)2 [1 + sin2

(3𝜋𝑥
𝑖
+ 1)] + (𝑥

𝑛
− 1)2 [1 + sin2 (2𝜋𝑥

𝑛
)]} +

𝐷

∑

𝑖=1
𝑢 (𝑥
𝑖
, 5, 100, 4) [−50, 50]𝐷 0

𝑓14 (𝑥) =
𝐷

∑

𝑖=1
𝑖𝑥

2
𝑖 [−10, 10]𝐷 0

𝑓15 (𝑥) =
𝐷

∑

𝑖=1
𝑖𝑥

4
𝑖 [−1.28, 1.28]𝐷 0

𝑓16 (𝑥) =
𝐷

∑

𝑖=1
[𝑦

2
𝑖
− 10 cos (2𝜋𝑦

𝑖
) + 10], where 𝑦

𝑖
=

{
{
{

{
{
{

{

𝑥
𝑖

if 

𝑥
𝑖





< 0.5,

round (2𝑥
𝑖
)

2
else 


𝑥
𝑖





⩾ 0.5.

[−5.12, 5.12]𝐷 0

𝑓17 (𝑥) = 0.5 +
sin2

√∑
𝐷

𝑖=1 𝑥
2
𝑖
− 0.5

(1 + 0.001∑𝐷
𝑖=1 𝑥

2
𝑖
)

2 [−100, 100]𝐷 0

𝑓18 (𝑥) = − cos (2𝜋 ‖𝑥‖) + 0.1 ‖𝑥‖ + 1, where ‖𝑥‖ = √
𝐷

∑

𝑖=1
𝑥
2
𝑖 [−100, 100]𝐷 0

𝑓19 (𝑥) =
𝐷

∑

𝑖=1





𝑥
𝑖
sin (𝑥

𝑖
) + 0.1𝑥

𝑖




 [−10, 10]𝐷 0

𝑓20 (𝑥) =
𝐷

∑

𝑖=1
𝑧
2
𝑖
, 𝑧 = 𝑥 − 𝑜 [−100, 100]𝐷 0
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Table 1: Continued.

Test functions Search space Optimum

𝑓21 (𝑥) =
𝐷

∑

𝑖=1
(𝑧

2
𝑖
− 10 cos (2𝜋𝑧

𝑖
) + 10), 𝑧 = 𝑥 − 𝑜 [−5, 5]𝐷 0

𝑓22 (𝑥) = −20 exp(−0.2√
1
𝐷

𝐷

∑

𝑖=1
𝑧
2
𝑖
) − exp( 1

𝐷

𝐷

∑

𝑖=1
cos (2𝜋𝑧

𝑖
)) + 20 + 𝑒, 𝑧 = 𝑥 − 𝑜 [−32, 32]𝐷 0

𝑓23 (𝑥) =
1

4000

𝐷

∑

𝑖=1
𝑧
2
𝑖
−

𝐷

∏

𝑖

cos(
𝑧
𝑖

√𝑖

) + 1, 𝑧 = 𝑥 − 𝑜 [−600, 600]𝐷 0

𝑓24 (𝑥) =
𝐷

∑

𝑖=1
(

𝑖

∑

𝑗=1

𝑧
𝑗
)

2

, 𝑧 = 𝑥 − 𝑜 [−100, 100]𝐷 0

𝑓25 (𝑥) =
𝐷−1
∑

𝑖=1
(100 (𝑧

𝑖+1 − 𝑧
2
𝑖
)

2

+ (𝑧
𝑖
− 1)2), 𝑧 = 𝑥 − 𝑜 + 1 [−100, 100]𝐷 0

mutation strategies and perturbation schemes are beneficial
to the performance of EDE.

4.3. Comparison between EDE and Other Three DE Variants.
In this subsection, EDE is further compared with some
representatives of state-of-the-art DE variants, such as SaDE
[14], JADE [15], and SaJADE [23]. Here sixteen test functions
are used for the comparison. The related comparison results
are listed in Table 3. For a fair comparison, except for the
proposed algorithm EDE, the rest of the results reported in
Table 3 are directly taken from Gong et al. [23].

From Table 3, it can be seen that EDE is obviously better
than JADE on twelve functions, that is, 𝑓01, 𝑓02, 𝑓04, 𝑓05,
𝑓06, 𝑓08, 𝑓09, 𝑓10, 𝑓12, 𝑓13, 𝑓19, and 𝑓21. JADE works better
than EDE on four functions. Notice that EDE is just slightly
inferior to JADE on the three functions 𝑓03, 𝑓07, and 𝑓18.
When compared with SaDE, EDE performs better than it
does on thirteen functions. And the results found by EDE
are very close to those found by SaDE on other two functions
𝑓07 and 𝑓18. When compared with SaJADE, SaJADE is better
than EDE on four functions, but the superiority of SaJADE
is not obvious on the three functions 𝑓05, 𝑓07, and 𝑓18 except
for function 𝑓11. Yet EDE is better than or equal to SaJADE
on other twelve functions.

It should be pointed out that the results are summarized
as 𝑤/𝑡/𝑙 in the last line of Table 3, which means that EDE
wins in 𝑤 function cases, ties in 𝑡 cases, and loses in 𝑙 cases
when compared with its competitor. For JADE, SaDE, and
SaJADE, they are 12/0/4, 13/0/3, and 11/1/4, respectively.
The results show that EDE is superior to or similar to other
three approaches on the majority of benchmark functions.

4.4. Comparison among EDE and Two Artificial Bee Colony
Algorithms. Artificial bee colony algorithm introduced by
Karaboga and Basturk is a relatively new swarm-based
optimization algorithm [47]. And it has become a promising
technique [48]. Particularly, a modified artificial bee colony
algorithm, named MABC, proposed by Gao and Liu [40],
is an outstanding representative of many enhanced ABC
versions. In order to further demonstrate the superiority of

EDE, EDE is compared with standard ABC and MABC on
twenty-one functions again. In the experimental study, the
maximum number of fitness function evaluations (max FEs)
is set to 15𝑒4 for all compared algorithms as recommended
by Gao and Liu [40].

The further comparison results are given in Table 4. For
convenience, besides the data achieved by the EDE algorithm,
the rest of the results are gained by Gao and Liu [40] directly.

From Table 4, it is clear that EDE is better than or at least
even with ABC on nineteen functions, but ABC only works
better than EDE on two functions. EDE is better than or equal
to MABC on eighteen functions. MABC also only surpasses
EDE on three functions. In addition, the accuracy of solution
obtained by EDE is far better than that obtained by ABC on
many benchmark functions such as 𝑓01, 𝑓02, 𝑓08, 𝑓14, 𝑓15, and
𝑓19. Meanwhile, the accuracy of solution obtained by EDE is
far better than that obtained byMABCon some test functions
including 𝑓01, 𝑓02, and 𝑓14. In summary, EDE is superior to
both ABC and MABC.

5. Conclusion

In order to achieve a better compromise between the explo-
ration ability and the exploitation ability of DE, in this
work, an enhanced differential evolution algorithm, called
EDE, is presented. In EDE, first, an initialization technique,
opposition-based learning initialization, is employed. Next,
inspired by JADE [15], a mutation strategy DE/𝑝best/1/bin
is introduced in EDE. At the same time, a new mutation
strategyDE/current/bin/1 is also introduced.That is, there are
multiple mutation strategies composed of the two mutation
strategies in EDE to better balance the exploration and the
exploitation of DE. When performing the EDE algorithm,
one of the two mutation strategies is chosen randomly with a
linear time-varying scheme. Last, a perturbation scheme for
the best individual is presented in order to get out of local
minima, where the perturbation scheme is also composed of
two solution search equations. Specifically, the best individual
is perturbed dimension by dimension in twomodes. All these
modifications make up the proposed algorithm EDE.
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Figure 1: Continued.
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Figure 1: Convergence performance of DE and EDE on the twelve test functions at𝐷 = 30.
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Table 2: Best, worst, median, mean, and standard deviation values achieved by DE and EDE through 30 independent runs.

Number Dim. max FEs Methods Best Worst Median Mean Std. Sig.

𝑓01

30 15𝑒4

DE 1.48𝑒 − 014 1.00𝑒 − 013 3.38𝑒 − 014 3.81𝑒 − 014 1.87𝑒 − 014

†

EDE 0.00𝑒 − 000 1.13𝑒 − 302 1.12𝑒 − 315 4.19𝑒 − 304 0.00𝑒 − 000

100 50𝑒4

DE 1.50𝑒 − 018 9.93𝑒 − 017 7.79𝑒 − 018 1.29𝑒 − 017 1.86𝑒 − 017

†

EDE 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000

𝑓02

30 20𝑒4

DE 1.40𝑒 − 010 9.17𝑒 − 010 3.57𝑒 − 010 3.95𝑒 − 010 1.93𝑒 − 010

†

EDE 6.18𝑒 − 234 1.00𝑒 − 225 1.05𝑒 − 229 4.65𝑒 − 227 0.00𝑒 − 000

100 50𝑒4

DE 1.39𝑒 − 010 6.55𝑒 − 010 3.61𝑒 − 010 3.71𝑒 − 010 1.30𝑒 − 010

†

EDE 8.41𝑒 − 229 2.02𝑒 − 221 5.42𝑒 − 225 7.34𝑒 − 223 0.00𝑒 − 000

𝑓03

30 50𝑒4

DE 8.22𝑒 − 013 1.93𝑒 − 010 2.21𝑒 − 011 4.23𝑒 − 011 4.84𝑒 − 011

†

EDE 7.63𝑒 − 085 7.80𝑒 − 079 3.78𝑒 − 081 8.01𝑒 − 080 1.71𝑒 − 079

100 50𝑒4

DE 5.27𝑒 + 003 2.23𝑒 + 004 9.65𝑒 + 003 1.01𝑒 + 004 3.62𝑒 + 003

†

EDE 3.64𝑒 − 004 1.18𝑒 − 002 2.50𝑒 − 003 3.70𝑒 − 003 3.20𝑒 − 003

𝑓04

30 50𝑒4

DE 4.40𝑒 − 012 2.50𝑒 − 001 1.00𝑒 − 003 3.15𝑒 − 002 6.32𝑒 − 002

†

EDE 1.43𝑒 − 144 2.81𝑒 − 138 2.95𝑒 − 140 2.79𝑒 − 139 6.39𝑒 − 139

100 50𝑒4

DE 1.01𝑒 + 001 2.67𝑒 + 001 1.97𝑒 + 001 1.97𝑒 + 001 3.30𝑒 − 000

†

EDE 3.61𝑒 − 027 7.99𝑒 − 025 3.92𝑒 − 026 1.02𝑒 − 025 1.59𝑒 − 025

𝑓05

30
15𝑒4

DE 1.41𝑒 + 001 1.84𝑒 + 001 1.70𝑒 + 001 1.68𝑒 + 001 1.06𝑒 − 000

†

EDE 1.52𝑒 − 024 2.43𝑒 − 001 4.03𝑒 − 015 8.50𝑒 − 003 4.43𝑒 − 002

50𝑒4

DE 3.47𝑒 − 016 3.98𝑒 − 000 1.99𝑒 − 013 1.32𝑒 − 001 7.27𝑒 − 001

†

EDE 0.00𝑒 − 000 7.28𝑒 − 027 2.17𝑒 − 029 4.42𝑒 − 028 1.38𝑒 − 027

100 50𝑒4

DE 7.79𝑒 + 001 1.96𝑒 + 002 1.41𝑒 + 002 1.33𝑒 + 002 3.63𝑒 + 001

†

EDE 1.19𝑒 − 004 1.61𝑒 + 002 7.44𝑒 + 001 5.31𝑒 + 001 4.70𝑒 + 001

𝑓06

30
8𝑒3

DE 1.79𝑒 + 003 5.38𝑒 + 003 4.07𝑒 + 003 3.90𝑒 + 003 8.52𝑒 + 002

†

EDE 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000

15𝑒4

DE 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000

EDE 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000

100
5𝑒4

DE 4.27𝑒 + 002 1.06𝑒 + 003 6.83𝑒 + 002 6.81𝑒 + 002 1.65𝑒 + 002

†

EDE 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000

50𝑒4

DE 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000

EDE 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000

𝑓07

30 30𝑒4

DE 2.50𝑒 − 003 8.10𝑒 − 003 4.40𝑒 − 003 4.70𝑒 − 003 1.40𝑒 − 003

†

EDE 7.02𝑒 − 004 3.80𝑒 − 003 2.30𝑒 − 003 2.30𝑒 − 003 8.87𝑒 − 004

100 50𝑒4

DE 1.80𝑒 − 002 9.09𝑒 − 002 2.87𝑒 − 002 3.25𝑒 − 002 1.34𝑒 − 003

≈

EDE 2.29𝑒 − 002 4.25𝑒 − 002 3.03𝑒 − 002 3.05𝑒 − 002 4.90𝑒 − 003

𝑓08

30 15𝑒4

DE 6.56𝑒 + 003 7.72𝑒 + 003 7.26𝑒 + 003 7.26𝑒 + 003 2.91𝑒 + 002

†

EDE 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000

100 50𝑒4

DE 2.56𝑒 + 004 3.30𝑒 + 004 2.89𝑒 + 004 2.93𝑒 + 004 1.84𝑒 + 003

†

EDE 9.45𝑒 − 011 9.45𝑒 − 011 9.45𝑒 − 011 9.45𝑒 − 011 0.00𝑒 − 000

𝑓09

30 15𝑒4

DE 1.46𝑒 + 002 1.94𝑒 + 002 1.77𝑒 + 002 1.74𝑒 + 002 1.34𝑒 + 001

†

EDE 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000

100 50𝑒4

DE 1.91𝑒 + 002 6.65𝑒 + 002 5.70𝑒 + 002 5.49𝑒 + 002 1.03𝑒 + 002

†

EDE 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000

𝑓10

30 15𝑒4

DE 2.82𝑒 − 008 2.07𝑒 − 007 5.86𝑒 − 008 7.10𝑒 − 008 3.55𝑒 − 008

†

EDE 4.44𝑒 − 015 4.44𝑒 − 015 4.44𝑒 − 015 4.44𝑒 − 015 0.00𝑒 − 000

100 50𝑒4

DE 2.06𝑒 − 010 2.79𝑒 − 009 5.90𝑒 − 010 6.86𝑒 − 010 4.79𝑒 − 010

†

EDE 4.44𝑒 − 015 7.99𝑒 − 015 7.99𝑒 − 015 7.40𝑒 − 015 1.34𝑒 − 015

𝑓11

30 15𝑒4

DE 1.16𝑒 − 014 7.40𝑒 − 003 1.11𝑒 − 013 4.93𝑒 − 004 1.90𝑒 − 003

≈

EDE 0.00𝑒 − 000 7.34𝑒 − 002 1.60𝑒 − 002 2.09𝑒 − 002 2.19𝑒 − 002

100 50𝑒4

DE 0.00𝑒 − 000 5.37𝑒 − 002 0.00𝑒 − 000 3.20𝑒 − 003 1.01𝑒 − 002 -
EDE 0.00𝑒 − 000 6.11𝑒 − 002 0.00𝑒 − 000 1.05𝑒 − 002 1.76𝑒 − 002
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Table 2: Continued.

Number Dim. max FEs Methods Best Worst Median Mean Std. Sig.

𝑓12

30 15𝑒4

DE 8.61𝑒 − 016 2.17𝑒 − 014 3.90𝑒 − 015 5.28𝑒 − 015 4.65𝑒 − 015

†

EDE 1.57𝑒 − 032 1.57𝑒 − 032 1.57𝑒 − 032 1.57𝑒 − 032 5.56𝑒 − 048

100 50𝑒4

DE 5.48𝑒 − 019 1.55𝑒 − 001 2.46𝑒 − 016 8.30𝑒 − 003 2.94𝑒 − 002

†

EDE 4.71𝑒 − 033 4.71𝑒 − 033 4.71𝑒 − 033 4.71𝑒 − 033 1.39𝑒 − 048

𝑓13

30 15𝑒4

DE 8.68𝑒 − 015 1.06𝑒 − 013 2.61𝑒 − 014 3.55𝑒 − 014 2.46𝑒 − 014

†

EDE 1.34𝑒 − 032 1.34𝑒 − 032 1.34𝑒 − 032 1.34𝑒 − 032 5.56𝑒 − 048

100 50𝑒4

DE 2.74𝑒 − 017 2.75𝑒 + 001 9.82𝑒 − 000 1.02𝑒 + 001 6.88𝑒 − 000

†

EDE 1.34𝑒 − 032 1.34𝑒 − 032 1.34𝑒 − 032 1.34𝑒 − 032 5.56𝑒 − 048

𝑓14

30 15𝑒4

DE 7.58𝑒 − 016 1.86𝑒 − 014 5.13𝑒 − 015 5.71𝑒 − 015 4.17𝑒 − 015

†

EDE 0.00𝑒 − 000 6.48𝑒 − 304 1.00𝑒 − 313 2.19𝑒 − 305 0.00𝑒 − 000

100 50𝑒4

DE 2.21𝑒 − 019 2.62𝑒 − 017 3.41𝑒 − 018 4.70𝑒 − 018 4.93𝑒 − 018

†

EDE 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000

𝑓15

30 15𝑒4

DE 5.46𝑒 − 031 1.13𝑒 − 028 5.45𝑒 − 030 1.53𝑒 − 029 2.50𝑒 − 029

†

EDE 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000

100 50𝑒4

DE 1.58𝑒 − 027 3.78𝑒 − 024 3.00𝑒 − 026 1.97𝑒 − 025 6.84𝑒 − 025

†

EDE 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000

𝑓16

30 15𝑒4

DE 1.18𝑒 + 002 1.70𝑒 + 002 1.52𝑒 + 002 1.51𝑒 + 002 1.37𝑒 + 001

†

EDE 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000

100 50𝑒4

DE 3.64𝑒 + 002 7.47𝑒 + 002 6.07𝑒 + 002 6.05𝑒 + 002 9.01𝑒 + 001

†

EDE 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000

𝑓17

30 15𝑒4

DE 3.72𝑒 − 002 3.72𝑒 − 002 3.72𝑒 − 002 3.72𝑒 − 002 5.43𝑒 − 007 -
EDE 7.82𝑒 − 002 2.72𝑒 − 001 1.78𝑒 − 001 1.63𝑒 − 001 5.62𝑒 − 002

100 50𝑒4

DE 7.82𝑒 − 002 1.41𝑒 − 001 7.82𝑒 − 002 9.29𝑒 − 002 2.29𝑒 − 002 -
EDE 4.79𝑒 − 001 4.94𝑒 − 001 4.90𝑒 − 001 4.89𝑒 − 001 4.50𝑒 − 003

𝑓18

30 15𝑒4

DE 1.12𝑒 − 001 2.00𝑒 − 001 1.99𝑒 − 001 1.97𝑒 − 001 1.60𝑒 − 002 -
EDE 2.99𝑒 − 001 6.99𝑒 − 001 4.99𝑒 − 001 5.03𝑒 − 001 1.09𝑒 − 001

100 50𝑒4

DE 2.99𝑒 − 001 3.99𝑒 − 001 3.07𝑒 − 001 3.39𝑒 − 001 4.65𝑒 − 002 -
EDE 2.09𝑒 − 000 3.39𝑒 − 000 2.79𝑒 − 000 2.77𝑒 − 000 3.31𝑒 − 001

𝑓19

30 15𝑒4

DE 1.85𝑒 − 002 2.87𝑒 − 002 2.39𝑒 − 002 2.38𝑒 − 002 2.70𝑒 − 002

†

EDE 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000

100 50𝑒4

DE 2.74𝑒 − 010 3.27𝑒 − 008 2.84𝑒 − 009 4.88𝑒 − 009 6.52𝑒 − 009

†

EDE 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000

𝑓20

30 15𝑒4

DE 1.55𝑒 − 014 5.02𝑒 − 013 7.96𝑒 − 014 1.07𝑒 − 013 1.07𝑒 − 013

†

EDE 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000

100 50𝑒4

DE 1.51𝑒 − 017 1.97𝑒 − 016 4.43𝑒 − 017 5.78𝑒 − 017 3.86𝑒 − 017

†

EDE 0.00𝑒 − 000 4.93𝑒 − 032 0.00𝑒 − 000 6.57𝑒 − 033 1.70𝑒 − 032

𝑓21

30 15𝑒4

DE 1.49𝑒 + 002 1.95𝑒 + 002 1.79𝑒 + 002 1.77𝑒 + 002 1.18𝑒 + 001

†

EDE 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000

100 50𝑒4

DE 2.56𝑒 + 002 7.10𝑒 + 002 6.09𝑒 + 002 5.90𝑒 + 002 1.07𝑒 + 002

†

EDE 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000 0.00𝑒 − 000

𝑓22

30 15𝑒4

DE 3.20𝑒 − 008 2.01𝑒 − 007 6.56𝑒 − 008 7.75𝑒 − 008 3.80𝑒 − 008

†

EDE 4.44𝑒 − 015 7.99𝑒 − 015 7.99𝑒 − 015 7.40𝑒 − 015 1.34𝑒 − 015

100 50𝑒4

DE 3.52𝑒 − 010 1.42𝑒 − 009 7.04𝑒 − 010 7.54𝑒 − 010 2.85𝑒 − 010

†

EDE 7.99𝑒 − 015 7.99𝑒 − 015 7.99𝑒 − 015 7.99𝑒 − 015 0.00𝑒 − 000

𝑓23

30 15𝑒4

DE 1.17𝑒 − 013 2.35𝑒 − 012 5.77𝑒 − 013 7.79𝑒 − 013 6.66𝑒 − 013 -
EDE 0.00𝑒 − 000 1.29𝑒 − 001 9.90𝑒 − 003 2.10𝑒 − 002 2.70𝑒 − 002

100 50𝑒4

DE 0.00𝑒 − 000 9.90𝑒 − 003 0.00𝑒 − 000 9.03𝑒 − 004 2.80𝑒 − 003 -
EDE 0.00𝑒 − 000 3.94𝑒 − 002 7.40𝑒 − 003 8.50𝑒 − 003 1.05𝑒 − 002



12 Computational Intelligence and Neuroscience

Table 2: Continued.

Number Dim. max FEs Methods Best Worst Median Mean Std. Sig.

𝑓24

30 15𝑒4

DE 8.85𝑒 − 001 5.87𝑒 − 000 1.77𝑒 − 000 2.29𝑒 − 000 1.30𝑒 − 000

†

EDE 1.62𝑒 − 023 2.05𝑒 − 019 5.25𝑒 − 021 2.05𝑒 − 020 4.02𝑒 − 020

100 50𝑒4

DE 1.93𝑒 + 004 5.73𝑒 + 004 2.76𝑒 + 004 2.90𝑒 + 004 6.85𝑒 + 003

†

EDE 6.45𝑒 − 004 2.96𝑒 − 003 6.20𝑒 − 003 7.40𝑒 − 003 6.60𝑒 − 003

𝑓25

30 15𝑒4

DE 1.64𝑒 + 001 7.61𝑒 + 001 1.84𝑒 + 001 2.03𝑒 + 001 1.05𝑒 + 001

†

EDE 4.23𝑒 − 015 7.36𝑒 − 001 2.72𝑒 − 007 6.93𝑒 − 002 1.79𝑒 − 001

100 50𝑒4

DE 7.78𝑒 + 001 3.01𝑒 + 002 1.43𝑒 + 002 1.54𝑒 + 002 5.62𝑒 + 001

†

EDE 2.62𝑒 − 005 1.72𝑒 + 002 7.59𝑒 + 001 6.08𝑒 + 001 4.64𝑒 + 001

† indicates that EDE is better than its competitor by the Wilcoxon rank sum test at 𝛼 = 0.05.
- means that EDE is worse than its competitor.
≈means that there is no significant difference between DE and EDE.

Table 3: Performance comparison between EDE and other three DEs over 30 independent runs for the 16 test functions at 𝐷 = 30, where
“𝑤/𝑡/𝑙” means that EDE wins in 𝑤 functions, ties in 𝑡 functions, and loses in 𝑙 functions, compared with its competitors.

Number max FEs JADE-𝑤 SaDE SaJADE EDE
𝑓01 15𝑒4 2.69𝑒 − 56 (1.41𝑒 − 55)

†
3.42𝑒 − 37 (3.63𝑒 − 37)

†
1.10𝑒 − 79 (7.52𝑒 − 79)

† 4.19e − 304 (0.00e − 000)
𝑓02 20𝑒4 3.18𝑒 − 25 (2.05𝑒 − 24)

†
3.51𝑒 − 25 (2.74𝑒 − 25)

†
1.35𝑒 − 47 (7.53𝑒 − 47)

† 4.65e − 227 (0.00e − 000)
𝑓03 50𝑒4 6.11e − 81 (1.62e − 80)‡ 1.54𝑒 − 14 (4.56𝑒 − 14)

†
1.77𝑒 − 77 (3.39𝑒 − 77)

†
8.01𝑒 − 080 (1.71𝑒 − 079)

𝑓04 50𝑒4 5.29𝑒 − 14 (2.05𝑒 − 14)
†

6.39𝑒 − 27 (8.27𝑒 − 27)
†

1.26𝑒 − 19 (1.35𝑒 − 19)
† 2.79e − 139 (6.39e − 139)

𝑓05 50𝑒4 1.59𝑒 − 01 (7.89𝑒 − 01)
†

7.98𝑒 − 02 (5.64𝑒 − 01)
† 1.60e − 30 (6.32e − 30)‡ 4.42𝑒 − 028 (1.38𝑒 − 027)

𝑓06 1𝑒4 5.62𝑒 − 00 (1.87𝑒 − 00)
†

5.07𝑒 + 01 (1.34𝑒 + 01)
† 0.00e − 00 (0.00e − 00)≈ 0.00e − 000 (0.00e − 000)

𝑓07 30𝑒4 6.14𝑒 − 04 (2.55𝑒 − 04)
‡

2.06𝑒 − 03 (5.21𝑒 − 04)
‡ 4.10e − 04 (1.48e − 04)‡ 2.30𝑒 − 003 (8.87𝑒 − 004)

𝑓08 10𝑒4 2.62𝑒 − 04 (3.59𝑒 − 04)
†

1.13𝑒 − 08 (1.08𝑒 − 08)
†

6.83𝑒 − 07 (2.70𝑒 − 06)
† 0.00e − 000 (0.00e − 000)

𝑓09 10𝑒4 1.33𝑒 − 01 (9.74𝑒 − 02)
†

2.43𝑒 − 00 (1.60𝑒 − 00)
†

1.54𝑒 − 01 (2.25𝑒 − 01)
† 0.00e − 000 (0.00e − 000)

𝑓10 5𝑒4 3.35𝑒 − 09 (2.84𝑒 − 09)
†

3.81𝑒 − 06 (8.26𝑒 − 07)
†

1.12𝑒 − 12 (1.07𝑒 − 12)
† 5.03e − 015 (1.34e − 015)

𝑓11 5𝑒4 1.57𝑒 − 08 (1.09𝑒 − 07)
‡

2.52𝑒 − 09 (1.24𝑒 − 08)
‡ 0.00e − 00 (0.00e − 00)‡ 2.31𝑒 − 002 (2.44𝑒 − 002)

𝑓12 5𝑒4 1.67𝑒 − 15 (1.02𝑒 − 14)
†

8.25𝑒 − 12 (5.12𝑒 − 12)
†

2.10𝑒 − 23 (6.89𝑒 − 23)
† 1.57e − 032 (5.56e − 048)

𝑓13 5𝑒4 1.87𝑒 − 10 (1.09𝑒 − 09)
†

1.93𝑒 − 09 (1.53𝑒 − 09)
†

3.83𝑒 − 21 (1.56𝑒 − 20)
† 1.35e − 032 (5.56e − 048)

𝑓18 30𝑒4 2.00𝑒 − 01 (1.63𝑒 − 02)
‡ 1.56e − 01 (5.01e − 02)‡ 1.76𝑒 − 01 (4.28𝑒 − 02)

‡
4.33𝑒 − 001 (8.02𝑒 − 002)

𝑓19 30𝑒4 1.87𝑒 − 10 (2.09𝑒 − 09)
†

1.93𝑒 − 09 (1.53𝑒 − 09)
†

3.83𝑒 − 21 (1.56𝑒 − 20)
† 0.00e − 000 (0.00e − 000)

𝑓21 10𝑒4 1.35𝑒 − 00 (6.08𝑒 − 01)
†

1.46𝑒 − 00 (1.02𝑒 − 00)
†

1.13𝑒 − 01 (1.60𝑒 − 01)
† 0.00e − 000 (0.00e − 000)

𝑤/𝑡/𝑙 12/0/4 13/0/3 11/1/4 —
† indicates that EDE is better than its competitor.
‡means that EDE is worse than its competitor.
≈means that the performance of the corresponding algorithm is even with that of EDE.
Bold entities mean the best results.

To testify the convergence performance of EDE, twenty-
five benchmark functions with different characteristics from
literatures are employed. The first experimental results
demonstrate that EDE significantly enhances the perfor-
mance of standard DE in terms of the best, worst, median,
mean, and standard deviation (Std.) values of final solutions
in most cases. Moreover, other two comparisons also show
that EDE performs significantly better than or at least highly
competitive with other five well-known algorithms, that is,
JADE, SaDE, SaJADE, ABC, and MABC, on the majority of
the corresponding benchmark functions.Therefore, it can be
concluded that EDE is an efficient method and it may be a

good alternative for solving complex numerical optimization
problems.

Last but not least, it is desirable to further apply the
EDE algorithm to deal with other optimization problems
such as the training of neural networks, system parameter
identification, and data clustering.
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Table 4: Comparison between EDE and other two ABCs over 30 independent runs on the 21 test functions with 𝐷 = 30 in terms of mean
and standard deviation.

Number max FEs ABC MABC EDE
𝑓01 15𝑒4 5.21𝑒 − 010 (2.46𝑒 − 010) 9.43𝑒 − 032 (6.67𝑒 − 032) 4.19e − 304 (0.00e − 000)
𝑓02 15𝑒4 1.83𝑒 − 006 (4.80𝑒 − 007) 2.40𝑒 − 017 (9.02𝑒 − 018) 1.24e − 169 (0.00e − 000)
𝑓04 15𝑒4 1.80𝑒 + 001 (2.25𝑒 − 000) 1.02𝑒 + 001 (1.49𝑒 − 000) 1.65e − 041 (2.79e − 041)
𝑓05 15𝑒4 4.23𝑒 − 001 (4.34𝑒 − 001) 6.11𝑒 − 001 (4.55𝑒 − 001) 8.50e − 003 (4.43e − 002)
𝑓06 15𝑒4 0.00e − 000 (0.00e − 000) 0.00e − 000 (0.00e − 000) 0.00e − 000 (0.00e − 000)
𝑓07 15𝑒4 8.74𝑒 − 002 (1.77𝑒 − 002) 3.71𝑒 − 002 (8.53𝑒 − 003) 4.90e − 003 (2.40e − 003)
𝑓08 15𝑒4 8.86𝑒 + 001 (8.62𝑒 + 001) −1.21e − 013 (4.53e − 013) 0.00𝑒 − 000 (0.00𝑒 − 000)

a

𝑓09 15𝑒4 4.81𝑒 − 003 (2.57𝑒 − 002) 0.00e − 000 (0.00e − 000) 0.00e − 000 (0.00e − 000)
𝑓10 15𝑒4 4.83𝑒 − 006 (2.12𝑒 − 006) 4.13𝑒 − 014 (2.17𝑒 − 015) 4.44e − 015 (0.00e − 000)
𝑓11 15𝑒4 1.61𝑒 − 008 (3.99𝑒 − 008) 0.00e − 000 (0.00e − 000) 2.09𝑒 − 002 (2.19𝑒 − 002)

𝑓12 15𝑒4 1.39𝑒 − 011 (3.82𝑒 − 012) 1.90𝑒 − 032 (3.70𝑒 − 033) 1.57e − 032(5.56e − 048)
𝑓13 15𝑒4 1.06𝑒 − 009 (4.24𝑒 − 010) 2.23𝑒 − 031 (1.46𝑒 − 031) 1.34e − 032(5.56e − 048)
𝑓14 15𝑒4 2.22𝑒 − 011 (1.14𝑒 − 011) 2.10𝑒 − 032 (1.56𝑒 − 032) 2.19e − 305 (0.00e − 000)
𝑓15 15𝑒4 5.51𝑒 − 029 (6.70𝑒 − 029) 1.45𝑒 − 067 (2.28𝑒 − 067) 0.00e − 000 (0.00e − 000)
𝑓16 15𝑒4 1.12𝑒 − 001 (2.97𝑒 − 001) 0.00e − 000 (0.00e − 000) 0.00e − 000 (0.00e − 000)
𝑓17 15𝑒4 4.41𝑒 − 001 (1.81𝑒 − 002) 2.95𝑒 − 001 (3.17𝑒 − 002) 1.63e − 001 (5.62e − 002)
𝑓19 15𝑒4 7.66𝑒 − 005 (2.76𝑒 − 005) 1.58𝑒 − 016 (2.48𝑒 − 016) 0.00e − 000 (0.00e − 000)
𝑓20 15𝑒4 1.55𝑒 − 009 (5.54𝑒 − 010) 0.00e − 000 (0.00e − 000) 0.00e − 000 (0.00e − 000)
𝑓21 15𝑒4 1.49𝑒 − 001 (3.55𝑒 − 001) 0.00e − 000 (0.00e − 000) 0.00e − 000 (0.00e − 000)
𝑓22 15𝑒4 9.73𝑒 − 005 (5.69𝑒 − 005) 4.92𝑒 − 014 (5.31𝑒 − 015) 7.40e − 015 (1.34e − 015)
𝑓23 15𝑒4 4.93𝑒 − 004 (2.25𝑒 − 003) 0.00e − 000 (0.00e − 000) 2.10𝑒 − 002 (2.70𝑒 − 002)

𝑤/𝑡/𝑙 18/1/2 13/5/3 —
Bold entities mean the best results.
Here “a” means that the results obtained by EDE are set to zero on the function 𝑓8 when the results are less than 1𝑒 − 308. This is the reason that the coefficient
−418.98288727243369 with low precision in function 𝑓8 may result in the negative results. As a matter of fact, the results should be zero.
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