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The approach of metric-affine gravity initially distinguishes it from Einstein’s general relativity. Using an independent affine
connection produces a theory with 10 + 64 unknowns. We write down the Yang-Mills action for the affine connection and produce
the Yang-Mills equation and the so-called complementary Yang-Mills equation by independently varying with respect to the
connection and the metric, respectively. We call this theory the Yang-Mielke theory of gravity. We construct explicit spacetimes
with pp-metric and purely axial torsion and show that they represent a solution of Yang-Mills theory. Finally we compare these
spacetimes to existing solutions of metric-affine gravity and present future research possibilities.

1. Introduction

Einstein’s geometric theory of gravity can be summarised,
paraphrasing Wheeler [1], as follows: spacetime tells matter
how tomove; matter tells spacetime how to curve. In order to
understand this, we have to understand the following:

(i) The motion of particles which are so small that
their effect on the gravitational field they move in is
negligible.

(ii) The nature of matter as a source for gravity.
(iii) Einstein’s equation, which shows how this matter

source is related to the curvature of spacetime.

Einstein’s equation is at the centre of general relativity. It
gives us a formulation of the relationship between spacetime
geometry and the properties of matter. This equation is for-
mulated using Riemannian geometry, in which the geometric
properties of spacetime are described by the metric. The
vacuumEinstein’s equationRic

𝛼𝛽
−(1/2)R𝑔

𝛼𝛽
= 0 is obtained

by varying the Einstein-Hilbert action

𝑐

4

16𝜋𝐺
∫R,

(1)

with respect to the metric 𝑔. Here R is the scalar curvature
(A.9), Ric is the Ricci curvature (A.8), 𝑔 is the metric, 𝑐 is

the speed of light, and 𝐺 is the gravitational constant, the
recommended numerical value of which is 6.67384(80) ×
10−11 m3 kg−1 s−2, with relative standard uncertainty 1.2 ×

10−4 (see [2]). The full field equation is then obtained by
adding the matter Lagrangian to the Einstein-Hilbert action,
which gives us Einstein’s equation in tensor form

Ric
𝜇] −

1
2
R𝑔

𝜇] =
8𝜋𝐺
𝑐

4 𝑇

𝜇], (2)

where 𝑇 is the stress energy tensor that arises from the
matter Lagrangian (see, e.g., [3]).The simplest solution of this
equation is the Minkowski spacetime from special relativity.

Two problems with general relativity arose quite quickly
after its initial introduction in 1915. Einstein considered that
what are recognised locally as inertial properties of matter
must be determined by the properties of the rest of the
universe. Einstein’s efforts to discover to what extent general
relativity manages to do this founded the modern study of
cosmology. The second problem of general relativity was
that electromagnetism is not included in the theory. As
Einstein said in [4], “A theory in which the gravitational
field and the electromagnetic field do not enter as logically
distinct structures would be much preferable.” He expected
much more from general relativity than the merging of
gravitation and electromagnetism at the macroscopic level
and he thought that the theory should explain the existence
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of elementary particles and should provide a treatment for
nuclear forces (see [4]). Einstein spentmost of the secondpart
of his life trying to achieve this, unfortunately with no real
success, and only after his death did the subject again become
“fashionable.”

A number of recent developments in physics have evoked
the possibility that the treatment of spacetime might involve
more than just using the Riemannian spacetime of Einstein’s
general relativity, like our failure to quantize gravity, the
description of hadron or nuclear matter in terms of extended
structures, the accelerating universe, the study of the early
universe, and so forth (see Hehl et al. [5]).

The smallest departure from a Riemannian spacetime
of Einstein’s general relativity consists of admitting torsion
(A.3), arriving at a Riemann-Cartan spacetime, and further-
more, possible nonmetricity (A.1), resulting in ametric-affine
spacetime. Metric-affine gravity is a natural generalisation
of Einstein’s general relativity and it was propagated by
Einstein himself for some time. In metric-affine gravity we
consider spacetime to be a connected real 4-manifold 𝑀

equippedwith a Lorentzianmetric𝑔 and an affine connection
Γ and the characterisation of spacetime by an independent
linear connection Γ immediately distinguishes metric-affine
gravity from general relativity. The connection incorporates
the inertial properties of spacetime and it can be viewed,
according to Weyl [6], as the guidance field of spacetime,
while the metric describes the structure of spacetime with
respect to its spaciotemporal distance relations.

As stated by Hehl et al. in [5], in general relativity the
linear connection of its Riemannian spacetime is metric
compatible and symmetric and the symmetry of the Levi-
Civita connection translates into the closure of infinitesimally
small parallelograms and the transition from the flat gravity-
free Minkowski spacetime to the Riemannian spacetime in
Einstein’s theory can locally be understood as a deformation
process. The lifting of the constraints of metric-compatibility
and symmetry yields nonmetricity and torsion, respectively.
The continuum under consideration is thereby assumed to
have a nontrivial microstructure. The geometrical concepts
of nonmetricity and torsion arise in the three-dimensional
continuum theory of lattice defects; however, see [7, 8]. For a
comprehensive review of metric-affine gravity, see [5] as well
as [9].

This paper has the following structure. In Section 2 we
introduce the Yang-Mielke theory or gravity. In Section 3 we
define our new spacetimes, where in Section 3.1 we recall the
known properties classical pp-waves and in Section 3.2 we
generalise the notion of a pp-wave to spacetimes with purely
axial torsion. Finally, in Section 5 we compare our solutions
with existing results and consider future research possibili-
ties. Appendix provides the notation we use throughout the
paper.

2. Yang-Mielke Theory of Gravity

We consider spacetime to be a connected real 4-manifold𝑀
equippedwith a Lorentzianmetric𝑔 and an affine connection
Γ. The unknowns of our theory are the 10 independent
components of the metric tensor 𝑔

𝜇] and the 64 connection

coefficients Γ𝜆
𝜇]. In quadraticmetric-affine gravity we define

the action as

𝑆 := ∫ 𝑞 (𝑅) , (3)

where 𝑞 is an 𝑂(1, 3)-invariant quadratic form on curvature
𝑅. Independent variation of (3) with respect to the metric
𝑔 and the connection Γ produces Euler-Lagrange equations
which we will write symbolically as

𝜕𝑆

𝜕𝑔

= 0, (4)

𝜕𝑆

𝜕Γ

= 0. (5)

The Yang-Mills action for the affine connection is a special
case of (3) with

𝑞 (𝑅) := 𝑅

𝜅

𝜆𝜇]𝑅
𝜆

𝜅

𝜇]
.

(6)

The objective of this paper is to study the system of (4), (5) in
the special case (6).The origins of this theory lie in the works
of Élie Cartan, Arthur Eddington, Albert Einstein, Erwin
Schrödinger, Tullio Levi-Civita, and Hermann Weyl. The
motivation for choosing a model of gravity which is purely
quadratic in curvature is explained in detail in Section 1 of
[10] and Section 1 of [11].The results in this paper strongly rely
on the work of Yang [12] and Mielke [13] who, respectively,
showed that Einstein spaces satisfy (5) and (4). We therefore
refer to the special case (6) of the field equations (5) and (4)
as the Yang-Mielke theory of gravity. There are many works
devoted to the study of system (4), (5) in the special case
(6) and one can get an idea of the historical development of
the Yang-Mielke theory of gravity from the references stated
in [11]. Further aspects of the history of this theory are also
given in [14]. Detailed descriptions of the irreducible pieces
of curvature and quadratic forms on curvature can be found
in [10, 15] and our previous work in this theory can be found
in [11, 16–18], where much more information and references
on the history and development of metric-affine gravity and
known solutions of this theory can be found.

3. pp-Waves with Purely Axial Torsion

We use pp-waves, which are well known spacetimes in
general relativity, in order to construct our solutions. In
Section 3.1 we first provide a brief reminder on classical pp-
waves, following the exposition from [11, 18] and then in
Section 3.2we generalise them to spacetimeswith purely axial
torsion. See [11, 18] for extensive references therein for much
more information on pp-waves and pp-wave type solutions
of metric-affine gravity in general.

3.1. Properties of Classical pp-Waves. Wedefine a pp-wave as a
Riemannian spacetime which admits a nonvanishing parallel
spinor field. It is now a well known fact that pp-waves are
solutions of the system of (4), (5), as first shown in [10]. We
denote the nonvanishing parallel spinor field appearing in the
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definition of pp-waves by 𝜒 = 𝜒

𝑎 and we assume this spinor
field to be fixed. Put

𝑙

𝛼

:= 𝜎

𝛼

𝑎
̇
𝑏
𝜒

𝑎

𝜒

̇
𝑏

,

(7)

where 𝜎𝛼 are Pauli matrices, where we use the spinor formal-
ism introduced in [11, 18]. Then 𝑙 is a nonvanishing parallel
real null vector field.We define the real scalar function, which
we call the phase, as

𝜑 : 𝑀 → R,

𝜑 (𝑥) := ∫ 𝑙 ⋅ 𝑑𝑥.

(8)

Put 𝐹
𝛼𝛽

:= 𝜎

𝛼𝛽𝑎𝑏
𝜒

𝑎

𝜒

𝑏 where the 𝜎
𝛼𝛽

are “second-order Pauli
matrices” and 𝜎

𝛼𝛽𝑎𝑐
:= (1/2)(𝜎

𝛼𝑎
̇
𝑏
𝜖

̇
𝑏
̇
𝑑

𝜎

𝛽𝑐
̇
𝑑
− 𝜎

𝛽𝑎
̇
𝑏
𝜖

̇
𝑏
̇
𝑑

𝜎

𝛼𝑐
̇
𝑑
) (see

[11, 18]).𝐹 can be expressed as𝐹 = 𝑙∧𝑚, where𝑚 is a complex
vector field satisfying

𝑚

𝛼
𝑚

𝛼

= 𝑙

𝛼
𝑚

𝛼

= 𝑙

𝛼
𝑚

𝛼

= 0,

𝑚

𝛼
𝑚

𝛼

= − 2.
(9)

Note that it is known that pp-waves can also be defined as a
Riemannian spacetimewhosemetric can be written locally in
the form

𝑑𝑠

2
= 2𝑑𝑥0𝑑𝑥3 − (𝑑𝑥1)

2
− (𝑑𝑥

2
)

2

+𝑓 (𝑥

1
, 𝑥

2
, 𝑥

3
) (𝑑𝑥

3
)

2
(10)

in some local coordinates (𝑥0, 𝑥1, 𝑥2, 𝑥3). The corresponding
curvature tensor 𝑅 is linear in 𝑓; that is,

𝑅

𝛼𝛽𝛾𝛿
= −

1
2
(𝑙 ∧ 𝜕)

𝛼𝛽
(𝑙 ∧ 𝜕)

𝛾𝛿
𝑓,

(11)

where (𝑙 ∧ 𝜕)
𝛼𝛽
:= 𝑙

𝛼
𝜕

𝛽
− 𝜕

𝛼
𝑙

𝛽
. The choice of local coordinates

in which the pp-metric assumes the form (10) is not unique.
We will restrict our choice to those coordinates in which

𝜒

𝑎

= (1, 0) ,

𝑙

𝜇

= (1, 0, 0, 0) ,

𝑚

𝜇

= (0, 1, ∓ 𝑖, 0) .

(12)

With this choice of local coordinates (10), (12), the phase
function becomes 𝜑(𝑥) = 𝑥

3
+ const. Formula for the

curvature of a pp-wave (11) can now be rewritten in invariant
form; that is,

𝑅 = −

1
2
(𝑙 ∧ ∇) ⊗ (𝑙 ∧ ∇) 𝑓,

(13)

where 𝑙 ∧ ∇ := 𝑙 ⊗ ∇ − ∇ ⊗ 𝑙. pp-waves curvature only has two
irreducible pieces, that is, (symmetric) trace-free Ricci and
Weyl; see [17] for their explicit formulae.

3.2. Generalising pp-Waves to Spacetimes with
Purely Axial Torsion

Definition 1. A generalised pp-wave with purely axial torsion
is a metric compatible spacetime with pp-metric and torsion

𝑇 := ∗𝐴, (14)

where 𝐴 is a real vector field defined by 𝐴 = 𝑘(𝜑)𝑙, where
𝑘 : R → R is an arbitrary real function of the phase.

Remark 2. The real vector field 𝐴 is a plane wave solution of
the polarizedMaxwell equation ∗𝑑𝐴 = ±𝑖𝑑𝐴; see (16) of [18].
This is not surprising as in our special local coordinates the
vector field 𝐴 is the gradient of a scalar function.

We list below themain properties of these generalised pp-
waves. Note that here and further on we denote by {∇} the
covariant derivative with respect to the Levi-Civita connec-
tion which should not be confused with the full covariant
derivative ∇ incorporating torsion. Using our special local
coordinates (10), (12), we can express torsion as

𝑇 = ∓

𝑖

2
𝑘 (𝑥

3
) 𝑙 ∧𝑚∧𝑚.

(15)

Note that the ∓ sign is chosen to correspond to the sign in
(12). Torsion (14) is clearly purely axial, as 𝑇

𝜅𝜇] = 𝑘(𝜑)𝑙
𝛼

𝜀

𝛼𝜅𝜇],
which is just the totally antisymmetric part of torsion.

Remark 3. Our torsion completely corresponds to Singh’s
axial torsion from [19, 20]. Put 𝑚 = −(1/2)𝑘(𝑥3) in formula
(16) of [19] or put 𝑛 = 0, 𝑚 = −(1/2)𝑘(𝑥3) in formula (20) of
[20].

Remark 4. The connection of a generalised pp-wave with
purely axial torsion is clearly metric compatible. Since Γ𝜅

𝜇] =

{

𝜆

𝜇] } + 𝐾
𝜅

𝜇] = {
𝜆

𝜇] } + (1/2)𝑇𝜅𝜇], we get that

∇

𝜇
𝑔

𝛼𝛽
= {∇}

𝜇
𝑔

𝛼𝛽
−𝐾

𝜂

𝜇𝛼
𝑔

𝜂𝛽
−𝐾

𝜂

𝜇𝛽
𝑔

𝛼𝜂
(16)

and {∇}
𝜇
𝑔

𝛼𝛽
= 0 as classical pp-waves are metric compatible.

However, since our torsion is purely axial, we get that∇
𝜇
𝑔

𝛼𝛽
=

𝐾

𝛼𝜇𝛽
− 𝐾

𝛼𝜇𝛽
= 0; that is, we have metric-compatibility.

The curvature of a generalised pp-wave is

𝑅 = −

1
2
(𝑙 ∧ {∇}) ⊗ (𝑙 ∧ {∇}) 𝑓

+

1
4
𝑘

2Re ((𝑙 ∧𝑚) ⊗ (𝑙 ∧𝑚))

∓

1
2
𝑘

 Im ((𝑙 ∧𝑚) ⊗ (𝑙 ∧𝑚)) .

(17)

This can be equivalently written down as

𝑅

𝛼𝛽𝛾𝛿
= −

1
2
(𝑙 ∧ 𝜕)

𝛼𝛽
(𝑙 ∧ 𝜕)

𝛾𝛿
𝑓

+

2
∑

𝑖,𝑗=1
𝑟

𝑖𝑗
(𝑙 ∧𝑚

𝑖
)

𝛼𝛽
(𝑙 ∧𝑚

𝑗
)

𝛾𝛿

,

(18)
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where 𝑟11 = 𝑟22 = (1/4)𝑘
2, 𝑟12 = −𝑟21 = ±(1/2)𝑘

. It is a highly
nontrivial fact that the torsion generated curvature, that is,
𝑅

𝑇

𝜅

𝜆𝜇] = 𝜕𝜇𝐾
𝜅

]𝜆 − 𝜕]𝐾
𝜅

𝜇𝜆
+ 𝐾

𝜅

𝜇𝜂
𝐾

𝜂

]𝜆 − 𝐾
𝜅

]𝜂𝐾
𝜂

𝜇𝜆
, which is

equal to

𝑅

𝑇
=

𝑘

2

4
Re ((𝑙 ∧𝑚) ⊗ (𝑙 ∧𝑚))

∓

𝑘



2
Im ((𝑙 ∧𝑚) ⊗ (𝑙 ∧𝑚))

(19)

and the Riemannian curvature simply add up to produce
formula (17).We know that the Riemannian part of curvature
has two irreducible pieces of curvature, namely, Weyl and
(symmetric) trace-free Ricci. It turns out that the torsion also
generates Ricci curvature and it reads

Ric = 1
2
(𝑓11 +𝑓22 − 𝑘

2
) 𝑙 ⊗ 𝑙,

(20)

where 𝑓
𝛼𝛽

:= 𝜕

𝛼
𝜕

𝛽
𝑓. Scalar curvature is then clearly zero by

the properties of 𝑙.

Remark 5. The Ricci curvature is zero if Poisson’s equation
𝑓11 + 𝑓22 = 𝑘

2 is satisfied.

Remark 6. Ricci is parallel if 𝑓11 +𝑓22 = 𝑘2 +𝐶, in which case
Ric = Λ𝑙 ⊗ 𝑙, for some constant Λ.

4. New Solutions of Yang-Mielke
Theory of Gravity

In this section we aim to use the spacetimes introduced in
Section 3 in order to construct new solutions of the Yang-
Mielke theory of gravity. The main result of this paper is the
following.

Theorem 7. Generalised pp-waves with purely axial torsion
with parallel {𝑅𝑖𝑐} are solutions of (4), (5) in the special case
(6).

Remark 8. Note that by {Ric} we denote the Ricci curvature
generated by the Levi-Civita connection only. The condition
{∇}{Ric} = 0 implies that 𝑓11 + 𝑓22 = 𝐶. Note that the result
also holds if Ric is assumed to be parallel.

Remark 9. In the special case (6), we call (5) the Yang-Mills
equation for the affine connection; that is,

𝜕]𝑅
𝜇]
+ [Γ], 𝑅

𝜇]
] = 0, (21)

where [Γ], 𝑅
𝜇]
]

𝜅

𝜆
= Γ

𝜅

]𝜂𝑅
𝜂

𝜆

𝜇]
− Γ

𝜂

]𝜆𝑅
𝜅

𝜂

𝜇]. We call (4) in the
special case (6), the complementary Yang-Mills equation; that
is,

𝐻−

1
4
(tr𝐻)𝑔 = 0, (22)

where 𝐻 = 𝐻]
𝜌

:= 𝑅

𝜅

𝜆𝜇]𝑅
𝜆

𝜅

𝜇𝜌

. Equivalently, (22) can be
written down as

𝑅

𝜅

𝜆]
𝛼

𝑅

𝜆

𝜅

]𝛽
−

1
4
𝑔

𝛼𝛽

𝑅

𝜅

𝜆𝜇]𝑅
𝜆

𝜅

𝜇]
= 0. (23)

See [21] for the explicit derivations of (21) and (22).

Proof of Theorem 7. Since we know (see, e.g., [11, 18, 22]) that
classical pp-waves of parallel Ricci curvature are solutions
of (4), (5) in the special case (6), it is enough to show the
result for the torsion generated part of curvature (19). In
proving that generalised pp-waves solve (21) and (22), we will
use (9), special local coordinates (10), (12), and the formulae
for curvature (17), (18), torsion (15), and torsion generated
curvature (19). To show that (21) is satisfied, we only need to
show that

𝜕]𝑅𝑇
𝜇]
+ [𝐾], 𝑅𝑇

𝜇]
] = 0, (24)

since the curvature is the sum of the Riemannian curvature
(13) and the torsion generated curvature (19), the connection
of the sumof theChristoffel symbol and contortion, and since
classical pp-waves solve the Yang-Mills equation. Now, since
𝐹 = 𝑙 ∧ 𝑚, in special local coordinates (10), (12), 𝐹 takes the
form

𝐹

𝛼𝛽

=(

0 1 ∓𝑖 0
−1 0 0 0
±𝑖 0 0 0
0 0 0 0

) (25)

and since the function 𝑘(𝜑) is the function of 𝑥3 in special
local coordinates, using the formula for curvature (19) we
directly get that 𝜕]𝑅𝑇

𝜇]
= 0.

Using the explicit formula for torsion (15), the fact that
it is purely axial, which implies that 𝑇 = 2𝐾, the explicit
formula for torsion generated curvature (19), and special local
coordinates (10), (12), we get that the only nonzero term of
Γ

𝜅

]𝜂𝑅
𝜂

𝜆

𝜇] is for 𝜅 = 0, 𝜆 = 3, and 𝜇 = 0; that is, −(1/2)𝑘 ⋅ 𝑘.
However, the only nonzero term of Γ𝜂]𝜆𝑅

𝜅

𝜂

𝜇] is also when
𝜅 = 0, 𝜆 = 3, and 𝜇 = 0; that is, −(1/2)𝑘 ⋅ 𝑘, so these two
terms cancel out. Hence, (21) is satisfied.

Checking that all the terms in (22) are zero is a straight-
forward exercise, using the formulae for curvature (17), (18),
special local coordinates (10), (12), and (9).

5. Discussion and Comparison with
Existing Solutions

Vassiliev [10] proved the uniqueness of Riemannian solutions
of the system of (4), (5), so we are left with searching for non-
Riemannian solutions, that is, those incorporating torsion
and possible nonmetricity. Vassiliev [10] presented one non-
Riemannian solution of system (4), (5) in the most general
case of the purely quadratic action (3), which was a torsion
wave solution with explicitly given torsion. This result was
previously presented in [23] for the Yang-Mills case (6)
and was first independently obtained by Singh and Griffiths
[24]. Vassiliev went on to conclude that this torsion wave
was a non-Riemannian analogue of a pp-wave and whence
came the motivation for generalising the notion of a classical
Riemannian pp-wave to spacetimes with torsion in such a
way as to incorporate the non-Riemannian torsion wave
solution into the construction.
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Constructing vacuum solutions of quadratic metric-
affine gravity in terms of pp-waves is a recent development.
Classical pp-waves of parallel Ricci curvature were first
shown to be solutions of (4), (5) in [10, 22, 25]. There are
a number of other publications in which authors suggested
various generalisations of the concept of a classical pp-wave;
see [26] and extensive references therein. These generalisa-
tions were performed within the Riemannian setting and
usually involved the incorporation of a constant nonzero
scalar curvature. Our construction in [11, 16–18] generalised
the concept of a classical pp-wave in a different direction;
we added torsion while retaining zero scalar curvature. We
preserved this approach in the current paper.

An interesting generalisation of the concept of a pp-wave
was presented by Obukhov in [27]. Obukhov was motivated
by his previous result [26] which deals with the Riemannian
case. The ansatz for the metric and the coframe of [27] is
exactly the same as in the Riemannian case. However, the
connection extends the Christoffel connection so that torsion
and nonmetricity (A.1) are present and are determined by this
extension of the connection. Obukhov’s gravitational wave
solutions provide a minimal generalisation of the pseudoin-
stanton (see [15]), in the sense that nonmetricity does not
vanish and that curvature has two irreducible pieces. We
chose not to take this approach, as our connection remains
metric compatible.

In our previous work [11, 16–18], we presented results
which were new explicit vacuum solutions of the system
of our field equations (4), (5) and called these generalised
pp-waves with torsion. However, it is important to note
that the torsion there was purely tensor, while the torsion
considered in the current paper is purely axial. The previous
generalisation was done similarly to the approach of this
paper, by using the pp-metric and giving an explicit torsion,
identical to the torsion wave obtained by Vassiliev in [10].
We further explored the properties and characteristics of
these generalised pp-waves, showing that they are indeed
solutions of the system of our field equations (4), (5) in the
most general case. Generalised pp-spaces with purely tensor
torsion of parallel Ricci curvature appear to admit a sensible
physical interpretation, which we explored in detail in [11],
where we gave a comparison with a classical model (namely,
Einstein-Weyl theory), constructed pp-wave type solutions
of this theory, and pointed out that generalised pp-waves
of parallel Ricci curvature are very similar to pp-wave type
solutions of the Einstein-Weyl model. The main difference in
using the metric-affine model lies in the fact that Einstein-
Maxwell and Einstein-Weyl theories contain the gravitational
constant, whereas our model is conformally invariant and
the amplitudes of the two curvatures, namely, the torsion
generated curvature (19) and the metric generated curvature
(13) are totally independent.

We aim to be able to do a similar feat using generalised
pp-waves with purely axial torsion, that is, first showing that
they are solutions of the field equations (4), (5) in the most
general case, by writing down the field equations explicitly
under the assumption of purely axial torsion.We also hope to
be able to similarly compare these solutions to the solutions

of Einstein-Weyl theory in order to provide a more detailed
physical interpretation of these spacetimes.

In [28] Mielke and Romero considered axial torsion in
the Einstein-Cartan context. We are particularly interested
in the section in which the authors recapitulate the minimal
coupling of gravity to Dirac fields and where they state
that the coupling of axial torsion to the axial current is the
only additional term in a prolongation to Riemann-Cartan
spacetimes. This will make a significant influence on our
reasoning once we attempt to provide a sensible physical
interpretation of our solutions.

It is interesting to note that in [29] Guilfoyle and Nolan
discuss the initial value problem for the Yang-Mills equations
and argue that while the long term existence has been
established, it is not expected that Yang’s equations have
a long term well-posed initial value problem. Of course,
the inclusion of torsion can be very problematic in this
context. As stated in the proof of the main result in [29],
Yang’s equations constitute a third-order quasi-linear system
of partial differential equations and fall outside of the wave
equations framework used for the initial value problem of
general relativity and gauge theory. The authors separate the
metric and the connection and propagate them separately by
wave equations and state that if the connection and metric
are initially compatible, they remain so throughout. It is
important to note that Yang was looking for Riemannian (i.e.,
torsion-free) solutions, so he specialised (5) to the Levi-Civita
connection, after the variation was carried out. In this case,
(5) reduces to ∇

𝜆
Ric
𝜅𝜇
− ∇

𝜅
Ric
𝜆𝜇

= 0. However, according
to [22], for a generic 16-parameter action, (5) restricted to
the Levi-Civita connection becomes ∇Ric = 0. Since our
connection is metric compatible as well (see Remark 4) and
Ricci is assumed to be parallel, we expect this to also be the
case for our solutions and this is a matter which we will look
at and hopefully answer in the near future.

The two papers of Singh [19, 20] were of special interest to
us in our task of finding new vacuum solutions of quadratic
metric-affine gravity. Singh [20] presents solutions of the field
equations (4), (5) for the Yang-Mills case (6) for a purely
trace torsion. We are not sure whether these torsion waves
can also be used to create new generalised pp-wave solutions
of this theory at this time. In [19] Singh presents solutions
of the field equations (4), (5) for the Yang-Mills case (6) for
a purely axial torsion and constructed a class of solutions
that cannot be obtained using the double duality ansatz; see,
for example, [15]. Singh used the “spin coefficient technique”
from his previous work with Griffiths [30]. Following the
reasoning behind the generalised pp-waves of [18] that were
shown to be solutions of the field equations (4), (5), where
we “combined” the pp-metric and the purely tensor torsion
waves to obtain a new class of solutions for quadratic metric-
affine gravity, we wanted to be able to do the samewith purely
axial torsion waves. This paper has managed to do just that
in the special case (6), and we hope to be able to obtain the
general result. The next obvious step would be to provide a
physical interpretation of these new solutions by comparing
them to existing classical solutions, like it was done in [11] for
purely tensor torsion generalised pp-waves.
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Appendix

Notation

Our notation follows [10, 11, 15–18, 23]. We denote local
coordinates by 𝑥𝜇, where 𝜇 = 0, 1, 2, 3, and we write 𝜕

𝜇
:=

𝜕/𝜕𝑥

𝜇

.We define the covariant derivative of a vector field as
∇

𝜇
V𝜆 := 𝜕

𝜇
V𝜆 + Γ𝜆

𝜇]V
]
.We define nonmetricity 𝑄 by

𝑄

𝜇𝛼𝛽
:= ∇

𝜇
𝑔

𝛼𝛽
. (A.1)

We say that our connection Γ is metric compatible if ∇𝑔 = 0.
We use the term “parallel” to describe the situation when the
covariant derivative of some spinor or tensor field is identi-
cally zero.The Christoffel symbol is { 𝜆

𝜇] } := (1/2)𝑔𝜆𝜅(𝜕𝜇𝑔]𝜅+
𝜕]𝑔𝜇𝜅 − 𝜕𝜅𝑔𝜇]).The interval is 𝑑𝑠2 := 𝑔

𝜇]𝑑𝑥
𝜇

𝑑𝑥

]. We define
the action of the Hodge star on a rank 𝑞 antisymmetric tensor
as

(∗𝑄)

𝜇𝑞+1⋅⋅⋅𝜇4
:= (𝑞!)

−1
√









det𝑔




𝑄

𝜇1 ⋅⋅⋅𝜇𝑞
𝜀

𝜇1 ⋅⋅⋅𝜇4
,

(A.2)

where 𝜀 is the totally antisymmetric quantity, 𝜀0123 := +1. We
define torsion as

𝑇

𝜆

𝜇] := Γ
𝜆

𝜇] − Γ
𝜆

]𝜇. (A.3)

We define contortion as 𝐾𝜆
𝜇] := (1/2)(𝑇𝜆

𝜇] + 𝑇𝜇
𝜆

]
+ 𝑇]
𝜆

𝜇
);

see [31]. Torsion and contortion are related as

𝑇

𝜆

𝜇] = 𝐾
𝜆

𝜇] −𝐾
𝜆

]𝜇. (A.4)

The irreducible pieces of torsion are (see [15])

𝑇

(1)
= 𝑇−𝑇

(2)
−𝑇

(3)
,

𝑇

(2)
𝜆𝜇] = 𝑔𝜆𝜇V] −𝑔𝜆]V𝜇,

𝑇

(3)
= ∗𝑤,

(A.5)

where V] = (1/3)𝑇𝜆
𝜆], 𝑤] = (1/6)√| det𝑔|𝑇𝜅𝜆𝜇𝜀

𝜅𝜆𝜇]. The
irreducible pieces 𝑇(1), 𝑇(2), and 𝑇(3) are called tensor torsion,
trace torsion, and axial torsion, respectively. The irreducible
decomposition of contortion is

𝐾

(1)
= 𝐾−𝐾

(2)
−𝐾

(3)
, 𝐾

(3)
=

1
2
∗ 𝑤,

𝐾

(2)
𝜆𝜇] = 𝑔𝜆𝜇V] −𝑔]𝜇V𝜆,

(A.6)

where V] = (1/3)𝐾𝜆
𝜆], 𝑤] = (1/3)√| det𝑔|𝐾𝜅𝜆𝜇𝜀

𝜅𝜆𝜇]. The
irreducible pieces of torsion (A.5) and contortion (A.6) are
related as 𝑇(𝑖)

𝜅𝜆𝜇
= 𝐾

(𝑖)

𝜆𝜅𝜇
(𝑖 = 1, 2), 𝑇(3)

𝜅𝜆𝜇
= 2𝐾(3)

𝜅𝜆𝜇
. We

define curvature as

𝑅

𝜅

𝜆𝜇] := 𝜕𝜇Γ
𝜅

]𝜆 − 𝜕]Γ
𝜅

𝜇𝜆
+ Γ

𝜅

𝜇𝜂
Γ

𝜂

]𝜆 − Γ
𝜅

]𝜂Γ
𝜂

𝜇𝜆
, (A.7)

Ricci curvature as

Ric
𝜆] := 𝑅

𝜅

𝜆𝜅], (A.8)

scalar curvature as

R := Ric𝜅
𝜅
, (A.9)

and trace-free Ricci curvature as R𝑖𝑐 = Ric − (1/4)R𝑔.
We denote Weyl curvature byW which is understood as the
irreducible piece of curvature defined by the conditions

𝑅

𝜅𝜆𝜇] = 𝑅𝜇]𝜅𝜆,

𝜀

𝜅𝜆𝜇]
𝑅

𝜅𝜆𝜇] = 0,

Ric = 0.

(A.10)

Given a scalar function 𝑓 : 𝑀 → 𝑅 we write

∫𝑓 := ∫𝑓

√









det𝑔




𝑑𝑥

0

𝑑𝑥

1

𝑑𝑥

2

𝑑𝑥

3

,

det𝑔 := det (𝑔
𝜇]) .

(A.11)
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