
Research Article
An Analysis of the Privacy Threat in Vehicular
Ad Hoc Networks due to Radio Frequency Fingerprinting

Gianmarco Baldini, Raimondo Giuliani, and Eduardo Cano Pons

European Commission, Joint Research Centre, Ispra, Italy

Correspondence should be addressed to Gianmarco Baldini; gianmarco.baldini@jrc.ec.europa.eu

Received 21 September 2016; Revised 29 December 2016; Accepted 16 January 2017; Published 15 February 2017

Academic Editor: Candelaria Hernández-Goya

Copyright © 2017 Gianmarco Baldini et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

In Vehicular Ad Hoc Networks (VANETs) used in the road transportation sector, privacy risks may arise because vehicles could
be tracked on the basis of the information transmitted by the Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I)
communications implemented with the Dedicated Short Range Communications (DSRC) standards operating at 5.9GHz. Various
techniques have been proposed in the literature to mitigate these privacy risks including the use of pseudonym schemes, but they
are mostly focused on data anonymization at the network and application layer. At the physical layer, the capability to accurately
identify and fingerprint wireless devices through their radio frequency (RF) emissions has been demonstrated in the literature.This
capability may generate a privacy threat because vehicles can be tracked using the RF emissions of their DSRC devices. This paper
investigates the privacy risks related to RF fingerprinting to determine if privacy breaches are feasible in practice. In particular, this
paper analyzes the tracking accuracy in challenging RF environments with high attenuation and fading.

1. Introduction

Road safety has been and remains a high priority in Europe
and in July 2010, the European Commission adopted the
Policy Orientations for Road Safety 2011–2020, which iden-
tified the main strategic objectives to improve road safety.
One of the strategic objectives is to promote the deploy-
ment of Intelligent Transport Systems (ITS). A considerable
amount of work has been done and is still ongoing, with the
implementation of the Action Plan for the deployment of
Intelligent Transport Systems and the ITS Directive (Direc-
tive 2010/40/EU) which provides the legal framework for the
deployment of various ITS applications and services across
Europe. One of the essential elements of the ITS paradigm is
the design and deployment of cooperative wireless networks
among the vehicles like V2V and V2I collectively called
Vehicle-to-Everything (V2X).

Some ITS applications can only be based on V2V
networks because they need to exchange messages among
vehicles or they get information from other systems like
the Global Navigation Satellite System (GNSS). One exam-
ple is collision avoidance. Other applications require V2I

communications to connect to remote fixed servers and
distribute information to the vehicles and their users like
road conditions. Finally, some applications require both V2V
and V2I networks to exchange information between the fixed
infrastructure and vehicles. A list of the applications and the
relation to V2X is provided in [1]. One of the most common
V2X wireless communication technologies proposed by the
industry is the DSRC operating at 5.9GHz. This paper
deals with V2X communication based on ETSI standards,
which define two basic messaging services included in the
communications stack as a common reusable middleware.
These are the Cooperative Awareness Basic Service, defining
the Cooperative Awareness Message (CAM), and the Decen-
tralized Environmental Notification Basic Service (DENM).
CAM messages are exchanged among ITS stations (e.g.,
vehicles) to notify their presence, position, and status in a
single-hop distance through the wireless channel. Additional
details on the ETSI standards are provided in Section 3.

The periodic broadcast of CAM messages from an ITS
station (e.g., a vehicle) could potentially endanger the privacy
of the drivers of the vehicle, as a malicious eavesdropper
could track the vehicles on the basis of the broadcasted CAM

Hindawi
Mobile Information Systems
Volume 2017, Article ID 3041749, 13 pages
https://doi.org/10.1155/2017/3041749

https://doi.org/10.1155/2017/3041749


2 Mobile Information Systems

messages. As a consequence, support for anonymity in V2X
communication is desirable, but it may not be easy to achieve
because a certain level of linkability between the messages
and the transmitting DSRC device is anyway needed. For
example, some applicationsmay require the authentication of
the messages to ensure that they come from a trusted entity.

Various anonymization schemes have been proposed in
research literature to mitigate privacy risks in VANETs. One
of the most common is the adoption of a pseudonym scheme
where the real identity of the DSRC device (and consequently
the vehicle where it is operating) in the broadcast messages is
replaced by a pseudonym.Thepseudonym, or pseudonymous
credential, allows authentication of a specific entity without
knowing the holders’ real identity. The use of pseudonyms
in VANETs has been proposed by various authors and a
recent survey by [2] identifies themost common pseudonyms
schemes. On the other side, these schemes are implemented
at network or application level and they do not address the
issue that the DSRC wireless device can be also identified by
its RF emissions.

Extensive research has been performed on the identi-
fication of electronic components and systems from their
radio frequency emissions. The concept lies in the fact
that electronic circuits and RF components (e.g., filters,
amplifiers) have unique characteristics acquired in the man-
ufacturing process, which can be detected and extracted by
the radio frequency emissions using statistical analysis. The
identification of electronic components and systems is called
RFfingerprinting orRF-DNAfingerprinting (see [3]) because
the intrinsic characteristics of the electronic components can
be conceptually associated with the DNA of a human being.

As discussed in the relatedwork section (Section 2) of this
paper, the anonymization schemes in VANETs, which have
been proposed until now, did not address or investigate the
possibility that the DSRC device is identified from its own RF
fingerprinting, even if this potential risk has been raised in [2]
but not explored further. The goal of this paper is to address
this research gap: to evaluate how relevant is the privacy
risk derived from the tracking of RF fingerprint of a specific
DSRC device (and vehicle) in a road transportation scenario.
In particular, we evaluate the accuracy of the identification
and verification algorithms in Non-LOS (NLOS) conditions
where wireless propagation can be impacted by attenuation
and fading effects.

The novelty of this paper in comparison to literature
is the following. (1) For the first time, the privacy threat
related to RF fingerprinting is investigated for VANETs. (2)
For the first time, the RF fingerprinting of DSRC devices at
5.9GHz is performed. (3) For the first time, the performance
of fingerprinting in a fading environment is evaluated for
DSRC devices at 5.9GHz.

The structure of this paper is the following. Section 2
provides a literature review on privacy in Vehicular Ad Hoc
Network (VANET) and RF fingerprinting. Section 3 gives
a brief overview of the DSRC standard. Section 4 provides
a description of the scenario, which could generate privacy
threats on the basis of the collected RF fingerprints. Section 5
provides a description of the methodology, the experimental
environment, and the algorithms used in this paper to collect

the RF emissions, evaluate them, and use them to classify and
identify the DSRC devices. In particular, in Section 5, the test
bed configuration and theRF receiver (e.g., a software defined
radio) are described impersonating the privacy attacker used
to collect and process the messages transmitted by the DSRC
devices. The test bed configuration includes the parameters
used for sampling and filtering. Section 6 provides the results
of the evaluation of the privacy risks related to the tracking
accuracy on the basis of fading and attenuation effects at the
RF level. Finally Section 7 concludes the paper.

2. Related Work

This section describes the related work on the topic of privacy
in VANETs and RF fingerprinting.

The issue of privacy in VANETs based on DSRC at
5.9GHz is related to the fact that the DSRC CAM mes-
sages (which will be described in detail in Section 3) are
broadcasted by the DSRC module in the vehicle to the
neighboring vehicles and road infrastructures stations with
a very high frequency. To support vehicle liability and safety
in VANETs, any broadcast message from a vehicle must
contain a verifiable identity as well as authentic data that
may include accurate vehicle location. As a consequence, the
message broadcast in VANET can reveal the vehicle’s identity
or activities by correlating the traversed locations or the start
point and end point of the trip. For example, even if the exact
identity of a driver is not known during a trip, the end point
(e.g., home) can be used to trace the identity of the person and
tracking the vehicle can provide hints on his/her activities.
To summarize, VANETs represent a very good case study to
address privacy risks in mobile communications.

Location privacy protection schemes formobile networks
and more specifically for VANETs can be generally classified
as regulatory, policy-based, and anonymity-based approaches
as described in [4]. There is already an extensive literature
on the privacy mitigation or privacy enhancing techniques
for regulatory (e.g., informed consent) and policy-based
approaches (see [5]). In this paper we focus on anonymity-
based approaches because we investigate privacy risks related
to the physical layer.

As described in [4, 6], one of themost popular approaches
to protect privacy inmobile networks is based on the concept
of pseudonym.

Pseudonym is an identity anonymization technique,
where the real identity of the vehicle is replaced by a
pseudonym. The pseudonyms are regenerated periodically
to avoid tracking by a message receiver in a specific area.
In other words, if the vehicle uses the same pseudonym for
a long time, the vehicle can be still tracked by an observer
by the correlation of the messages (see [6]). In VANETs,
pseudonyms can mitigate privacy risks but not completely
remove them because the identity of the vehicles could be
still determined by other attributes (e.g., color, model) or
if the frequency of the messages is not high enough. The
appropriate calculation of the frequency of the pseudonyms
is still an open research problem as discussed in [2].

Regardless of the pseudonym frequency in the CAM
messages broadcasted by the vehicle, the identity of the
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DSRC 5.9GHz device could also be determined through RF
fingerprinting.

There has been considerable research activity on the
exploitation of RF emissions to uniquely identify and possibly
authenticate electronic circuits and components. Most of the
surveyed research papers exploit the small but significant
differences in the electronic circuits, which impact the RF
emissions. These differences are generated during the man-
ufacturing process(es) or the assembly phase either in the
single components or thewhole system (e.g., amobile phone).
Thus they become an intrinsic property of the electronic
components or circuits, which are visible in the RF emissions
both intentional and unintentional. The RF emissions are
digitally analyzed and processed using statistical analysis
algorithms. This technique exploits the increased power of
radio frequency digitizers to support analysis of digitized RF
emissions with high granularity. These basic concepts have
been applied to various types of electronic circuits using
different algorithms. In [7], the authors apply fingerprinting
to RFID devices. The RF emissions are digitized and an
extensive set of features is used to classify the sample.
In particular the authors use variance, kurtosis, skewness,
and Shannon entropy. Extensive sets of RFID samples were
analyzed and classified and various algorithms were applied
including 𝑘-nearest neighbors (kNN) and Support Vector
Machine (SVM). The results show that the level of accuracy
can be very high (even up to 99%). Beyond RFID, the
application of similar fingerprinting techniques has been
used for other wireless communication standards as well as
integrated circuits and components. In [8], the authors have
applied RF fingerprinting techniques by passivelymonitoring
and exploiting the intrinsic features of ICs’ unintentional RF
emissions without requiring any modification to the device
being analyzed. The authors in [8] use features based on
instantaneous amplitude (IA), instantaneous phase (IP), and
instantaneous frequency (IF) and then apply Fisher’s (two-
class) linear discriminant analysis (LDA) for classification
and identification. Other authors have also applied RF fin-
gerprinting to other wireless communication standards like
WiFi in [9]. WiFi is similar to the ITS DSRC standard
investigated in this paper, even if the frequency range is
different (5.9GHz of DSRC instead of 2.4GHz of WiFi)
and the DSRC standard is designed to support the specific
features (e.g., mobility) of VANETs. A comparison of WiFi
with DSRC at 5.9GHz with the detailed description of the
differences at the physical layer is provided in [10]. Authors
have also applied RF fingerprinting to cellular networks like
Global Systems Communications (GSM) in [11], where the
possibility of RF tracking has also been mentioned. Most
of the identified papers implement the RF fingerprinting in
almost ideal conditions and they obtain a very high accuracy
of 99% or more, which could point out a serious privacy
threat because the tracking of the device would be quite
accurate. On the other side, these almost ideal conditions are
based on (a) the usage of high-end equipment (e.g., spectrum
analyzer and oscilloscopes) for the capture of RF signals and
(b) a testing environment in Line of Sight (LOS) conditions
with absence of fading effects. In practical scenarios as the one
investigated in this paper in Section 4, these conditions are

usually not met because a privacy attacker could be obliged
to use less expensive equipment (like an Universal Software
Radio Platform (USRP) Software Defined Radio (SDR)) and
it would be subject to attenuation and fading effects because
the DSRC signals must be tracked at a distance. Note that
some papers have investigated the impact of White Gaussian
Noise on the RF fingerprinting in a simulated way but not
fading effects apart from the recent paper of [12] where a
fading model has been applied but not to DSRC devices. As
a consequence, a novel aspect of this paper is the application
of fading models to RF fingerprinting for DSRC devices.

To complete this survey on the related work, we need
to highlight an issue, which impacts the RF fingerprinting
process for the context of tracking and privacy.TheRF finger-
prints collected with one receiver are not portable to another
receiver because each receiver introduces its own fingerprints
or signal bias, which interferes with the identification or
verification of the wireless device to be tracked. In other
words, the RF fingerprints collected with one receiver cannot
be used to track a wireless device using another receiver. As
described in [13], these differences impact the identification
or the verification accuracy not only when receivers with
different quality are used (high-end receiver and low-end
receivers) but also across receivers of the similar quality. This
is still an open research problem at the time of writing this
paper. As described in Section 4, this imposes a limit on the
capabilities of a malicious entity, which want to implement
the privacy threat by tracking because it can only use one
receiver, which limits the tracking range.

3. DSRC Standard

In this section, we provide a brief description of the protocols
and standards used in Europe for the V2V and V2I DSRC
communication standards at 5.9GHz inEurope. In this paper,
we have investigated the European variant (ETSI ITS Protocol
Stack) of the DSRC communication standards defined in
ETSI.

ETSI standards define two basic messaging services
included in the communications stack as a common reusable
middleware. These are the Cooperative Awareness Basic
Service, defining the CAM, and the DENM. CAM messages
are exchanged among ITS stations (e.g., vehicles) to notify
their presence, position, and status in a single-hop distance
through the wireless channel. DENMmessages can be trans-
mitted in a multihop way to cover a concrete geographic
dissemination area. DENM are used to provide a notification
service about road status. For example, a DENM message is
triggered by a certain ITS application that detects a relevant
driving environment or traffic event (e.g., a hazard on the
road).

The overall structure of the ETSI ITS Protocol Stack is
provided in Figure 1 where the physical and Media Access
Control (MAC) layers are defined by the ITS-G5Protocol (see
ETSI ES 202 663), which is largely based on IEEE 802.11p.
The facilities layer defines the CAM and DENM messages
described above.

The choice to adopt a standard of the 802.11 family was
because it is a stable standard supported by experts in wireless
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Figure 1: Layers of the ETSI ITS Protocol Stack.

technology with a large market base. A stable standard is
required to guarantee interoperability between vehicles made
by different manufacturers and the roadside infrastructure
in different geographic areas. On the other side, the DSRC
standard cannot be the same of 802.11a because it has different
operational requirements as described in [14], in particular,

(1) The high mobility of the vehicles
(2) A longer range of operation of up to 1 Km in compar-

ison to WLAN, which is around 100/200 meters
(3) The potential presence of multipath fading due to

other vehicles or urban environment
(4) The presence of multiple overlapping ad hoc net-

works, which require extremely high quality of service
(QoS)

(5) A special beaconing frame

To support these special requirements, 802.11p is different
from 802.11a in the following specific features [15]:

(i) One-half the data rates of 802.11a, to have a greater
resistance with respect to the channel delay spread
due to the double guard time of 1.6 𝜇s

(ii) Improved transmission mask
(iii) Improved receiver performance requirements in adja-

cent channel rejections
(iv) Control channel and six service channels

Because of these differences, the parameters used to
fingerprint device based on WLAN WiFi standards (e.g.,
802.11a) cannot be used directly for devices based on the
802.11p standard and this paper is the first in research
literature to apply RF fingerprints to this type of devices.

4. Operational Scenario

Apictorial description of the operational scenario is provided
in Figure 2. A vehicle equippedwith aDSRC device operating
at 5.9GHz is driving along a road and a malicious entity
would like to track the vehicle. To perform the tracking, the
malicious entity can use an RF receiver. At periodic intervals,
the malicious entity collects the RF signals emitted from the
DSRC devices and cars on the road. To effectively track the

vehicle using fingerprinting, the malicious entity must be
able to distinguish the specific DSRC device among the other
DSRC devices present on the road on the road and verify its
identity through the RF fingerprints. This is possible only if
the received signal strength from the specific DSRC device is
high enough to support the verification of the identity and
if the fingerprints of the different devices on the road are
different enough. If this verification is not possible at each
collection of the RF signal, the malicious entity will not be
able to track the device.

In this context, the privacy threat becomes a problem of
verification of identity based on the quality of the RF finger-
printing, and the threat implementation can be based both
on machine learning algorithms and on wireless propagation
models.

In other words, the tracking can be implemented by com-
paring the collected emissions using a supervised machine
learning algorithms (e.g., SVM).An initial set of RF emissions
is used as a training set against which the malicious entity
compares other RF emissions at different times, which cor-
responds to different positions of the vehicle to be tracked.
Section 5 provides a description of the overall methodology
on how the signals are collected and processed and the
machine learning algorithm is applied to implement the
tracking.

The tracking range is one of the most critical elements
for tracking. If the vehicle is moving at a high speed (e.g.,
100Km/h), a limited range of the RF receiver used by the
malicious entity will decrease the tracking effectiveness. The
normal operating range of the DSRC communication is
between 10 meters and 1 Km, but a malicious attacker can
increase the range at which the fingerprints are collected
using an amplifier or high directional antennas (pointed in
the direction of the vehicle) to increase the gain. On the other
side, additional electronic components can also increase the
cost and the difficulty of implementing the attack. Additional
details on the potential gains and the related costs will be
provided in Section 6.

In LOS conditions, the range is based on Free Space Path
Loss (FSPL), which is calculated by the following formula:

FSPL (dB) = 20 log10 (𝑑) + 20 log10 (𝑓) + 92.45, (1)

where 𝑑 is the distance expressed in Km and 𝑓 is expressed
in GHz. At the operating frequency of 5.9GHz of DSRC, the
equation becomes

FSPL (dB) = 20 log10 (𝑑) + 107.867 (2)

which gives an FPSL of 107.867 at a distance of 1 Km. Note
that this is only the FSPL and other factors will introduce
additional gains or loss.These factors include the shape of the
transmitting and receiving antennas and the front end of the
receiver. The receiver system used by the malicious receiver
can compensate for the distance from the vehicle by using
antenna with high gain (10–30 dB) or an RF amplifier (20–
30 dB gain). On the basis of (2), a cumulative gain of 40 dB
translates to an increase of the distance between receiver and
vehicle of a factor of 100.We note that this calculation is done
in Free Space Path Loss conditions. In a practical scenario, the
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Figure 2: Scenario for the privacy threat based on tracking of the RF fingerprints of the vehicle.

presence of obstacles on the wireless propagation path will
introduce attenuation and fading effects, which can strongly
decrease the distance at which it is possible to track in an
accurateway the vehicle from its RF emissions.The analysis of
the impact on the tracking range due to attenuation or fading
is provided in Section 6.

We note that the collected RF emissions at different
positions of the vehicle can differ in power. For example, the
malicious attacker can collect the RF emissions of the specific
DSRC device of a vehicle at the beginning of the trip in LOS
conditionswhen the car is still and the observer is near the car
or during the normal driving of the car in difficult wireless
propagation conditions. How the different received power
of the collected RF signal impacts the tracking accuracy is
evaluated in Section 6.

The scenario is based on a single observer equipped with
a RF receiver. Multiple RF receivers synchronized through
Global Positioning Systems (GPS) or other means could be
used to collect the RF observables and extend the tracking
range, but this is not achievable at the time of writing this
paper because of the issue of portability already described in
Section 2. The fingerprints collected by one receiver cannot
be used by another receiver and the malicious entity would
not be able to exploit the additional receivers to extend the
tracking range. As a consequence, the scenario is based on a
single receiver.

A final note about the terminology used in the subsequent
sections of this paper. In RF fingerprinting, a distinction is
usually made between verification and identification:

(i) In this context, verification is the function of the
recognition system to verify the identity of a DSRC
device from its RF observables. This can be achieved
by comparing the collected RF observables to an
initial reference.

(ii) In this context, identification is the function of the
recognition system to determine the identity of a
DSRC device among a set of RF observables. This

can be achieved by comparing the reference device
fingerprint with all the collected RF observables.

While identification is an important function in the
study of RF fingerprinting, in this paper, we focus only
on verification because the privacy threat originates from
the tracking of the DSRC device, which is implemented by
repeated verifications of the RF collected observables against
the initial reference.

5. Methods, Materials, and Algorithms

5.1. Methodology. The overall methodology, experimental
setup, and algorithms used to track the vehicle through its
RF fingerprinting are described in this section.

The analysis of the feasibility to track vehicles through the
RF fingerprinting of theDSRC devices is performed using the
following steps:

(1) The RF observables of four DSRC devices of the same
model and brand are collected in LOS conditions.
The RF signal in space emitted by each DSRC devices
is down converted and digitalized using a receiver
with Analog to Digital Converter (ADC) capability.
A detailed description of the test bed to collect the RF
measurements is provided in Section 5.2.

(2) From the digitized RF observables, the transmission
bursts defined by ITS-G5 physical layer (based on
802.11p as described in Section 3) are extracted,
synchronized, and normalized. This step is needed
to ensure that the bursts transmitted by each DSRC
device can be effectively compared and that there is
no bias introduced by different power levels or mea-
surement distances. In the privacy threat scenario, the
tracking accuracy can be negatively impacted if the
bursts are not properly synchronized and normalized.
In other words, this step must also be performed by
the privacy attacker to support the tracking process



6 Mobile Information Systems

and impact the privacy attack. The Variance Trajec-
tory technique is used to effectively determine the
beginning and the end of the burst and it is widely
used in RF fingerprinting (e.g., see [9]).

(3) From the RF observables, statistical features are
extracted. The extraction of statistical features like
variance, entropy, skewness, and kurtosis is a com-
mon approach in RF fingerprinting as described
in [7, 16] and others. Rather than performing the
verification process and tracking on the raw data
derived from the RF observables, a subset of fea-
tures is selected and used as a representation of the
DSRC devices. In other words, the subset of features
becomes the RF fingerprinting of the DSRC device.
The advantage of using the subset of statistical features
rather than the raw data is that the verification
process is much faster and it is feasible even with
a limited observation time (which translates to a
limited number of bursts). In the specific scenario
addressed in this paper, the timely performance of
the verification process is quite important because the
privacy attacker may have a limited time to collect
RF observables while the vehicle is driving along the
route.

(4) A supervised machine learning approach based on
SVM is used to execute the verification process. A test
set is compared to the training set. The training set is
based on the RF observables collected initially while
the test set is representative of the RF observable col-
lected during the tracking process.The SVMmachine
learning algorithm is well described in the literature
and it is only briefly described in Section 6.

(5) To simulate difficult wireless propagation conditions
for the collection of RF observables, Gaussian noise
and multipath fading are applied to the RF observ-
ables. A description of the Gaussian noise and the
fading model (e.g., Rayleigh) is given in Section 6.2.

(6) Feature selection: not all the statistical features pro-
vide the same level of verification accuracy. As
described in [7, 16], the most appropriate statistical
features for verification must be selected. In this
paper, we use the sequential forward selection (SFS)
method to select the best features. See [17] for a
detailed description of this technique. The basic con-
cept of this technique is that features are sequentially
added to an empty candidate set until the addition
of further features does not decrease the verification
accuracy.

(7) Parameter tuning of the machine learning algorithm:
even if the best selection of features has been iden-
tified, some parameters of the machine learning
algorithm must be tuned to improve the verification
accuracy. In the case of SVM, these parameters are
the scaling factor and box constraint. See Section 5.4
for a description of the meaning of these parame-
ters and [18] for a detailed description of the SVM
algorithm. To avoid the risk of overfitting the feature

Figure 3: Installation of the DSRC device on the vehicle.

selection and the choice of the scaling factor and
box constraint are executed using a 10-fold method
where each collection of statistical fingerprints (one
for eachDSRCdevice) is divided into ten blocks. Nine
blocks from each device are used for training and one
block is held out for classification. The training and
classification process is repeated ten times until each
of the ten blocks has been held out and classified.
Thus, each block of statistical fingerprints is used once
for classification and nine times for training. Final
cross-validation performance statistics are calculated
by averaging the results of all folds.

5.2. Test Bed and Materials. The test bed used to collect
the RF observables is composed of four DSRC devices
operating at 5.9GHz and implementing the ITS G5 physical
layer. The channel at 5.86GHz was selected to collect the
measurements. The modulation was consistent with the
DSRC/802.11p standard based on OFDM and QPSK. Each
DSRC device is installed in a vehicle and configured and
connected through a laptop for the setup and configuration.
The antenna is positioned on the rooftop of the car as shown
in Figure 3. The connection between the DSRC device and
the laptop was through LAN.The DSRC device is configured
through the laptop to transmit periodically CAM messages
with a specific content. The DSRC devices transmit a specific
data payload (i.e., the testing payload to ensure repeatability
across DSRC devices) with a bandwidth of 5MHz. The
frequency of transmission of the CAM messages was set to
10Hz as recommended in the ETSI standard [19] to support
the applications based on CAM. These applications require
high frequency in order to ensure low reception latency after
first contact. An example of this application is the Intersection
Collision Warning, where the vehicles equipped with DSRC
need to exchange CAMmessages quite frequently to ensure a
low latency of 100ms as described in Table 1 of [19].

The RF signal in space, which is transmitted by the DSRC
devices, is collected using a USRP SDR receiver of type N210,
equipped with XCVR2450 front end, both locked to the GPS
time and 10MHZ reference to ensure repeatability in the
collection of RF observables. The SDR receiver was equipped
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Table 1: Experimental setup: test bed summary.

USRP type N2100
USRP gain 5
USRP front end XCVR2450
USRP gain 5
Sampling frequency 10MS/sec IQ
Sample recording time 60 seconds
Link frequency 5.86GHz

Synchronization GPS using ublox NEO6Q (min 4
sat, min 30min lock)

Start of experiment 1455727526 (UNIX epoch)

with an ublox NEO6Q GPS receiver. The SDR receiver is
positioned around 5 meters from the vehicle and the DSRC
antenna to replicate a privacy attacker positioned on the
roadside.

To ensure consistency with a practical scenario, where the
DSRCdevices could transmit different data payloads, only the
preamble of the DSRC burst was used for RF fingerprinting,
which is invariant to the data payload.This is consistent with
related work for 802.11a fingerprinting like [9] or WiMaX
[3] where the preamble is also used. The USRP N210 has a
fixed sample rate of 100 MSamples per second with full In-
phase/Quadrature (I/Q).More details about the device can be
found in the technical specifications in [20]. We configured
it with a digitally decimated rate of 10MHz I/Q, which was
adequate for the bandwidth of the DSRC devices under tests.

Once the four sets of samples were collected, the real-
valued signal samples were first converted to I/Q samples
and then synchronized and normalized offline to extract the
802.11p bursts. For the initial training phase, we collected 1000
bursts for each DSRC device. In this process, the real-valued
signal samples were also checked and validated to ensure that
the CAM messages were properly transmitted and received.
Note that, in this experimentation and paper, we were only
interested in the physical layer of the DSRC messages and
not in the performance of the V2X communication at the
network level because the identification information (and the
related privacy threat) is specific to the RF fingerprinting of
the DSRC device. For this reason, simulators like NS2 were
not used in this experiment.

Note that the collection of the RF signals from the DSRC
devices was implemented in LOS conditions as described
above and at a short distance between receiver and DSRC
transmitter. The evaluation of the performance of the RF
fingerprinting in more challenging environments from the
wireless propagation point of view is done in Section 6.1
for longer distances between the DSRC transmitter and
the USRP receiver and in Section 6.2 for different fading
conditions like urban or highway areas or different speeds of
the vehicle.

The parameters of the scenario are presented in Table 1.

5.3. Statistical Features. Then we applied the statistical fea-
tures described in Table 2 to each single burst for each DSRC
device. The first column in the table is the name of the

statistical feature, the second column is the description of
the statistical features, and the third column points to the
formula, which defines the feature. Finally the fourth column
provides the numeric identifier of the feature used in the
rest of the paper (e.g., for graphs and tables in the results
section). This set of statistical features is similar to the set of
features used in [7]. In these expressions the variable 𝑆𝑇𝐷 is
the instantaneous amplitude (IA):

Variance {𝑆𝑇𝐷} = 1
𝑁 − 1

𝑁

∑
𝑖=1

(𝑆𝑇𝐷 − 𝜇)2 (3)

Skewness {𝑆𝑇𝐷} = 1
𝜎3
𝑁

∑
𝑖=1

(𝑆3𝑇𝐷 − 𝜇3) (4)

Kurtosis {𝑆𝑇𝐷} = 1
𝜎4
𝑁

∑
𝑖=1

(𝑆4𝑇𝐷 − 𝜇4) (5)

𝐻ShannonEntropy {𝑆𝑇𝐷} = −
𝑁

∑
𝑖=1

(𝑆2𝑇𝐷 ∗ ln (𝑆2𝑇𝐷)) (6)

𝐻LogEnergy {𝑆𝑇𝐷} =
𝑁

∑
𝑖=1

ln (𝑆2𝑇𝐷) . (7)

5.4. Machine Learning Algorithms and Parameters Optimiza-
tion. As described previously, a supervisedmachine learning
approachwas used for verification of the identity of theDSRC
device and therefore the tracking function.

The SVM is a very well-known technique in supervised
machine learning and it has been used in this paper because
SVM has demonstrated its effectiveness for RF fingerprinting
in [11] and other sources. On the basis of a set of training
samples (in our case these are the RF observables from
the DSRC devices and the derived statistical features), SVM
assigns each sample to one of two categories in the training
phase. This makes SVM a nonprobabilistic binary linear
classifier. The resulting SVMmodel is a representation of the
samples as points in space, mapped so that the samples of the
separate categories are divided by a clear gap that is as wide
as possible. In the testing phase (the tracking phase in our
context) new samples are then mapped into that same space
and predicted to belong to a category (e.g., the DSRC device)
based on which side of the gap they fall on.

From a formal point of view, let us assume that we have 𝑛
labeled examples (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)with labels 𝑦𝑖 ∈ {1, −1}.
Wewant to find the hyperplane𝐻 (in a proper 𝑑-dimensional
space 𝐾) defined by ⟨𝑤, 𝑥⟩ + 𝑏 = 0 (i.e., with parameters
(𝑤, 𝑏)), which satisfies the following conditions:

(1) The scale of (𝑤, 𝑏) is fixed so that the plane is in
canonical position with respect to {𝑥1, . . . , 𝑥𝑛}. That
is,

min
𝑖≤𝑛

󵄨󵄨󵄨󵄨⟨𝑤, 𝑥𝑖⟩ + 𝑏󵄨󵄨󵄨󵄨 = 1. (8)

(2) The plane with parameters (𝑤, 𝑏) separates the +1’s
from the −1’s. That is,

𝑦𝑖 (⟨𝑤, 𝑥𝑖⟩ + 𝑏) ≥ 0 ∀𝑖 ≤ 𝑛. (9)
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Table 2: Identifiers of the statistical features.

Statistical feature Feature description Related equation Feature identifier

Variance The variance is the mean squared variance of a
distribution from its mean Equation (3) 1

Skewness The skewness characterizes the degree of asymmetry of
a distribution around its mean Equation (4) 2

Kurtosis Kurtosis measures the relative peakedness or flatness of
a distribution Equation (5) 3

Shannon Entropy
Shannon Entropy is the expected value of the
information contained in a signal based on the

definition by Shannon
Equation (6) 4

Log Energy Entropy
Log Energy Entropy is the expected value of the
information contained in a signal based on a

logarithmic scale
Equation (7) 5

(3) The plane has a maximum margin 𝜌 = 1/|𝑤|, that is,
minimum |𝑤|2.

We can redefine ⟨𝑤, 𝑥⟩ + 𝑏 = 0 to the following equation:

𝑤 ∙ 𝜙 (𝑥) + 𝑏 = 0, (10)

where 𝜙(𝑥) represents a proper mapping of 𝑥 into the space
𝐾; 𝑤 = [𝑤1; 𝑤2; . . . ; 𝑤𝑑] denotes a 𝑑-dimensional real vector
normal to𝐻; and 𝑏 is a real parameter such that |𝑏|/‖𝑤‖ is the
perpendicular distance of the origin from 𝐻. ∙ is the scalar
product between two vectors.

The problem of finding the hyperplane 𝐻 becomes an
optimization problem, which can be reformulated to the
following equation:

min
(𝑤,𝑏,𝜉)

1
2

𝑊𝑇𝑊 + 𝐶 ∑ 𝜉𝑖, (11)

where 𝜉𝑖 are the slack variables and 𝑖 is in the range of 1 to
𝑁Train, which is the number of training vectors. The slack
variables are subject to 𝜉𝑖 > 0 and they account for the
presence of classification errors. The parameter 𝐶 (which we
will call box constraint in the rest of the paper) allows the
SVMuser to control the weight of these errors in the previous
equation (11) and it is one of the two parameters to be tuned
in the training process.

The second parameter to be tuned is related to the kernel
function, which is used to define the shape and format of
the hyperplane. Various kernel functions are available in
the literature including linear, polynomial, and Radial Basis
Function (RBF).

In this paper, we use SVM with RBF as a kernel function
because it has demonstrated its effectiveness for fingerprint-
ing classification in [11] and other references. In addition, this
kernel has a number of good features, since it can properly
handle the cases in which the relation between class labels
and features is nonlinear in classification problems (which is
indeed our case).

The definition of the RBF is the following:

𝐾 (x𝑖, x𝑗) = 𝑒−𝛾‖x𝑖−x𝑗‖
2

. (12)

The 𝛾 scaling factor is the second parameter to be tuned
together with 𝐶 box constraint parameter.

To summarize, the application of SVM in this context
requires the optimization of the statistical features and the
parameters of the SVM and the RBF, which are the scaling
factor 𝛾 from equation (12) and the box constraint 𝐶 param-
eter from (11).

The optimization of the statistical features is based on
the sequential forward selection algorithm as described in
Section 5, which has been applied to the features described
in Table 2 on all the bursts collected in the training phase.

The sequential forward selection algorithmmust be based
on a criterion against which the optimum value is identified.
In machine learning, the following parameters are defined:

(i) 𝑇𝑝 is the number of true positive matches where the
machine learning algorithm has correctly identified a
sample (e.g., a collected RF signal in our context) as
belonging to the correct class.

(ii) 𝑇𝑛 is the number of true negative matches where the
machine learning algorithm has correctly identified a
sample as not belonging to the correct class.

(iii) 𝐹𝑝 is the number of false positive matches where the
machine learning algorithmhas identified a sample as
belonging to a class while it is not true.

(iv) 𝐹𝑛 is the number of false negative matches where the
machine learning algorithmhas identified a sample as
not belonging to the class while this is not true.

The combination of the different parameters can define
different metrics to evaluate the effectiveness of a machine
learning algorithm. In this case, we use the verification
accuracy as a criterion, which is calculated as

Accuracy =
𝑇𝑝 + 𝑇𝑛

TotalPopulation
, (13)

where 𝑇𝑝 is the number of true positives and 𝑇𝑛 is the
number of true negatives resulting from the application of the
SVMmachine learning algorithm to the problem of verifying
that the collected RF observables are representative of the
same DSRC device evaluated in the training phase. The total
population represents the total population of samples (which
is the sum of 𝑇𝑝, 𝑇𝑛, 𝐹𝑝, and 𝐹𝑛). While this metric is indeed
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Figure 4: Bar plot of the overall accuracy for different sets of
features.

valuable to evaluate the feasibility of tracking a vehicle, the
robustness of themodel used inmachine learning should also
be based on other metrics.

Beyond accuracy, in this paper, we will also use Receiver
Operative Characteristics (ROC) and the Equal Error Rate
(EER) metrics to evaluate the verification accuracy and the
tracking performance as presented in Section 6.

The ROC is calculated as ROC-like performance curve
is generated here by plotting 𝐹𝑝 versus 𝑇𝑝 as the verification
threshold changes.

The EER corresponds to the point on the ROC curve
where 𝐹𝑝 versus 𝑇𝑝 are equal. This metric is frequently used
as a summary statistic to compare the performance of various
classification systems. In general, lower EERs indicate better
system classification performance.

The sequential forward selection algorithm with the
criterion of verification accuracywas applied to all fourDSRC
devices under test and the results were averaged. The results
of the algorithm based on a 10-fold method identify the
combination of features [1, 2, 3, 4, 5] as the best set of features.

Other combinations of features also provide great verifi-
cation accuracy. Figure 4 provides the accuracy results for an
incremental set of features.

This result was obtained in LOS conditions.
The values of accuracy identified in Figure 4 were

obtained with fixed values of the scaling factor (i.e., 1) and
box constraint (1), which were chosen at random. These
parameters must be optimized. This is achieved by trying
different combinations of values of these parameters in a
specific range. The results are shown in Figure 5.

From the figure, we obtain an optimum scaling factor
of 0.8 and a box constraint of 3.8 (the maximum value
in Figure 5). With these values, the features combination
[1, 2, 3, 4, 5] provides an average verification accuracy of
99.5, which is extremely high and it would permit the
implementation of the privacy threat with great efficiency
because the privacy attacker could track the DSRC device
and vehicle with almost ideal accuracy. Note that these results
were obtained in LOS conditions, with a long collection time
(i.e., to collect 1000 bursts) and with no path loss attenuation,
which is not feasible from a practical point of view. This
would mean that the privacy attacker is near the vehicle and
it can collect the burst for a considerable amount of time. For
example, in the test setup used by the authors, the 1000 bursts
were collected in a timeframe of 60 seconds.
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Figure 5: Bidimensional plot of the accuracy on the basis of the
scaling factor and the box constraint.

While this ideal case has been useful to identify the best
set of parameters, in the next section, we investigate a more
realistic scenario where the privacy attacker is far from the
vehicle and (s)he can collect RF observables for a limited
period of time.

6. Results of the Analysis on Privacy
Threats Using RF Fingerprinting

In this section, we investigate the feasibility of the implemen-
tation of the privacy threat inmore realistic scenarios than the
previous section. Note that, in the analysis presented in the
subsequent subsections, wewill use the optimal set of features
and machine learning parameters for scaling factor and box
constraint already calculated in Section 5.4.

Thefirst scenario is when the privacy attacker implements
the attack in an area with no fading effects but only with path
loss attenuation.

6.1. Path Loss Attenuation. In this scenario, the privacy
attacker collects and processes RF observables at a distance
from the vehicle, but the propagation path is still LOS and no
fading effects are present.

The collection of RF observables at a distance from the
tracking target can be simulated by adding Additive White
Gaussian Noise (AWGN) to the samples. Decreasing values
of the resulting Signal to Noise Ratio (SNR) simulate an
increasing distance from the tracking target as described in
the following paragraph.

The received signal in an AWGN channel can be
expressed as

𝑟 (𝑡) = 𝛼𝑠 (𝑡) + 𝑛 (𝑡) , (14)

where 𝑠(𝑡) is the transmitted signal and 𝑛(𝑡) is the complex
noise signal with Gaussian distribution and spectral density
noise 𝑁0. The attenuation in (14) is a complex value repre-
sented by 𝛼 = |𝛼|𝑒𝑗𝜙. Furthermore, the received SNR is a
metric used for systemevaluation and follows the relationship
SNR = 𝑃𝑅/𝑃𝑁 = 𝑓𝑠𝐸𝑏log2(𝑀)/𝐵𝑁0, where 𝑃𝑅 and 𝑃𝑁 are
the received power and noise power, respectively. Also, the
parameters 𝑓𝑠, 𝐸𝑏, 𝐵, and 𝑀 are the symbol rate, bit energy,
channel bandwidth, and modulation order, respectively.
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Figure 6: ROC curves between DSRC 3 and 4 for different values of
attenuation.

The distance and the related attenuation are represented
in the subsequent sections and graphs as SNR expressed in
dB.

Figure 6 describes the impact of attenuation for the
accuracy verification between two DSRC devices. The figure
describes the ROC for different values of SNR in a scenario
where we need to track a vehicle equipped with device DSRC
3 and distinguish it from another vehicle equipped with
device DSRC 4 whose RF observables are collected during
tracking. The more the central point of the ROC is near the
center of the figure, the more difficult it is to track the vehicle
because its RF fingerprints cannot be distinguished from the
other vehicle.

The EERs were also calculated for all the combinations of
devices, which corresponds to the scenario of tracking each
DSRC and vehicle from the others.

From Figures 6 and 7, we can see that the accuracy
decreases significantly for some DSRC devices around values
of SNR of 5 dB and below.This means that a privacy attacker,
which can only collect RF observables with a SNR of 5 dB
and below, will not be able to effectively track the DSRC
vehicle because the verification accuracy would be too low
(i.e., getting near random choice).

As described in Section 4, the privacy attacker could
collect the RF fingerprints at slightly different distances or
conditions because the vehicle will move along the route
while the privacy attacker may be still. The privacy attacker
can compensate the different distances by using a receiver
with adaptive gain or by calibrating the amplifier so that
the SNR of the collected RF signals is still relatively con-
stant during tracking. For example, the privacy attacker
could collect the RF signals in the initial observation used
for the training phase of the machine learning algorithm
with a slightly different SNR from other collection phases.
To evaluate the impact on the tracking accuracy due to
difference between the initial collection of RF signals and
the subsequent collections, we performed an analysis of
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Figure 7: EERs for different values of SNR and different set of DSRC
devices.
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Figure 8: ROCs with Rayleigh Doppler.

Table 3: Differences in accuracy for samples with different values of
SNR.

Baseline SNR SNR SNR SNR

Baseline 40 dB 38 36 34
−10.5 −29 −42.25

Baseline 30 dB 28 26 24
−8.5 −10 −10

the performance of the machine learning algorithms with
different sets of data with different values of SNR.

Table 3 shows the differences in tracking accuracy
between the two scenarios for different values of SNR and
between DSRC devices DSRC 3 and DSRC 4. We note that
the accuracy becomes progressively worst with the decrease
of the SNR of the samples collected in the second scenario.
One of the reasons for the significant drop of the accuracy
even for few dBs is because the different values of SNR have
an impact on the fingerprints because some of the adopted
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Table 4: Accuracy for different number of samples.

Number of samples Accuracy
10 94
20 95
40 94.5
100 93.5
200 95.5

statistical features (e.g., variance or entropy) are proportional
to the noise in the signal. In other words, observables taken
with different SNR do have also limited portability because
the adopted statistical features are depending on the noise in
the signal. As a consequence, a privacy attacker could find
it difficult to distinguish between DSRC devices and track
a specific vehicle. While this is relatively obvious from the
definition of the statistical features in (3) to (7), this analysis
shows another challenge for a privacy attacker and it can
limit the feasibility of privacy attack based on RF fingerprints
in a practical scenario. An obvious solution would be to
select only statistical features, which are invariant toGaussian
noise (e.g., skewness defined in (4)), but this would limit
the set of potential statistical features for fingerprinting. In
addition, statistical features, which are invariant to noise, can
be instead dependent on fading effects. The privacy attacker
could implement an adaptive gain control function in the
receiver to ensure that the collected samples have the same
SNR even if the vehicle is moving.The adaptive gain function
would regulate the RF amplifier of the receiver to maintain
the SNR of the collected samples constant. Obviously, the
presence of an adaptive gain function would increase the cost
and complexity of the tracking system used by the privacy
attacker.

Finally, we evaluated the potential loss of accuracy when
the observation time to collect the samples is decreased.
Table 4 shows the value of accuracy in high SNR conditions
for increasing number of samples (i.e., DSRC bursts), which
are proportional to longer observation times. Sets of test
samples of different lengths (from 10 samples to 200 samples)
are tested against a training matrix of 1000 samples in the
presence of limited noise. We notice that the accuracy has
minor variations in relation to the number of samples.This is
expected because the accuracy is dependent on other factors
like SNR or fading, which are invariant in this analysis. To
give an idea of the practical observation time, the 1000 bursts
of the training set were collected in 60 seconds. Then, the
smallest set of 10 samples can be collected in 0.6 seconds.This
collection time is based on the specific DSRC setup used in
our test bed. In a future deployment of DSRC systems, the
frequency of the DSRC bursts can change, but it will be in a
similar frequency range (see [10]).

6.2. Impact of Fading. Beyond attenuation due to distance in
LOS conditions, a practical scenario for a privacy attack must
also consider the presence of obstacles on the path between
the vehicle and the privacy attacker. In this scenario, a model,
which is only based on Gaussian noise, is not adequate to

describe the scenario because fading effects will be present.
Buildings or road infrastructure will introduce different types
of fading, which can also impact the tracking accuracy.

This section performs an analysis of the fading effects
for tracking accuracy. The fading effect is explained here.
The radio channel is the transmission medium between the
transmitter and the receiver. In DSRC communications, the
received signal is composed of a large number of trans-
mitted replicas, which present LOS and/or NLOS compo-
nents. Furthermore, the transmitted signal can be reflected,
diffracted, and scattered due to different obstacles existent in
the communication surroundings. In addition to multipath
propagation, the RF signal in vehicular networks is impaired
by Doppler shifts due to the large relative velocity between
the DSRC transmitter and receiver units (i.e., the vehicles).
Thus, the need of a channel representation that realistically
models all of these phenomena is of paramount importance
for vehicular communications [21–23].

The most basic channel is the AWGN channel model,
whose impact has been analyzed in Section 6.1. A more real-
istic channel model for vehicular communications considers
the time and frequency variations suffered by the propagated
signals. Therefore, the normalized channel impulse response
of the DRSC channel is expressed in the complex baseband as

ℎ (𝑡, 𝜏) = 1
√𝑁 (𝑡)

𝑁(𝑡)−1

∑
𝑘=0

𝑎𝑘 (𝑡) 𝑒−𝑗𝜙𝑘(𝑡)𝛿 (𝑡 − 𝜏𝑘 (𝑡)) , (15)

where 𝑁(𝑡) is the number of multipath components, which
varies with time. The time-dependent variables, 𝑎𝑘(𝑡) and
𝜏𝑘(𝑡), represent the amplitude and position of the 𝑘th multi-
path component, respectively. The term 𝑎𝑘(𝑡) is modeled as
a random variable with Rayleigh distribution in this work.
Furthermore, the variable 𝜙𝑘(𝑡) depends on the time and the
Doppler spread and can be modeled as

𝜙𝑘 (𝑡) = 2𝜋𝑓𝑐 (𝑡 − 𝜏𝑘 (𝑡)) − 𝜙𝐷𝑘 , (16)

where 𝑓𝑐 is the carrier frequency of the DSRC system and
𝜙𝐷𝑘 = ∫

𝑡
2𝜋𝑓𝐷𝑘(𝑡)𝑑𝑡 is the Doppler frequency component

expressed in terms of the frequency variation function,
𝑓𝐷𝑘(𝑡). The Doppler shift occurs when the transmitter and/or
the receiver are in relative motion. The maximum Doppler
shift is obtained from the expression 𝑓max = 𝑓𝑐V/𝑐0, where V
is the relative transmitter-receiver speed and 𝑐0 is the speed of
light.

In this work, an empirical channel model specified
in ITU for vehicular test environments is used.
In particular, a six-tap model with relative delays
𝜏𝑘 = {0, 310, 710, 1090, 1730, 2500} ns and average power
values 𝑃𝑘 = {0, −1, −9, −10, −15, −20} dB is implemented
for the simulation analysis. In addition, three relative
speeds between the vehicle and the RF receiver (which
implements the privacy threat) have been considered,
V = {0, 30, 80}Km/h. The simulation with different speeds is
useful to evaluate if high relative speeds (i.e., 80 Km in this
case) can hamper the effectiveness of the privacy attacker.
This Rayleigh model can be used to represent an urban
environment, where numerous obstacles can hamper the
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capability of a privacy attacker to collect the RF fingerprints
from the DSRC device in the vehicle. In comparison, the
AWGN-only model can be used for a highway scenario in a
rural environment, where the receiver of the privacy attacker
does not have obstacles between it and the vehicle.

There are a number of studies, which investigated the
typical values of the fading parameters. The studies are also
based on experimental measurements as in [22, 24]. The
values chosen for the analysis presented in this paper are in
the range of values suggested by the cited references.

The ROC was calculated between two DSRC devices in
the presence of the Rayleigh fading effects. The results are
shown in Figure 8.

Figure 8 shows that fading has a relevant impact on the
verification accuracy and tracking and can severely limit the
tracking range of a privacy attacker.

In comparison to the simple model based only on Gaus-
sian noise (i.e., the AWGN curve in Figure 8), the fading
introduces an additional loss of accuracy, which can severely
limit the tracking accuracy. As a consequence, a privacy
attacker should position himself/herself in a LOS condition
with the vehicle; otherwise the tracking of the vehicle will
not be feasible. From Figure 8, we also note that the speed
of car (relative to the privacy attacker) is not relevant for the
tracking accuracy because the ROC curves at 30 and 80Km/h
are quite similar. This is also an important result because it
proves that the speed of the vehicle is not a significant factor
for the implementation of the privacy threat based on RF
fingerprinting.

7. Conclusions and Future Developments

This paper has investigated the potential privacy threat based
on the tracking of vehicles through the RF fingerprints of
their DSRC 5.9GHz devices.The fingerprints were generated
on the basis of selected statistical features and the optimum
set of statistical features was identified. To the knowledge
of the authors, this is the first time that the fingerprinting
of 5.9GHz DSRC devices is performed and it is applied to
the privacy context. The analysis was conducted both for
LOS scenarios and for NLOS scenarios where attenuation
or fading effects are present. The results of the analysis
show that the impact of attenuation and fading is quite
significant and it can strongly hamper the capability of
tracking the vehicles especially in a challenging environment
from the RF point of view. This paper identifies the key
challenges, which must be overcome by a privacy attacker
to implement a privacy threat. Future developments by the
authors will investigate additional statistical features, which
can be more robust against the presence of noise and fading
effects.
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