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Due to the increasing requirements of the seamless and round-the-clock Location-based services (LBSs), a growing interest inWi-Fi
network aided location tracking is witnessed in the past decade. One of the significant problems of the conventional Wi-Fi location
tracking approaches based on received signal strength (RSS) fingerprinting is the time-consuming and labor intensivework involved
in location fingerprint calibration. To solve this problem, a novel unlabeledWi-Fi simultaneous localization and mapping (SLAM)
approach is developed to avoid the location fingerprinting and additional inertial or vision sensors. In this approach, an unlabeled
mobility map of the coverage area is first constructed by using the crowd-sourcing from a batch of sporadically recorded Wi-Fi
RSS sequences based on the spectral cluster assembling. Then, the sequence alignment algorithm is applied to conduct location
tracking and mobility map updating. Finally, the effectiveness of this approach is verified by the extensive experiments carried out
in a campus-wide area.

1. Introduction

Location tracking in wireless mobile environments plays
an important role in recent development of Location-based
services (LBSs), such as visitor navigation, elderly health
care, facility management, transportation, and emergency
rescue [1–3]. With the significant growing interests in Wi-
Fi technology and the ubiquitous deployment of Wi-Fi
infrastructures, intense attention has been paid to various
approaches of Wi-Fi network aided location tracking [4].
Location tracking usingWi-Fi received signal strength (RSS)
fingerprints presents many challenges due to less predictable
variations of RSSs with respect to the distances from the
access points (APs) to the receiver. The Wi-Fi network aided
location tracking approaches can be generally classified into
two categories. In the first one, only Wi-Fi RSS data are used
to estimate the parameters in propagation models [5, 6] or
construct a radio map corresponding to the coverage area
[7, 8]. Then, the target locations are estimated based on the
propagation model aided triangulation algorithm or radio

map aided fingerprint matching. The major limitations of
such category are that (i) the RSS propagation modeling
requires the prior knowledge of AP locations and easily leads
to the low accuracy when the relations between the RSSs and
their corresponding distances are not captured appropriately
and (ii) the construction of radiomap usually involves the site
survey over a large number of reference points (RPs) and their
associated RSSs, which deteriorates the adaptability for the
large coverage area, and meanwhile the radio map can easily
become outdated.

In the second one, theWi-Fi RSSs and the acquiredmeas-
urements from several different types of inertial and vision
sensors are integrated to achieve simultaneous localization
and mapping (SLAM) [9]. The SLAM approach can be
used to construct the virtual floor plan corresponding to
the coverage area, meanwhile conducting location tracking.
Although the RSS propagation modeling and radio map con-
struction are not required, the combined problem of target
localization and mobility mapping needs to be significantly
concerned in order to make the SLAM approach robust to
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the radio noise. Specifically, the mobility mapping built up
from the environment helps to keep tracking of the target
locations, while the results of location tracking feed the
process of the mobility mapping. The aim of this paper is
to use solely Wi-Fi network to construct a mobility map
without location fingerprinting and inertial or vision sensing
(or called unlabeled mobility map) for the coverage area.
Moreover, the proposed approach is expected to achieve a
high-enough probability of locating the newRSS data into the
corridor where these data are actually recorded, namely, the
corridor-level location accuracy. In summary, the following
two problems are resolved in this paper.

(i) How to construct an unlabeled mobility map by using
crowd-sourcing based on the sporadically recorded RSS data
without explicit information of their physical coordinates?

(ii) How to simultaneously conduct location tracking and
mobility map updating?

The solution to the construction of the unlabeledmobility
map is by spectral cluster assembling, which consists of the
intrasequence spectral clustering step and the intersequence
cluster assembling step. The solution to the target location
tracking and mobility map updating is called sequence align-
ment algorithm, which matches the new RSS data against the
constructed mobility map and selects the location point (LP)
with the highest alignment similarity as the tracked location
for each location query.

Solution 1 (spectral cluster assembling). Mobility map con-
struction by using crowd-sourcing consists of twomain steps:
intrasequence clustering and intersequence assembling. In
the intrasequence clustering step, each string of time-
stamped consecutive RSS samples recorded by the person is
first represented as an RSS sequence, where the RSS samples
in each sequence are sequenced in chronological order.
Then, for any recorded RSS sequence, spectral clustering
is performed on this sequence to classify the RSS samples
into different clusters. The spectral clustering used in this
paper preserves the locality of RSS samples in RSSs and time-
stamps. Another significant advantage of spectral clustering
is that the RSS samples which are high-dimensional can be
mapped into a low-dimensional space, which is beneficial to
the information retrieval and data mining [10]. Specifically,
after an RSS sequence is recorded, the similarity of every
two RSS samples in this sequence is first calculated, and then
a low-dimensional mapped space is constructed by using
Laplacian embedding. Finally, the 𝐾-means clustering is
performed to classify the RSS samples into different clusters.

In the intersequence assembling step, the concept of
winning path used in Smith-Waterman algorithm for protein
sequencing [11] is first applied to identify the clusters which
have high similarities between each other. The similarity of
any two clusters is measured by their cumulative matching
score, which is calculated based on the Kullback-Leibler (KL)
divergence of their RSS distributions and the cumulative
matching scores of several previous pairs of clusters (or called
pairs of clusters with time-stamps before the current pair
of clusters). After the matrix of cumulative matching scores
between the clusters, namely, the scoring space, for each pair
of RSS sequences is obtained, the pairs of RSS sequences

having one or more pairs of clusters with the cumulative
matching scores higher than a given threshold are required
to be assembled, while the corresponding pairs of clusters are
merged into a new cluster.This process is repeated until all the
remaining pairs of clusters are with the cumulative matching
scores lower than the threshold. At this point, each remaining
cluster is recognized as an LP in mobility map.

Solution 2 (sequence alignment algorithm). For the purpose
of simultaneously conducting location tracking and mobility
map updating, the three RSS sequences containing the
largest number of RSS samples, namely, the three longest
RSS sequences, in each LP is first selected as the virtual
fingerprints. The concept of sequence alignment in protein
sequencing is then used to find the strings of tracking LPs
which have the highest alignment similarities to the new
RSS sequences. Finally, based on the time-stamped transition
relations of LPs, the target locations can be tracked by using
the modified strings of tracking LPs with the improved
accuracy performance. A preliminary discussion on the time-
stamped transition relations of LPs in mobility map can be
found in the previous work [4]. In this paper, to validate
the construction of mobility map by using crowd-sourcing
and the unlabeled Wi-Fi SLAM, extensive experiments are
conducted in a campus-wide area.

The remainder of this paper is organized as follows.
Section 2 reviews some related work on SLAMbased location
tracking. In Section 3, the steps of the proposed crowd-
sourced mobility mapping for location tracking without the
site survey on location fingerprinting and inertial or vision
sensing are described in detail. The experimental results and
the related discussions are shown in Section 4. Finally, this
paper is concluded in Section 5.

2. Related Work

Tracking the target locations cost-efficiently by using the
conventional RSS propagation modeling and construction of
radio map is a challenging work since both of them involve
the time-consuming and labor intensive site survey on the
relations between RSSs and physical locations [12, 13]. To
achieve the cost-efficiency purpose, the recent works began
to focus on the SLAM based location tracking approaches,
which have good adaptability to the environment with low
site survey effort and high robustness to the environment
noise.

Wang andThorpe [14] integrated the SLAManddetection
and tracking of moving objects (DTMO) approaches and
verified the efficiency of the integrated SLAM and DTMO
at high speed in a large crowded city environment. A
simulation system is designed to be implemented to analyze
and validate the SLAM based on the well-known extended
Kalman filter (EKF) [15]. There are generally three major
approaches studied for SLAM, optimal control approach,
local submap approach, and frontier based approach, to
achieve the localization and mapping purposes in an active
and intelligent way. Similar work on Kalman filter (KF) based
SLAMhas been addressed extensively in the literature [16, 17].
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Chatterjee and Matsuno [16] introduced a new approach of
using the neurofuzzy assisted EKF to enhance the perfor-
mance of SLAM. There are two limitations of this approach.
First of all, to suitably use the neurofuzzy supervision, the
free parameters of neurofuzzy system are required to be
learned carefully. Second, this approach could be unavailable
when the process and sensor noise covariance matrices are
inaccurate. To improve the accuracy and fast convergence
of state estimation involved in KF, the pseudolinear model
based Kalman filter (PLKF) based SLAM is proposed [17].
The PLKF based SLAM outperforms the conventional EKF
based SLAM since the pseudolinear model preserves the
nonlinearity in the system, motion, and observation models.

Wang et al. [18] proved that the particle filtering (PF)
can also be used to improve the performance of SLAM. The
PF can not only reduce the complexity of the data but also
enhance the real-time capacity of SLAM.Theweakness of the
PF based SLAM is that many types of sensors and the related
data fusion process are required to guarantee the effectiveness
of the feature extraction in the unknown and highly complex
environments. The Rao-Blackwellised particle filter (IRBPF)
based SLAM is used to achieve the accurate localization and
generate a consistentmap of the environment [19].The IRBPF
based SLAMfirst uses PF to estimate the posterior probability
distributions of the target.The adaptive resampling approach
is then applied to reduce the risk of sample depletion.
Finally, the motion and observation models are constructed
based on the data from a ranging sensor and an odometer.
However, this approach is not suitable for the highly dynamic
environment.

Luo et al. [20] presented a new concept of vision based
SLAM(V-SLAM), inwhich the visual feature point buffer and
human body elimination are used to decrease the estimative
errors to the system. Specifically, the V-SLAM implements
the visual feature point buffer to filter the temporary feature
points which are extracted from features from accelerated
segment test (FAST) corner detector and conducts the human
body elimination to help V-SLAM to be more accurate.
As an application example, the V-SLAM is used to aid
inertial navigation by compensating for inertial navigation
divergence [21]. Sazdovski and Silson [21] proved that such an
integrated inertial navigation system with V-SLAM requires
the coordination between the guidance and control measure-
ments to achieve the high navigation accuracy.

The aforementioned SLAM is based on the single target
and single model. The decentralized platform developed by
Saeedi et al. [22] is known as the first application of neural
network for SLAM in multiple targets condition. Their
proposed approach consists of five modules of the high-
level map segmentation for map preprocessing, application
of self-organizing maps for preprocessed map clustering,
inclusion of map uncertainty in learning phase, estimation of
the relative transformationmatrix of every twomaps, and use
of surface norms for relative transformation determination.
Yingmin andDing [23] investigated the nonlinear interacting
multiple model (IMM) based SLAM to solve the problem
of the statistical property mutation of SLAM. There are five
steps involved in the nonlinear IMM based SLAM, the model

condition reinitialization, model condition filtering and data
association, model probability updating and estimate fusion,
and state augmentation and map building.

By considering the indoor Wi-Fi network, the Wi-Fi
SLAM is invented to gather the location and mapping infor-
mation simultaneously [24]. Specifically, the Wi-Fi SLAM
first uses the location fingerprinting to get an idea of what the
construction of a particular building is going to do to Wi-Fi
RSS distributions.The initial trajectories are then constructed
based on the measurements from multiple sensors on a
smartphone including the accelerometer, gyroscope, and
magnetometer. Finally, the constructed trajectories aremated
with the results of Wi-Fi RSS trilateration to serve fine-
grain localization and create accurate indoor maps. Since
the measurements are gathered by different sensors, the Wi-
Fi SLAM uses pattern recognition and machine learning to
draw the correlations between these measurements for data
fusion purpose. The SmartSLAM is recognized as another
representative Wi-Fi network based SLAM by using the
measurements from inertial sensors and Wi-Fi network [9].
One of the significant problems of SmartSLAM is that the
high energy cost involved in continuously scanning multiple
sensors andWi-Fi channels seriously limits the practical use.

In this paper, a better solution will be provided to the
simultaneous mobility mapping and location tracking by
using crowd-sourcing from the sporadically recorded Wi-
Fi RSS data without location fingerprinting and inertial or
vision sensing. In summary, the three major contributions of
this paper are as follows.

(i) An unlabeled Wi-Fi SLAM approach is developed to
avoid the location fingerprinting and additional inertial or
vision sensors.

(ii)Themobilitymap is constructed by using crowd-sour-
cing based on the sporadically recorded Wi-Fi RSS data
without explicit information of their physical coordinates.

(iii) The concept of alignment similarities between the
newly recorded RSS data and prestored virtual fingerprints
is utilized to achieve the location tracking.

The major notations and parameters used in this paper
are summarized in Notations and Parameters section.

3. System Description

3.1. Intrasequence Clustering

3.1.1. Problem Statement. In the system, each person holding
a Wi-Fi RSS receiver walks around the coverage area and
collects Wi-Fi RSS sequences. It is assumed that 𝑁 such
sequences are collected where 𝑅
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= {𝜇
ℓ

1, . . . ,𝜇
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Here, the intrasequence clustering problem is as follows.
Given a set of 𝑁ℓ RSS samples {𝜇ℓ1, . . . ,𝜇

ℓ

𝑁
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𝐾
ℓ-dimensional mapped space R𝐾

ℓ
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ℓ

𝑁
ℓ are classified intoΦℓ RSS clusters. Finally, the RSS

samples which have the correspondingmapped vectors in the
same cluster are also classified into the same RSS cluster.

The first advantage of intrasequence clustering is that the
similarities of RSS samples in RSSs and time-stamps between
any two clusters are minimized. Second, the graph Laplacian
which is selected for dimensionality reduction can avoid the
situation that the isolated RSS samples accidentally form
some outlier RSS clusters by minimizing the values of Ncut
over all the RSS clusters [10, 25].

3.1.2. Steps. The steps of intrasequence clustering are pro-
vided as follows.
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Step 2. Consider the problem of mapping the RSS samples in
each sequence onto a line such that theRSS sampleswith large
similarities in RSSs and time-stamps are corresponding to the
mapped points which can stay as close together as possible on
the line. Let 𝑅̂ℓ1 = {𝑟
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multiplier method [4], the problem described in Step 2 is
converted to min

𝑅̂
ℓ

1
{𝜆}, where 𝜆’s are the eigenvalues of Lℓ.

Step 4. Consider the general problem of mapping each RSS
sequence (of dimensions𝑀) into the 𝐾ℓ-dimensional space,
where 𝐾
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operation.Thus, the optimal objective function to this general
problem equalsmin

𝑅̂
ℓ{tr((Ψℓ)𝑇LℓΨℓ)}. Based on the previous

work [4], the solution to this optimal objective function can
be provided by the𝐾ℓ eigenvectors which are corresponding
to 𝐾
ℓ smallest eigenvalues of the generalized eigenvalue

problem Lℓ𝜇̂ℓ
𝑖
= 𝜆Dℓ𝜇̂ℓ

𝑖
.

Step 5. As discussed in the literature [10, 26], the process of
the previous dimensionality reduction which preserves the
locality of RSS samples inRSSs and time-stamps can also yield
a similar solution to the RSS clustering. In concrete terms,
after the dimensionality reduction from 𝑀 to 𝐾

ℓ, 𝐾-means
clustering is conducted on the mapped vectors to obtain Φ

ℓ

RSS clusters 𝐶ℓ1, . . . , 𝐶
ℓ

Φ
ℓ for each RSS sequence, where 𝐶ℓ

𝑘
is

the 𝑘th (𝑘 = 1, . . . , Φℓ) RSS cluster in 𝑅
ℓ.

3.2. Intersequence Assembling

3.2.1. Problem Statement. The problem to be solved by inter-
sequence assembling is to assemble the RSS clusters obtained
in intrasequence clustering step into a mobility map. Since
each RSS sequence can be represented by a string of con-
secutive time-stamped RSS clusters, 𝑅̂ℓ = {𝐶

ℓ

1, . . . , 𝐶
ℓ

Φ
ℓ}, the

concept of winning path in scoring space used by Smith-
Waterman alignment is applied to identify the RSS clusters
required to be merged. By considering the process of clusters
combination graphically, each string of consecutive time-
stamped RSS clusters is first viewed as a string of consecutive
vertices in a graph, where any two adjacent vertices are
connected by an edge. Second, the string assembling is con-
ducted by merging the specific vertices in different strings.
Finally, after all the strings of consecutive vertices have been
assembled, the mobility map 𝐺 = (𝑉, 𝐸) is constructed in
which 𝑉 and 𝐸 represent the sets of vertices and edges in
graph, respectively.

3.2.2. Steps. The four steps of intersequence assembling are
as follows.

Step 1. For every two strings of consecutive vertices 𝑅̂ℓ and
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Figure 1: An example of intersequence assembling.

Γ(𝐶
ℓ

𝑠
, 𝐶
ℓ
󸀠

𝑡
) = ∑

𝑀

𝑗=1 ∑𝜇 𝑝
ℓ

𝑠,𝑗
(𝜇)log2[𝑝

ℓ

𝑠,𝑗
(𝜇)/𝑝

ℓ
󸀠

𝑡,𝑗
(𝜇)]/𝑀. 𝑝ℓ

𝑠,𝑗
(𝜇)

and 𝑝ℓ
󸀠

𝑡,𝑗
(𝜇) are the probabilities of RSS value 𝜇 under the RSS

distributions in 𝐶
ℓ

𝑠
and 𝐶ℓ

󸀠

𝑡
, respectively.

Step 3. The winning path creation is started at the position
(𝑠1, 𝑡1) with the largest entry, namely, the first position on the
winning path, in scoring space, such that

(𝑠1, 𝑡1) = arg max
𝑠=1,...,Φℓ ;𝑡=1,...,Φℓ󸀠

{Υ (𝐶
ℓ

𝑠
, 𝐶
ℓ
󸀠

𝑡
)} ,

Υ (𝐶
ℓ

𝑠
1 , 𝐶
ℓ
󸀠

𝑡
1) ≥ 𝜀WC,

(2)

where 𝜀WC is a threshold.

After the first position on the winning path is obtained,
it is required to go backwards to one of positions, (𝑠1 −

1, 𝑡1), (𝑠1, 𝑡1 − 1), and (𝑠1 − 1, 𝑡1 − 1), and compare the
entries of these three positions, Υ(𝐶ℓ

𝑠1−1, 𝐶
ℓ
󸀠

𝑡1
), Υ(𝐶ℓ

𝑠1
, 𝐶
ℓ
󸀠

𝑡1−1),
and Υ(𝐶

ℓ

𝑠1−1, 𝐶
ℓ
󸀠

𝑡1−1). A connection from (𝑠2, 𝑡2) to (𝑠1, 𝑡1),
notated as (𝑠2, 𝑡2) → (𝑠1, 𝑡1), is constructed as the first jump
on the winning path, where

(𝑠2, 𝑡2) = arg max
(𝑠,𝑡)∈{(𝑠1−1,𝑡1),(𝑠1 ,𝑡1−1),(𝑠1−1,𝑡1−1)}

{Υ (𝐶
ℓ

𝑠
, 𝐶
ℓ
󸀠

𝑡
)} . (3)

This process is continued until the winning path reaches
the first row or the first column in scoring space or reaches a
position with the entry not larger than the threshold 𝜀WT.

Step 4. After the winning path is created, the specific RSS
clusters in 𝑅̂

ℓ and 𝑅̂
ℓ
󸀠

, respectively, are merged based on the
concept of jumps used in Smith-Waterman alignment [27]. It
is required to start from the last jump and go forward to the
first jump on the winning path to identify the specific RSS
clusters to bemerged.There are three types of jumps involved
[27]: (i) diagonal jump (𝑠

𝑚
, 𝑡
𝑚
) → (𝑠

𝑚−1, 𝑡𝑚−1) = (𝑠
𝑚
+1, 𝑡
𝑚
+

1) implying that 𝐶ℓ
𝑠𝑚+1 and 𝐶

ℓ
󸀠

𝑡𝑚+1 are required to be merged
into a LP; (ii) top-down jump (𝑠

𝑚
, 𝑡
𝑚
) → (𝑠

𝑚−1, 𝑡𝑚−1) = (𝑠
𝑚
+

1, 𝑡
𝑚
) implying that 𝐶ℓ

𝑠𝑚+1 is an isolated LP; and (iii) left-right
jump (𝑠

𝑚
, 𝑡
𝑚
) → (𝑠

𝑚−1, 𝑡𝑚−1) = (𝑠
𝑚
, 𝑡
𝑚
+1) implying𝐶ℓ

󸀠

𝑡𝑚+1 is
an isolated LP. Figure 1 gives an example of the winning path
creation, while the two RSS sequences 𝑅̂ℓ = {𝐶

ℓ

1, . . . , 𝐶
ℓ

4} and
𝑅̂
ℓ
󸀠

= {𝐶
ℓ
󸀠

1 , . . . , 𝐶
ℓ
󸀠

4 } happen to be both with four RSS clusters
in length. Based on the created winning path in Figure 1,
we can obtain three pairs of RSS clusters to be merged into
𝐶
ℓ,ℓ
󸀠

1,1 , 𝐶
ℓ,ℓ
󸀠

3,3 , and 𝐶
ℓ,ℓ
󸀠

4,4 , respectively, and eventually construct a
mobility map containing 5 LPs, notated as LP 1, . . . , 5, and 5
transitions, notated as Tran. 1, . . . , 5, between the LPs.

3.3. Sequence Alignment Algorithm. So far, the mobility map
has been constructed based on the intrasequence clustering
and intersequence assembling steps. In this subsection, the
algorithm used for location tracking will be investigated
based on the constructed mobility map. The target locations
are tracked as follows.

Step 1. In each LP 𝐶
ℓ

𝑘
, the 𝐾 RSS sequences with the

largest number of RSS samples are selected as the 𝐾 virtual
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Figure 2: Layout of four paths.

fingerprints 𝑅ℓ,𝑛
𝑘

= {𝜇
ℓ,𝑛

1 , . . . ,𝜇
ℓ,𝑛

𝑁
ℓ,𝑛

𝑘

} (𝑛 = 1, . . . , 𝐾), where

𝑁
ℓ,𝑛

𝑘
is the number of RSS samples in 𝑅

ℓ,𝑛

𝑘
, namely, length of

𝑅
ℓ,𝑛

𝑘
.

Step 2. By assuming that the interval of location query is 𝐼
𝑆
,

the segment of RSS samples used for the 𝜏th (𝜏 ≥ 1) location
query is 𝑅New

𝜏
= {𝜇

New
(𝜏−1)𝜀𝑆+1, . . . ,𝜇

New
𝜏𝜀𝑆

}, where 𝜀
𝑆
= [𝐼
𝑆
/𝛿] and

the notation “[⋅]” represents the rounding operation. If

𝐶
ℓ̂

𝑘̂
(𝜏) = arg max

𝑘=1,...,Φℓ ;ℓ=1,...,𝑁
{
𝐾max
𝑛=1

{Ω
󸀠
(𝑅

New
𝜏

, 𝑅
ℓ,𝑛

𝑘
)}} ,

Ω
󸀠
(𝑅

New
𝜏

, 𝑅
ℓ,𝑛

𝑘
) =

𝜏𝜀𝑆max
𝑢=(𝜏−1)𝜀𝑆+1

𝑁
ℓ,𝑛

𝑘max
V=1

{Ω (𝜇
New
𝑢

,𝜇
ℓ,𝑛

V )} ,

(4)

𝐶
ℓ̂

𝑘̂
(𝜏) is selected as the tracked location for the 𝜏th location

query, where max𝐾
𝑛=1{Ω

󸀠
(𝑅

New
𝜏

, 𝑅
ℓ,𝑛

𝑘
)} is the alignment simi-

larity between 𝑅New
𝜏

and𝐶ℓ
𝑘
. In (4),Ω(𝜇New

𝑢
,𝜇
ℓ,𝑛

V ) is calculated
that (i) when 𝑢 = 1 or V = 1, Ω(𝜇New

𝑢
,𝜇
ℓ,𝑛

V ) = 1/‖𝜇New
𝑢

,𝜇
ℓ,𝑛

V ‖2;
(ii) when 𝑢 ̸= 1, V ̸= 1, and ‖𝜇New

𝑢
,𝜇
ℓ,𝑛

V ‖2 ≤ 𝜀
𝑁
,Ω(𝜇New
𝑢

,𝜇
ℓ,𝑛

V ) =

Ω(𝜇
New
𝑢−1 ,𝜇

ℓ,𝑛

V−1) + 1/‖𝜇New
𝑢

,𝜇
ℓ,𝑛

V ‖2; and (iii) otherwise, one has

Ω(𝜇
New
𝑢

,𝜇
ℓ,𝑛

V )

= max

{{{{{{{

{{{{{{{

{

𝑢−1max
𝑢
󸀠
=1

{

{

{

(1 − 𝐹
𝑀
)
𝑢−𝑢
󸀠

Ω(𝜇
New
𝑢
󸀠 ,𝜇
ℓ,𝑛

V ) +
(1 − 𝐹

𝐷
)
𝑢−𝑢
󸀠

󵄩󵄩󵄩󵄩󵄩
𝜇
New
𝑢
󸀠 ,𝜇ℓ,𝑛V

󵄩󵄩󵄩󵄩󵄩2

}

}

}

,

V−1max
V󸀠=1

{

{

{

(1 − 𝐹
𝑀
)
V−V󸀠

Ω(𝜇
New
𝑢

,𝜇
ℓ,𝑛

V󸀠 ) +
(1 − 𝐹

𝐷
)
V−V󸀠

󵄩󵄩󵄩󵄩󵄩
𝜇New
𝑢

,𝜇
ℓ,𝑛

V󸀠
󵄩󵄩󵄩󵄩󵄩2

}

}

}

}}}}}}}

}}}}}}}

}

,

(5)

where 𝜀
𝑁
is a threshold.

Step 3. After the tracked locations are obtained, the tracked
motion path will be constructed by the following steps.

First of all, it is defined that if the difference of average
time-stamps of the RSS samples in 𝐶

ℓ̂

𝑘̂
(𝜏) and 𝐶

ℓ̂

𝑘̂
(𝜏
󸀠
), respec-

tively, is smaller than 𝜀
𝑆
, then𝐶ℓ̂

𝑘̂
(𝜏) is in the 𝜀

𝑆
-neighborhood

of 𝐶ℓ̂
𝑘̂
(𝜏
󸀠
). On this basis, it is noted that the 𝜀

𝑆
-neighborhood

relationship is naturally symmetric.
Second, by settingAℓ̂,𝜏

𝑘̂
(𝜀
𝑆
) as the set of tracked locations

which are in the 𝜀
𝑆
-neighborhood of 𝐶ℓ̂

𝑘̂
(𝜏), one has that

(i) if 𝐶ℓ̂
𝑘̂
(𝜏 + 1) ∈ Aℓ̂,𝜏

𝑘̂
(𝜀
𝑆
), 𝐶ℓ̂
𝑘̂
(𝜏 + 1) is left in the set of

tracked locations, and it is continued to examine whether
𝐶
ℓ̂

𝑘̂
(𝜏 + 2) is in the 𝜀

𝑆
-neighborhood of 𝐶ℓ̂

𝑘̂
(𝜏 + 1); and (ii)

otherwise, it is continued to examine whether 𝐶ℓ̂
𝑘̂
(𝜏 + 2) is

in the 𝜀
𝑆
-neighborhood of𝐶ℓ̂

𝑘̂
(𝜏). When𝐶ℓ̂

𝑘̂
(𝜏+2) ∈ Aℓ̂,𝜏

𝑘̂
(𝜀
𝑆
+

max
𝜇
ℓ

𝑖
∈𝐶
ℓ̂

𝑘̂
(𝜏);𝜇
ℓ
󸀠

𝑖
󸀠
∈𝐶
ℓ̂

𝑘̂
(𝜏+1){diff𝑇(𝜇

ℓ

𝑖
,𝜇
ℓ
󸀠

𝑖
󸀠 )}), both 𝐶

ℓ̂

𝑘̂
(𝜏 + 1) and

𝐶
ℓ̂

𝑘̂
(𝜏+2) are left in the set of tracked locations, and it is contin-

ued to examine whether 𝐶ℓ̂
𝑘̂
(𝜏 + 3) is in the 𝜀

𝑆
-neighborhood

of 𝐶ℓ̂
𝑘̂
(𝜏 + 2). Otherwise, 𝐶ℓ̂

𝑘̂
(𝜏 + 1) is removed from the set

of tracked locations, and it is continued to examine whether
𝐶
ℓ̂

𝑘̂
(𝜏+ 3) is in the (𝜀

𝑆
+max

𝜇
ℓ

𝑖
∈𝐶
ℓ̂

𝑘̂
(𝜏);𝜇
ℓ
󸀠

𝑖
󸀠
∈𝐶
ℓ̂

𝑘̂
(𝜏+2){diff𝑇(𝜇

ℓ

𝑖
,𝜇
ℓ
󸀠

𝑖
󸀠 )})-

neighborhood of 𝐶ℓ̂
𝑘̂
(𝜏). This process is repeated until the

most recent tracked location is reached or one obtains

𝐶
ℓ̂

𝑘̂
(𝜏 + 𝜒)

∈ A
ℓ̂,𝜏

𝑘̂
(𝜀
𝑆
+ max
𝜇
ℓ

𝑖
∈𝐶
ℓ̂

𝑘̂
(𝜏);𝜇
ℓ
󸀠

𝑖
󸀠
∈𝐶
ℓ̂

𝑘̂
(𝜏+𝜒−1)

{diff
𝑇
(𝜇
ℓ

𝑖
,𝜇
ℓ
󸀠

𝑖
󸀠 )}) ,

𝜒 ≥ 3.

(6)

In the former case, all the tracked locations with the time-
stamps after 𝐶ℓ̂

𝑘̂
(𝜏) are removed, whereas, in the latter case,

𝐶
ℓ̂

𝑘̂
(𝜏 + 𝜒 − 1) is left in the set of tracked locations and it is

continued to examine whether 𝐶ℓ̂
𝑘̂
(𝜏 + 𝜒 + 1) is in the 𝜀

𝑆
-

neighborhood of 𝐶ℓ̂
𝑘̂
(𝜏 + 𝜒).

Finally, the tracked locations that remain are connected
in chronological order along the path passing by the smallest
number of LPs inmobilitymap as the trackedmotion path. To
conductmobilitymap updating, the segments of RSS samples
are merged into their corresponding tracked locations.

4. Experimental Results

4.1. Experimental Setup. In this section, we will evaluate the
performance of our proposed approach for mobility map
construction and location tracking on four representative
paths in HKUST campus, as shown in Figure 2. They are
path 1 between Lab 2149 and North Entrance; path 2 between
Lab 2149 and LT-J Theater; path 3 between Lab 2149 and
Coffee Shop; and path 4 between Coffee Shop and Library.
A summary of these four paths is given in Table 1.
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Table 1: Experimental setups of four testing paths.

Paths Description Average number of
RSS samples

Path 1 between Lab 2149 and North Entrance The path between the indoor and outdoor environments 190
Path 2 between Lab 2149 and LT-J Theater The path on the 2nd floor in the building 80
Path 3 between Lab 2149 and Coffee Shop The path between the 1st and 2nd floors in the building 85
Path 4 between Coffee Shop and Library The path between the ground and 1st floor in the building 110
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Figure 3: Intrasequence clustering on each path.

Two planned volunteers hold tablet computers which
have the self-developedWi-Fi RSS scanner software installed
and walk along the four paths. On each path, each volunteer
has recorded 10 RSS sequences with 5 of them in forward
direction, whereas the rest in backward direction. The RSS
sequences on each path are with the same sampling rate of
1Hz (i.e., 𝛿 = 1 s) and the same dimensions of 650 (i.e.,
𝑀 = 650). During the testing, the data recorded by volunteer
1 are first used to show the result of the constructed mobility
map, and then the data recorded by volunteer 2 are used to
examine the performance of location tracking.

4.2. Test of Mobility Map Construction

4.2.1. Results of Intrasequence Clustering. For comparison,
the other two widely used approaches for intrasequence

clustering are conducted: 𝐾-means clustering, a baseline
approach designed for data clustering [28], and affinity
propagation clustering, a state-of-the-art approach that is
based on the concept of exchanging the responsible and
availability messages among the data [29].

The parameters involved in intrasequence clustering are
not specifically fine-tuned. Instead, they are determined at a
coarse level. It is set that 𝐾ℓ = 3, Φℓ = [𝑁

ℓ
/20], 𝛼

𝑅
= 𝛼
𝑇
=

0.5, 𝜀
𝑇
= 30 s, and 𝜀

𝑅
equals the average of distances of every

two RSS samples with 30 s time-stamp difference.
The results, shown in Figure 3, are produced by𝐾-means

clustering (KMC), affinity propagation clustering (APC), and
intrasequence clustering (ISC) which are conducted on each
path. Different clusters are indicated by different symbols.

In Figure 3, it is observed that the proposed intrasequence
clustering not only preserves the locality of RSS samples in
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Figure 4: Scoring spaces on each path.

each sequence but also exhibits better adaptation to different
path lengths compared to the𝐾-means clustering and affinity
propagation clustering. The results on path 1 are taken for
instance. By 𝐾-means clustering, Cluster 3 which contains
very few RSS samples tends to lead to poor clustering
performance, while Cluster 6 which is generated by affinity
propagation clustering contains toomanyRSS samples results
in the degradation of position resolution of RSS clusters.

4.2.2. Results of Intersequence Assembling. In this subsection,
the result of mobility map construction by intersequence
assembling will be shown. For simplicity, the intersequence
assembling is first conducted on the RSS sequences which
are recorded on each path, and then they are assembled into
the completemobilitymap. Figure 4 shows the scoring spaces
between the first recorded RSS sequence and the other 9 RSS

sequences on each path. It is set that 𝐹
𝑀

= 𝐹
𝐷
= 0.5, 𝜀WT = 0,

and 𝜀WC and 𝜀
𝐷
equal the largest entry in scoring space and

the average of KL divergence of RSS distributions of every two
RSS clusters, respectively.

As can be seen from Figure 4, it is found that (i) similar
variation patterns of entries in scoring space can be found for
any two pairs of RSS sequences with the same directions on
each path and (ii) the entries in scoring space corresponding
to the pair of sequences in the same direction are generally
larger than the ones in scoring space corresponding to the
pair of sequences in opposite directions. After the scoring
spaces are obtained, it is continued to identify the specific
RSS clusters required to be merged based on the concept
of jumps used in Smith-Waterman alignment. Figure 5(a)
shows the results of intersequence assembling on each path.
The 𝑘th RSS cluster in sequence ℓ on paths 1, 2, 3, and 4 is
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(A) Assembled sequence on path 1

(B) Assembled sequence on path 2 (C) Assembled
sequence on path 3

(D) Assembled sequence on path 4
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Figure 5: Results of intersequence assembling.

notated as 𝐶ℓ,P1
𝑘

, 𝐶ℓ,P2
𝑘

, 𝐶ℓ,P3
𝑘

, and 𝐶
ℓ,P4
𝑘

, respectively, and the
𝑘thmergedRSS cluster on paths 1, 2, 3, and 4 is notated as𝐶P1

𝑘
,

𝐶
P2
𝑘
, 𝐶P3
𝑘
, and 𝐶

P4
𝑘
, respectively. Furthermore, for simplicity,

the RSS clusters that are not merged (e.g., 𝐶10,P1
7

) will not
be considered during the intersequence assembling among
different paths since these isolated RSS clusters which contain
very few RSS samples generally represent the locations where
the target rarely visited.

After the assembled RSS sequence on each path is
obtained, it is continued to assemble the RSS sequences
among different paths into the complete mobility map. To
do this, the cumulative matching scores between the merged
RSS clusters in different assembled RSS sequences are first
calculated. Figure 6 shows the cumulative matching scores

between the merged RSS clusters on path 1 and the ones on
paths 2, 3, and 4. Based on the created winning paths which
are indicated by red box symbols, themobilitymap consisting
of 13 LPs and 12 transitions is eventually obtained, as shown
in Figure 5(b).

4.3. Test of Location Tracking. The aim of this subsection is to
verify that, by employing the proposed sequence alignment
algorithm, the target locations can be tracked accurately in
themobile scenario. To examinewhether sequence alignment
algorithm can achieve corridor-level accuracy, the corridor-
level segmentation is conducted on the constructed mobility
map.The segmented corridors inmobilitymap are Corridor 1
“LP1, LP2,” Corridor 2 “LP3, LP4,” Corridor 3 “LP5, LP6,”
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Figure 6: Cumulative matching scores between the RSS clusters.

Corridor 4 “LP7, LP8, and LP9,” Corridor 5 “LP10, LP11,” and
Corridor 6 “LP12, LP13.” It is set that 𝐾 = 3, 𝐼

𝑆
= 20 s, and

𝜀
𝑁
equals the average of distances of the newly recorded RSS

samples and the ones in virtual fingerprints. Figure 7 shows
the alignment similarities of the segments of RSS samples
and the LPs. The real location of the target for each location
query is indicated by a red box symbol. The A-1, A-5, and A-
10 stand for the situations that only the first sequence, the 5
sequences in the same direction, and all the 10 sequences are
used, respectively, for the testing.

From Figure 7, it is found that (i) similar patterns of
alignment similarities for A-1, A-5, and A-10 situations can be
found on each path and (ii) compared to A-1 situation, higher
alignment similarities are obtained inA-5 andA-10 situations,
whereas the ones in A-5 and A-10 situations are similar. To
illustrate this result clearer, Figure 8 shows the alignment
similarities achieved by the tracked locations, namely, highest
alignment similarities, in A-1, A-5, and A-10 situations on
each path.

Finally, Figure 9 illustrates the variations of probabilities
of locating the target locations in correct corridors and LPs
as the interval of location query increases from 5 s to 20 s. In

Figure 9, It is found that (i) the largest mean of probabilities
in correct corridors and LPs, 91.0% and 69.4%, are obtained in
the condition of 𝐼

𝑆
= 10 s; and (ii) the probabilities in correct

corridors and LPs with respect to 𝐼
𝑆
= 5 s, 88.1% and 65.6%,

are slightly lower than the ones achieved by 𝐼
𝑆
= 10 s, whereas

the real-time capacity is significantly enhanced.

5. Conclusions

In this paper, the crowd-sourced mobility mapping approach
is proposed to solve the problem of location tracking inWi-Fi
area by using a new concept of unlabeledWi-Fi SLAM. In the
system, spectral cluster assembling is first applied to construct
an unlabeled mobility map corresponding to the Wi-Fi
coverage area, and then sequence alignment algorithm is
used to simultaneously track the target locations and conduct
mobility map updating. Extensive experiments in a campus-
wide area prove that high accuracy of location tracking can
be achieved without the site survey on location fingerprinting
and motion sensing which are adopted by many existing Wi-
Fi location systems. Furthermore, the proposed approach can
also construct mobility map by using the crowd-sourcing
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Figure 7: Alignment similarities on each path.

from massive and high-dimensional Wi-Fi RSS data which
are sporadically recorded in large-scale area.

The significance of this paper is that both the RSS and
time-stamp relations of the sporadically recorded Wi-Fi
RSS data are used to conduct the crowd-sourced mobility
mapping, and meanwhile alignment similarities between the
newly recorded segments of RSS samples and prestored
virtual fingerprints are considered to track the target loca-
tions. In future, the performance of integrating the time-
stamped Wi-Fi RSS data with the data from inertial mea-
surement unit (IMU) will be investigated to try to construct
a more precise mobility map. For instance, the transitions
among different LPs in mobility map can be better described
by the moving speed and orientation of the target com-
pared to the difference of time-stamps of RSS samples, and
meanwhile more parameters may also be varied, such as the
thresholds for scoring space construction and winning path
creation in the intersequence assembling step, and also the
threshold for alignment similarity calculation in sequence
alignment algorithm.

Notations and Parameters

𝑁: Number of RSS sequences
𝑁
ℓ and𝑁ℓ,𝑛

𝑘
: Number of samples in 𝑅

ℓ and
𝑅
ℓ,𝑛

𝑘

𝑀: Number of Aps
𝐾: Number of virtual fingerprints

in each RSS cluster
𝑅
ℓ and 𝑅̂ℓ: ℓth RSS sequence of samples

and clusters
Φ
ℓ: Number of RSS clusters in 𝑅

ℓ

𝜇
ℓ

𝑖
: 𝑖th sample in 𝑅

ℓ

𝜇̂
ℓ

𝑖
: Sample mapped from 𝜇ℓ

𝑖

𝐶
ℓ

𝑘
: 𝑘th RSS cluster in 𝑅

ℓ

𝐶
ℓ̂

𝑘̂
(𝜏): Tracked location for the 𝜏th

location query
𝑇
ℓ

𝑖
: Time-stamp of 𝜇ℓ

𝑖
in 𝑅
ℓ

𝜇
ℓ

𝑖,𝑗
: RSS value from the 𝑗th AP in

𝜇
ℓ

𝑖
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Figure 8: Alignment similarities of the tracked locations on each path.
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Figure 9: Results of localization accuracy.
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