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We investigate additive properties of the generalized Drazin inverse in a Banach algebra A. We find explicit expressions for the
generalized Drazin inverse of the sum 𝑎+𝑏, under new conditions on 𝑎, 𝑏 ∈ A. As an application we give some new representations
for the generalized Drazin inverse of an operator matrix.

1. Introduction

LetA be a complex Banach algebra with unite 1. We use 𝜎(𝑎)
to denote the spectrum of 𝑎 ∈ A. The sets of all nilpotent and
quasinilpotent elements (𝜎(𝑎) = {0}) ofA will be denoted by
Anil andAqnil, respectively.

The generalized Drazin inverse of 𝑎 ∈ A (introduced by
Koliha in [1]) is the element 𝑏 ∈ A which satisfies

𝑥𝑎𝑥 = 𝑥, 𝑎𝑥 = 𝑥𝑎, 𝑎 − 𝑎
2
𝑥 ∈ A

qnil
. (1)

If there exists the generalized Drazin inverse, then the
generalized Drazin inverse of 𝑎 is unique and is denoted by
𝑎
𝑑. The set of all generalized Drazin invertible elements ofA

is denoted byA𝑑. For interesting properties of the generalized
Drazin inverse see [2–6]. For a complete treatment of the
generalized Drazin inverse, see [7, Chapter 2].

If 𝑝 = 𝑝2 ∈ A is an idempotent, we denote 𝑝 = 1 − 𝑝. We
can represent element 𝑎 ∈ A as

𝑎 = [

𝑎
11
𝑎
12

𝑎
21
𝑎
22

]

𝑝

, (2)

where 𝑎
11
= 𝑝𝑎𝑝, 𝑎

12
= 𝑝𝑎𝑝, 𝑎

21
= 𝑝𝑎𝑝, and 𝑎

22
= 𝑝𝑎𝑝.

Let 𝑎 ∈ A𝑑 and 𝑎𝜋 = 1 − 𝑎𝑎𝑑 be the spectral idempotent
of 𝑎 corresponding to {0}. It is well known that 𝑎 ∈ A can be
represented in the following matrix form ([7, Chapter 2]):

𝑎 = [

𝑎
1
0

0 𝑎
2

]

𝑝

, (3)

relative to 𝑝 = 𝑎𝑎
𝑑, where 𝑎

1
is invertible in the algebra

𝑝A𝑝, 𝑎𝑑 is its inverse in 𝑝A𝑝, and 𝑎
2
is quasinilpotent in the

algebra 𝑝A𝑝. Thus, the generalized Drazin inverse of 𝑎 can
be expressed as

𝑎
𝑑
= [
𝑎
𝑑

1
0

0 0

]

𝑝

. (4)

Obviously, if 𝑎 ∈ Aqnil, then 𝑎 is generalizedDrazin invertible
and 𝑎𝑑 = 0.

In this paper, we first give the formulas of (𝑎 + 𝑏)𝑑 under
the conditions 𝑎𝑏 = 𝑏𝑎𝑏𝜋 and 𝑎𝑏 = 𝑎𝜋𝑏𝑎𝑏𝜋, respectively.Then
we will apply these formulas to provide some representations
for the generalizedDrazin inverse of the operatormatrix𝑀 =

[
𝐴 𝐵

𝐶 𝐷
] under some conditions.
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2. Main Results

First we start the following result which is proved in [8] for
matrices, extended in [9] for a bounded linear operator and
in [10] for arbitrary elements in a Banach algebra.

Lemma 1 (see [10,Theorem 2.3]). Let 𝑥, 𝑦 ∈ A and 𝑝 ∈ A be
an idempotent. Assume that 𝑥 and 𝑦 are represented as

𝑥 = [

𝑎 0

𝑐 𝑏
]

𝑝

, 𝑦 = [

𝑏 𝑐

0 𝑎
]

𝑝

. (5)

(i) If 𝑎 ∈ (𝑝A𝑝)𝑑 and 𝑏 ∈ (𝑝A𝑝)𝑑, then 𝑥 and 𝑦 are gen-
eralized Drazin invertible, and

𝑥
𝑑
= [

𝑎
𝑑
0

𝑢 𝑏
𝑑
]

𝑝

, 𝑦
𝑑
= [

𝑏
𝑑
𝑢

0 𝑎
𝑑
]

𝑝

, (6)

where

𝑢 =

∞

∑

𝑛=0

(𝑏
𝑑
)

𝑛+2

𝑐𝑎
𝑛
𝑎
𝜋
+

∞

∑

𝑛=0

𝑏
𝜋
𝑏
𝑛
𝑐 (𝑎
𝑑
)

𝑛+2

− 𝑏
𝑑
𝑐𝑎
𝑑
. (7)

(ii) If 𝑥 ∈ A𝑑 and 𝑎 ∈ (𝑝A𝑝)𝑑, then 𝑏 ∈ (𝑝A𝑝)𝑑 and 𝑥𝑑

and 𝑦𝑑 are given by (6) and (7).

Lemma 2 (see [11, Lemma 2.1]). Let 𝑎, 𝑏 ∈ A𝑞𝑛𝑖𝑙. If 𝑎𝑏 = 𝑏𝑎
or 𝑎𝑏 = 0, then 𝑎 + 𝑏 ∈ A𝑞𝑛𝑖𝑙.

The following result is a generalization of [10, Corollary
3.4].

Theorem 3. If 𝑎 ∈ A𝑞𝑛𝑖𝑙, 𝑏 ∈ A𝑑, and 𝑎𝑏 = 𝑏𝑎𝑏𝜋, then 𝑎 + 𝑏 ∈
A𝑑 and

(𝑎 + 𝑏)
𝑑
= 𝑏
𝑑
+

∞

∑

𝑛=0

(𝑏
𝑑
)

𝑛+2

𝑎 (𝑎 + 𝑏)
𝑛
. (8)

Proof. First, suppose that 𝑏 ∈ Aqnil. Therefore, 𝑏𝜋 = 1 and
from 𝑎𝑏 = 𝑏𝑎𝑏𝜋 we obtain 𝑎𝑏 = 𝑏𝑎. Using Lemma 2, 𝑎 + 𝑏 ∈
Aqnil and (8) holds.

Now we assume 𝑏 is not quasinilpotent, using matrix
representations of 𝑎 and 𝑏 relative to 𝑝 = 𝑏𝑏𝑑. We have

𝑏 = [

𝑏
1
0

0 𝑏
2

]

𝑝

, 𝑏
𝑑
= [
𝑏
𝑑

1
0

0 0

]

𝑝

, (9)

where 𝑏
1
∈ (𝑝A𝑝)

−1, 𝑏
2
∈ (𝑝A𝑝)

qnil.
Let us represent

𝑎 = [

𝑎
1
𝑎
2

𝑎
3
𝑎
4

]

𝑝

. (10)

From 𝑎𝑏 = 𝑏𝑎𝑏𝜋 and

𝑎𝑏 = [

𝑎
1
𝑏
1
𝑎
2
𝑏
2

𝑎
3
𝑏
1
𝑎
4
𝑏
2

]

𝑝

, 𝑏𝑎𝑏
𝜋
= [

0 𝑏
1
𝑎
2

0 𝑏
2
𝑎
4

]

𝑝

, (11)

we obtain 𝑎
1
𝑏
1
= 0 and 𝑎

3
𝑏
1
= 0. Since 𝑏

1
is invertible, we

have 𝑎
1
= 0 and 𝑎

3
= 0.

Hence we have

𝑎 + 𝑏 = [

𝑏
1

𝑎
2

0 𝑎
4
+ 𝑏
2

]

𝑝

. (12)

The condition 𝑎𝑏 = 𝑏𝑎𝑏𝜋 implies that 𝑎
4
𝑏
2
= 𝑏
2
𝑎
4
. Hence,

using Lemma 2, we get 𝑎
4
+𝑏
2
∈ Aqnil. By Lemma 1, we obtain

that 𝑎 + 𝑏 ∈ A𝑑 and

(𝑎 + 𝑏)
𝑑
= [
𝑏
𝑑

1
𝑢

0 0

]

𝑝

, (13)

where

𝑢 =

∞

∑

𝑛=0

(𝑏
𝑑

1
)

𝑛+2

𝑎
2
(𝑎
4
+ 𝑏
2
)
𝑛

. (14)

Now from (14), using the matrix representation of 𝑏𝑑, 𝑎, and
𝑎 + 𝑏, we easily obtain formula (8) of the theorem.

Thenext result is a generalization of [12,Theorem2.2] and
[10, Example 4.5].

Theorem 4. Let 𝑎, 𝑏 ∈ A𝑑. If 𝑎𝑏 = 𝑎𝜋𝑏𝑎𝑏𝜋, then 𝑎 + 𝑏 ∈ A𝑑

and

(𝑎 + 𝑏)
𝑑
= 𝑏
𝜋
𝑎
𝑑
+ 𝑏
𝑑
𝑎
𝜋
+

∞

∑

𝑛=0

(𝑏
𝑑
)

𝑛+2

𝑎 (𝑎 + 𝑏)
𝑛
𝑎
𝜋

+ 𝑏
𝜋

∞

∑

𝑛=0

(𝑎 + 𝑏)
𝑛
𝑏 (𝑎
𝑑
)

𝑛+2

−

∞

∑

𝑛=0

∞

∑

𝑘=0

(𝑏
𝑑
)

𝑘+1

𝑎 (𝑎 + 𝑏)
𝑛+𝑘
𝑏 (𝑎
𝑑
)

𝑛+2

−

∞

∑

𝑛=0

(𝑏
𝑑
)

𝑛+2

𝑎 (𝑎 + 𝑏)
𝑛
𝑏𝑎
𝑑
.

(15)

Proof. If 𝑎 is quasinilpotent, we can apply Theorem 3 and
we obtain (15) for this particular case. Now we assume that
𝑎 is neither invertible nor quasinilpotent and consider the
followingmatrix representations of 𝑎, 𝑎𝑑, and 𝑏 relative to the
𝑝 = 𝑎𝑎

𝑑:

𝑎 = [

𝑎
1
0

0 𝑎
2

]

𝑝

, 𝑎
𝑑
= [
𝑎
𝑑

1
0

0 0

]

𝑝

, 𝑏 = [

𝑏
1
𝑏
2

𝑏
3
𝑏
4

]

𝑝

.

(16)

The condition 𝑎𝑏 = 𝑎𝜋𝑏𝑎𝑏𝜋 implies that 𝑎
1
𝑏
1
= 0 and

𝑎
1
𝑏
2
= 0. Since 𝑎

1
is invertible, we have 𝑏

1
= 0 and 𝑏

2
= 0.

Thus, 𝑏 can be represented as

𝑏 = [

0 0

𝑏
3
𝑏
4

]

𝑝

. (17)

Therefore, 𝑏
4
∈ (𝑝A𝑝)

𝑑 and, from Lemma 1, we have

𝑏
𝑑
= [

0 0

(𝑏
𝑑

4
)

2

𝑏
3
𝑏
𝑑

4

]

𝑝

, 𝑏
𝜋
= [

𝑝 0

−𝑏
𝑑

4
𝑏
3
𝑏
𝜋

4

]

𝑝

. (18)
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From 𝑎𝑏 = 𝑎𝜋𝑏𝑎𝑏𝜋 and

𝑎𝑏 = [

0 0

𝑎
2
𝑏
3
𝑎
2
𝑏
4

]

𝑝

,

𝑎
𝜋
𝑏𝑎𝑏
𝜋
= [

0 0

𝑏
3
𝑎
1
− 𝑏
4
𝑎
2
𝑏
𝑑

4
𝑏
3
𝑏
4
𝑎
2
𝑏
𝜋

4

]

𝑝

,

(19)

we obtained 𝑎
2
𝑏
4
= 𝑏
4
𝑎
2
𝑏
𝜋

4
. FromTheorem 3, we get 𝑎

2
+ 𝑏
4
∈

A𝑑 and

(𝑎
2
+ 𝑏
4
)
𝑑

= 𝑏
𝑑

4
+

∞

∑

𝑛=0

(𝑏
𝑑

4
)

𝑛+2

𝑎
2
(𝑎
2
+ 𝑏
4
)
𝑛

. (20)

Further, applying Lemma 1 to 𝑎 + 𝑏, we get

(𝑎 + 𝑏)
𝑑
= [

𝑎
𝑑

1
0

𝑢 (𝑎
2
+ 𝑏
4
)
𝑑] , (21)

where

𝑢 =

∞

∑

𝑛=0

[(𝑎
2
+ 𝑏
4
)
𝑑

]

𝑛+2

𝑏
3
𝑎
𝑛

1
𝑎
𝜋

1

+

∞

∑

𝑛=0

(𝑎
2
+ 𝑏
4
)
𝜋

(𝑎
2
+ 𝑏
4
)
𝑛

𝑏
3
(𝑎
𝑑

1
)

𝑛+2

− (𝑎
2
+ 𝑏
4
)
𝑑

𝑏
3
𝑎
𝑑

1
.

(22)

Observe that since 𝑎
1
∈ (𝑝A𝑝)

−1, then 𝑎𝜋
1
= 0.

Hence, the expression of 𝑢 reduces to

𝑢 =

∞

∑

𝑛=0

(𝑎
2
+ 𝑏
4
)
𝜋

(𝑎
2
+ 𝑏
4
)
𝑛

𝑏
3
(𝑎
𝑑

1
)

𝑛+2

− (𝑎
2
+ 𝑏
4
)
𝑑

𝑏
3
𝑎
𝑑

1
.

(23)

From 𝑎
2
𝑏
4
= 𝑏
4
𝑎
2
𝑏
𝜋

4
we get = 𝑎

2
𝑏
4
(𝑏
𝑑

4
)
2
= 𝑏
4
𝑎
2
𝑏
𝜋

4
(𝑏
𝑑

4
)
2
= 0.

Hence, from formula (20) and 𝑎
2
𝑏
𝑑

4
= 0, we have

(𝑎
2
+ 𝑏
4
)
𝜋

= 𝑝 − (𝑎
2
+ 𝑏
4
)

⋅ (𝑏
𝑑

4
+

∞

∑

𝑛=0

(𝑏
𝑑

4
)

𝑛+2

𝑎
2
(𝑎
2
+ 𝑏
4
)
𝑛

)

= 𝑝 − 𝑏
4
(𝑏
𝑑

4
+

∞

∑

𝑛=0

(𝑏
𝑑

4
)

𝑛+2

𝑎
2
(𝑎
2
+ 𝑏
4
)
𝑛

)

= 𝑏
𝜋

4
−

∞

∑

𝑛=0

(𝑏
𝑑

4
)

𝑛+1

𝑎
2
(𝑎
2
+ 𝑏
4
)
𝑛

.

(24)

Then substituting (20) and (24) in (22), we get

𝑢 =

∞

∑

𝑛=0

𝑏
𝜋

4
(𝑎
2
+ 𝑏
4
)
𝑛

𝑏
3
(𝑎
𝑑

1
)

𝑛+2

−

∞

∑

𝑛=0

∞

∑

𝑘=0

(𝑏
𝑑

4
)

𝑘+1

𝑎
2
(𝑎
2
+ 𝑏
4
)
𝑛+𝑘

𝑏
3
(𝑎
𝑑

1
)

𝑛+2

− 𝑏
𝑑

4
𝑏
3
𝑎
𝑑

1
−

∞

∑

𝑛=0

(𝑏
𝑑

4
)

𝑛+2

𝑎
2
(𝑎
2
+ 𝑏
4
)
𝑛

𝑏
3
𝑎
𝑑

1
.

(25)

Now, replacing 𝑢 by the above expression and considering
matrix representations of 𝑎 and 𝑏, after direct computations,
we obtain the formula (15) for (𝑎 + 𝑏)𝑑.

3. Applications

In this section, we give some formulas for the generalized
Drazin inverse of a 2 × 2 operator matrix under some
conditions.

Finding an explicit representation for the generalized
Drazin inverse of an operator matrix 𝑀 = [

𝐴 𝐵

𝐶 𝐷
] in

terms of 𝐴, 𝐵, 𝐶, 𝐷 and related generalized Drazin inverse
has been studied by several authors [9, 13–15]. Djordjević
and Stanimirović [9] generalize the well-known result in
[8, 16] concerning the Drazin inverse of block 2 × 2 upper
triangular matrices to the generalized Drazin inverse for a
block triangular operator matrix. Further, they consider the
case where 𝐵𝐶 = 0, 𝐵𝐷 = 0, and𝐷𝐶 = 0.

This section is devoted to the generalized Drazin inverse
of 2 × 2 operator matrix:

𝑀 = [

𝐴 𝐵

𝐶 𝐷
] , (26)

where 𝐴 ∈ B(𝑋) and 𝐷 ∈ B(𝑌) are generalized Drazin
invertible.

Next we will state some auxiliary lemmas.

Lemma 5 (see [2, 3]). Let 𝐴 and 𝐷 be generalized Drazin
invertible and let 𝑀 be matrix of form (26). If 𝐵𝐶 = 0 and
𝐵𝐷 = 0, then

𝑀
𝑑
= [
𝐴
𝑑
(𝐴
𝑑
)

2

𝐵

𝑋
0
𝐷
𝑑
+ 𝑋
1
𝐵

] , (27)

where

𝑋
𝑛
=

∞

∑

𝑖=0

(𝐷
𝑑
)

𝑖+𝑛+2

𝐶𝐴
𝑖
𝐴
𝜋

+ 𝐷
𝜋

∞

∑

𝑖=0

𝐷
𝑖
𝐶 (𝐴
𝑑
)

𝑖+𝑛+2

−

𝑛

∑

𝑖=0

(𝐷
𝑑
)

𝑖+1

𝐶 (𝐴
𝑑
)

𝑛−𝑖+1

, 𝑛 ≥ 0.

(28)

Lemma 6 (see [17, Lemma 3.1]). If 𝑀 is matrix of form
(26), such that 𝐴 is generalized Drazin invertible, 𝐷 is
quasinilpotent, and 𝐵𝐷𝑛𝐶 = 0 for any nonnegative integer 𝑛,
then𝑀 is generalized Drazin invertible and

𝑀
𝑑
= [
𝐴
𝑑

Γ

Δ Δ𝐴Γ

] , (29)

where

Γ =

∞

∑

𝑛=0

(𝐴
𝑑
)

𝑛+2

𝐵𝐷
𝑛
, Δ =

∞

∑

𝑛=0

𝐷
𝑛
𝐶 (𝐴
𝑑
)

𝑛+2

. (30)
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Lemma 7. Let 𝐴 ∈ C𝑛×𝑛. Then (𝐴𝐴𝜋)𝑑 = 0, (𝐴2𝐴𝑑)𝑑 = 𝐴𝑑,
(𝐴
2
𝐴
𝑑
)
𝜋
= 𝐴
𝜋, and Ind(𝐴𝐴𝜋) = Ind(𝐴) and Ind(𝐴2𝐴𝑑) = 1.

Proof. The Jordan canonical form of 𝑋 permits us to write
𝐴 = 𝑆(𝐶 ⊕ 𝑁)𝑆

−1, where 𝑆 and 𝐶 are nonsingular, and 𝑁 is
nilpotent with index Ind(𝐴). Thus 𝐴

𝑑
= 𝑆(𝐶

−1
⊕ 0)𝑆
−1. Now,

it is evident that𝐴2𝐴𝑑 = 𝑆(𝐶⊕0)𝑆−1 and𝐴𝐴𝜋 = 𝑆(0⊕𝑁)𝑆−1,
which lead to the affirmations of this lemma.

In [9, Theorem 5.3] authors gave an explicit representa-
tion for𝑀𝑑 under conditions 𝐵𝐶 = 0, 𝐷𝐶 = 0, and 𝐵𝐷 = 0.
Here we replace the last two conditions by the two weaker
conditions𝐷𝐶 = 𝐷𝜋𝐶𝐴𝐴𝜋 and 𝐵𝐷 = 𝐴𝐴𝜋𝐵.

Theorem 8. Let𝐴 and𝐷 be generalized Drazin invertible and
let𝑀 be matrix of form (26). If 𝐴𝐴𝜋𝐵 = 𝐵𝐷, 𝐷𝐶 = 𝐷𝜋𝐶𝐴𝐴𝜋
and 𝐵𝐶 = 0. Then

𝑀
𝑑
=

[

[

[

[

𝐴
𝑑

(𝐴
𝑑
)

2

𝐵 +

∞

∑

𝑛=0

𝐴
𝑛
𝐵 (𝐷
𝑑
)

𝑛+2

𝐶 (𝐴
𝑑
)

2

𝐷
𝑑
+ 𝐶 (𝐴

𝑑
)

3

𝐵 +

∞

∑

𝑛=1

𝑛

∑

𝑖=1

𝐷
𝑖−1
𝐶𝐴
𝑛−𝑖
𝐵 (𝐷
𝑑
)

𝑛+2

]

]

]

]

.

(31)

Proof. We can split matrix𝑀 as𝑀 = 𝑃 + 𝑄, where

𝑃 = [

𝐴𝐴
𝜋
0

0 𝐷
] , 𝑄 = [

𝐴
2
𝐴
𝑑
𝐵

𝐶 0

] ,

𝑃
𝑑
= [

0 0

0 𝐷
𝑑] , 𝑃

𝜋
= [

𝐼 0

0 𝐷
𝜋] .

(32)

Since𝐷𝐶 = 𝐷𝜋𝐶𝐴𝐴𝜋 and 𝐴𝐴𝜋𝐵 = 𝐵𝐷, we have

𝐷
𝑑
𝐶 = (𝐷

𝑑
)

2

𝐷𝐶 = (𝐷
𝑑
)

2

𝐷
𝜋
𝐶𝐴𝐴
𝜋
= 0,

𝐷𝐶𝐴
𝑑
= 𝐷
𝜋
𝐶𝐴𝐴
𝜋
𝐴
𝑑
= 0,

𝐴
𝑑
𝐵𝐷 = 𝐴

𝑑
𝐴𝐴
𝜋
𝐵 = 0.

(33)

From 𝐵𝐶 = 0 and applying Lemma 5 to 𝑄, we obtain

(𝑄
𝑑
)

𝑖

= [
(𝐴
𝑑
)

𝑖

(𝐴
𝑑
)

𝑖+1

𝐵

𝑋
𝑖−1

𝑋
𝑖
𝐵

] ,

𝑄
𝜋
= [

𝐴
𝜋

−𝐴
𝑑
𝐵

−𝐶𝐴
𝑑
𝐼 − 𝐶 (𝐴

𝑑
)

2

𝐵

] ,

(34)

where 𝑋
𝑛
is defined in (28). From 𝐷𝑑𝐶 = 0 and 𝐷𝐶𝐴𝑑 = 0,

we get𝑋
𝑛
= 𝐶(𝐴

𝑑
)
𝑛+2.

Since 𝐴𝐴𝜋𝐵 = 𝐵𝐷 and 𝐷𝐶 = 𝐷𝜋𝐶𝐴𝐴𝜋, we obtain 𝑃𝑄 =
𝑃
𝜋
𝑄𝑃𝑄
𝜋. ApplyingTheorem 4, we get

(𝑃 + 𝑄)
𝑑
= 𝑄
𝜋
𝑃
𝑑
+ 𝑄
𝑑
𝑃
𝜋

+

∞

∑

𝑛=0

(𝑄
𝑑
)

𝑛+2

𝑃 (𝑃 + 𝑄)
𝑛
𝑃
𝜋

+ 𝑄
𝜋

∞

∑

𝑛=0

(𝑃 + 𝑄)
𝑛
𝑄(𝑃
𝑑
)

𝑛+2

−

∞

∑

𝑛=0

∞

∑

𝑘=0

(𝑄
𝑑
)

𝑘+1

𝑃 (𝑃 + 𝑄)
𝑛+𝑘
𝑄(𝑃
𝑑
)

𝑛+2

−

∞

∑

𝑛=0

(𝑄
𝑑
)

𝑛+2

𝑃 (𝑃 + 𝑄)
𝑛
𝑄𝑃
𝑑
.

(35)

From 𝐴𝑑𝐵𝐷 = 0, we have

𝑄
𝜋
𝑃
𝑑
= 𝑃
𝑑
, 𝑄

𝑑
𝑃
𝜋
= 𝑄
𝑑
, 𝑄

𝑑
𝑃 = 0. (36)

Hence from (35), we obtain

(𝑃 + 𝑄)
𝑑
= 𝑃
𝑑
+ 𝑄
𝑑
+ 𝑄
𝜋

∞

∑

𝑛=0

(𝑃 + 𝑄)
𝑛
𝑄(𝑃
𝑑
)

𝑛+2

. (37)

Since 𝐴𝑑𝐵𝐷 = 0, we have

𝑄
𝜋
𝑄(𝑃
𝑑
)

2

= 𝐵 (𝐷
𝑑
)

2

. (38)

The conditions 𝐵𝐶 = 0 and 𝐵𝐷 = 𝐴𝐴
𝜋
𝐵 imply that

𝐵𝐷
𝑛
𝐶 = 0. From 𝐵𝐷𝑛𝐶 = 0 and 𝐴𝑑𝐵𝐷 = 0, we get

𝑄
𝜋

∞

∑

𝑛=1

(𝑃 + 𝑄)
𝑛
𝑄(𝑃
𝑑
)

𝑛+2

=

[

[

[

[

[

0

∞

∑

𝑛=1

𝐴
𝑛
𝐵 (𝐷
𝑑
)

𝑛+2

0

∞

∑

𝑛=1

𝑛

∑

𝑖=1

𝐷
𝑖−1
𝐶𝐴
𝑛−𝑖
𝐵 (𝐷
𝑑
)

𝑛+2

]

]

]

]

]

.

(39)

From (36), (38), and (39) it follows (31).
The proof is finished.

Since

[

𝐴 𝐵

𝐶 𝐷
] = [

0 𝐼
𝑛

𝐼
𝑚
0
] [

𝐷 𝐶

𝐵 𝐴
][

0 𝐼
𝑚

𝐼
𝑛
0
] , (40)

we can obtain the following result, applying Theorem 8 to
[
𝐷 𝐶

𝐵 𝐴
].

Theorem 9. Let𝐴 and𝐷 be generalized Drazin invertible and
let𝑀 be matrix of form (26). If𝐷𝐷𝜋𝐶 = 𝐶𝐴, 𝐴𝐵 = 𝐴𝜋𝐵𝐷𝐷𝜋
and 𝐶𝐵 = 0. Then

𝑀
𝑑
=

[

[

[

[

[

𝐴
𝑑
+ 𝐵 (𝐷

𝑑
)

3

𝐶 +

∞

∑

𝑛=1

𝑛

∑

𝑖=1

𝐴
𝑛−𝑖
𝐵𝐷
𝑖−1
𝐶(𝐴
𝑑
)

𝑛+2

𝐵 (𝐷
𝑑
)

2

(𝐷
𝑑
)

2

𝐶 +

∞

∑

𝑛=0

𝐷
𝑛
𝐶 (𝐴
𝑑
)

𝑛+2

𝐷
𝑑

]

]

]

]

]

.

(41)
Theorem 10. Let 𝐴, 𝐷, and 𝐵𝐶 be generalized Drazin invert-
ible and let𝑀 be matrix of form (26). If 𝐴𝐵 = 𝐴𝜋𝐵𝐷, 𝐷𝐶 =
𝐷
𝜋
𝐶𝐴 and 𝐵𝐶 = 0. Then

𝑀
𝑑
=

[

[

[

[

[

𝐴
𝑑

∞

∑

𝑛=0

𝐴
𝑛
𝐵 (𝐷
𝑑
)

𝑛+2

∞

∑

𝑛=0

𝐷
𝑛
𝐶 (𝐴
𝑑
)

𝑛+2

𝐷
𝑑
+

∞

∑

𝑛=1

𝑛−1

∑

𝑖=0

𝐷
𝑖
𝐶𝐴
𝑛−𝑖−1

𝐵 (𝐷
𝑑
)

𝑛+2

]

]

]

]

]

.

(42)
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Proof. We can split matrix𝑀 as𝑀 = 𝑃 + 𝑄, where

𝑃 = [

𝐴 0

0 𝐷
] , 𝑄 = [

0 𝐵

𝐶 0
] , (43)

𝑃
𝑑
= [

𝐴
𝑑
0

0 𝐷
𝑑
] , 𝑃

𝜋
= [

𝐴
𝜋
0

0 𝐷
𝜋] . (44)

Since

𝑄
2
= [

𝐵𝐶 0

0 𝐶𝐵
] , 𝑄

3
= [

0 𝐵𝐶𝐵

𝐶𝐵𝐶 0
] , (45)

from 𝐵𝐶 = 0, it is easy to get 𝑄3 = 0. Since 𝑄 is nilpotent, we
have 𝑄𝑑 = 0. Applying Theorem 4 to the particular case, we
get

(𝑃 + 𝑄)
𝑑
= 𝑃
𝑑
+

∞

∑

𝑛=0

(𝑃 + 𝑄)
𝑛
𝑄(𝑃
𝑑
)

𝑛+2

. (46)

The conditions 𝐴𝐵 = 𝐴
𝜋
𝐵𝐷 and 𝐵𝐶 = 0 imply that

𝐵𝐷
𝑛
𝐶 = 0, for 𝑛 ≥ 0, so we get

∞

∑

𝑛=0

(𝑃 + 𝑄)
𝑛
𝑄(𝑃
𝑑
)

𝑛+2

=

[

[

[

[

[

0

∞

∑

𝑛=0

𝐴
𝑛
𝐵 (𝐷
𝑑
)

𝑛+2

∞

∑

𝑛=0

𝐷
𝑛
𝐶 (𝐴
𝑑
)

𝑛+2
∞

∑

𝑛=1

𝑛−1

∑

𝑖=0

𝐷
𝑖
𝐶𝐴
𝑛−𝑖−1

𝐵 (𝐷
𝑑
)

𝑛+2

]

]

]

]

]

.

(47)

From (44) and (47) it follows (42).
The proof is finished.

Theorem 11. Let𝐴 and𝐷 be generalizedDrazin invertible and
let𝑀 be matrix of form (26). If 𝐴𝐴𝜋𝐵 = 𝐵𝐷2𝐷𝑑, 𝐷2𝐷𝑑𝐶 =
𝐷
𝜋
𝐶𝐴𝐴
𝜋 and 𝐵𝐷𝑛𝐶 = 0 for any nonnegative integer 𝑛. Then

𝑀
𝑑
=

[

[

[

[

[

𝐴
𝑑

Γ +

∞

∑

𝑛=0

𝐴
𝑛
𝐵 (𝐷
𝑑
)

𝑛+2

Δ 𝐷
𝑑
+ Δ𝐴Γ +

∞

∑

𝑛=1

𝑛−1

∑

𝑖=0

𝐷
𝑖
𝐶𝐴
𝑛−𝑖−1

𝐵 (𝐷
𝑑
)

𝑛+2

]

]

]

]

]

,

(48)

where Γ and Δ are defined in (30).

Proof. We can split matrix𝑀 as𝑀 = 𝑃 + 𝑄, where

𝑃 = [

𝐴𝐴
𝜋

0

0 𝐷
2
𝐷
𝑑] , 𝑄 = [

𝐴
2
𝐴
𝑑

𝐵

𝐶 𝐷𝐷
𝜋] ,

𝑃
𝑑
= [

0 0

0 𝐷
𝑑] , 𝑃

𝜋
= [

𝐼 0

0 𝐷
𝜋] .

(49)

From 𝐴𝐴𝜋𝐵 = 𝐵𝐷2𝐷𝑑 and𝐷2𝐷𝑑𝐶 = 𝐷𝜋𝐶𝐴𝐴𝜋, we have

𝐷
𝑑
𝐶 = (𝐷

𝑑
)

3

𝐷
2
𝐶 = (𝐷

𝑑
)

2

𝐷
2
𝐷
𝑑
𝐶

= (𝐷
𝑑
)

2

𝐷
𝜋
𝐶𝐴𝐴
𝜋
= 0,

(50)

𝐴
𝑑
𝐵𝐷
𝑑
= 𝐴
𝑑
𝐵𝐷
2
(𝐷
𝑑
)

3

= 𝐴
𝑑
𝐵𝐷
2
𝐷
𝑑
(𝐷
𝑑
)

2

= 𝐴
𝑑
𝐴𝐴
𝜋
𝐵 (𝐷
𝑑
)

2

= 0,

(51)

so we get𝐷𝜋𝐶 = 𝐶.
Note that 𝐷𝐷𝜋 is quasinilpotent, 𝐷𝜋𝐶 = 𝐶, and

𝐵(𝐷𝐷
𝜋
)
𝑛
𝐶 = 𝐵𝐷

𝑛
𝐷
𝜋
𝐶 = 𝐵𝐷

𝑛
𝐶 = 0 for any nonnegative

integer 𝑛; we can apply Lemma 6 to 𝑄 with 𝐷 replaced by
𝐷𝐷
𝜋; we have

𝑄
𝑑
= [
𝐴
𝑑

Γ


Δ

Δ

𝐴Γ
] , (52)

where

Γ

=

∞

∑

𝑛=0

(𝐴
𝑑
)

𝑛+2

𝐵𝐷
𝑛
𝐷
𝜋
, Δ


=

∞

∑

𝑛=0

𝐷
𝑛
𝐷
𝜋
𝐶 (𝐴
𝑑
)

𝑛+2

.

(53)

Observe that (50) and (51) yield

Γ =

∞

∑

𝑛=0

(𝐴
𝑑
)

𝑛+2

𝐵𝐷
𝑛
, Δ =

∞

∑

𝑛=0

𝐷
𝑛
𝐶 (𝐴
𝑑
)

𝑛+2

, (54)

so we get

𝑄
𝑑
= [
𝐴
𝑑

Γ

Δ Δ𝐴Γ

] . (55)

The condition 𝐵𝐷𝑛𝐶 = 0 implies that

𝐵Δ = 𝐵

∞

∑

𝑛=0

𝐷
𝑛
𝐶 (𝐴
𝑑
)

𝑛+2

= 0. (56)

Hence we have

𝑄𝑄
𝑑
= [

𝐴𝐴
𝑑
+ 𝐵Δ 𝐴

2
𝐴
𝑑
Γ + 𝐵Δ𝐴Γ

𝐶𝐴
𝑑
+ 𝐷𝐷

𝜋
Δ 𝐶Γ + 𝐷𝐷

𝜋
Δ𝐴Γ

]

= [

𝐴𝐴
𝑑

𝐴Γ

𝐶𝐴
𝑑
+ 𝐷Δ 𝐶Γ + 𝐷Δ𝐴Γ

] ,

𝑄
𝜋
= [

𝐴
𝜋

−𝐴Γ

−𝐶𝐴
𝑑
− 𝐷Δ 𝐼 − 𝐶Γ − 𝐷Δ𝐴Γ

] .

(57)
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From 𝐴𝐴
𝜋
𝐵 = 𝐵𝐷

2
𝐷
𝑑 and 𝐷2𝐷𝑑𝐶 = 𝐷

𝜋
𝐶𝐴𝐴
𝜋, we

obtain 𝑃𝑄 = 𝑃𝜋𝑄𝑃𝑄𝜋. ApplyingTheorem 4, we get

(𝑃 + 𝑄)
𝑑
= 𝑄
𝜋
𝑃
𝑑
+ 𝑄
𝑑
𝑃
𝜋

+

∞

∑

𝑛=0

(𝑄
𝑑
)

𝑛+2

𝑃 (𝑃 + 𝑄)
𝑛
𝑃
𝜋

+ 𝑄
𝜋

∞

∑

𝑛=0

(𝑃 + 𝑄)
𝑛
𝑄(𝑃
𝑑
)

𝑛+2

−

∞

∑

𝑛=0

∞

∑

𝑘=0

(𝑄
𝑑
)

𝑘+1

𝑃 (𝑃 + 𝑄)
𝑛+𝑘
𝑄(𝑃
𝑑
)

𝑛+2

−

∞

∑

𝑛=0

(𝑄
𝑑
)

𝑛+2

𝑃 (𝑃 + 𝑄)
𝑛
𝑄𝑃
𝑑
,

(58)

where

Γ𝐷
2
𝐷
𝑑
=

∞

∑

𝑛=0

(𝐴
𝑑
)

𝑛+2

𝐵𝐷
𝑛
𝐷
𝜋
𝐷
2
𝐷
𝑑
= 0,

Δ𝐴𝐴
𝜋
=

∞

∑

𝑛=0

𝐷
𝑛
𝐷
𝜋
𝐶 (𝐴
𝑑
)

𝑛+2

𝐴𝐴
𝜋
= 0,

(59)

so we get

𝑄
𝑑
𝑃 = [

𝐴
𝑑

Γ

Δ Δ𝐴Γ

] [

𝐴𝐴
𝜋

0

0 𝐷
2
𝐷
𝑑]

= [

𝐴
𝑑
𝐴𝐴
𝜋

Γ𝐷
2
𝐷
𝑑

Δ𝐴𝐴
𝜋
Δ𝐴Γ𝐷

2
𝐷
𝑑
] = [

0 0

0 0
] .

(60)

Hence from (58) and (60) we obtain

(𝑃 + 𝑄)
𝑑
= 𝑄
𝜋
𝑃
𝑑
+ 𝑄
𝑑
𝑃
𝜋

+ 𝑄
𝜋

∞

∑

𝑛=0

(𝑃 + 𝑄)
𝑛
𝑄(𝑃
𝑑
)

𝑛+2

.

(61)

By direct computation we verify that

𝑄
𝜋
𝑃
𝑑
= 𝑃
𝑑
, 𝑄

𝑑
𝑃
𝜋
= 𝑄
𝑑
. (62)

From 𝐵𝐷𝑛𝐶 = 0, we have
∞

∑

𝑛=0

(𝑃 + 𝑄)
𝑛
𝑄(𝑃
𝑑
)

𝑛+2

=

[

[

[

[

[

0

∞

∑

𝑛=0

𝐴
𝑛
𝐵 (𝐷
𝑑
)

𝑛+2

0

∞

∑

𝑛=1

𝑛−1

∑

𝑖=0

𝐷
𝑖
𝐶𝐴
𝑛−𝑖−1

𝐵 (𝐷
𝑑
)

𝑛+2

]

]

]

]

]

.

(63)

Observe that (51) and 𝐵𝐷𝑛𝐶 = 0 yield

𝑄
𝜋

∞

∑

𝑛=0

(𝑃 + 𝑄)
𝑛
𝑄(𝑃
𝑑
)

𝑛+2

= [

𝐴
𝜋

−𝐴Γ

−𝐶𝐴
𝑑
− 𝐷Δ 𝐼 − 𝐶Γ − 𝐷Δ𝐴Γ

]

[

[

[

[

[

[

0

∞

∑

𝑛=0

𝐴
𝑛
𝐵 (𝐷
𝑑
)

𝑛+2

0

∞

∑

𝑛=1

𝑛−1

∑

𝑖=0

𝐷
𝑖
𝐶𝐴
𝑛−𝑖−1

𝐵 (𝐷
𝑑
)

𝑛+2

]

]

]

]

]

]

=

[

[

[

[

[

[

0 𝐴
𝜋

∞

∑

𝑛=0

𝐴
𝑛
𝐵 (𝐷
𝑑
)

𝑛+2

− 𝐴Γ

∞

∑

𝑛=1

𝑛−1

∑

𝑖=0

𝐷
𝑖
𝐶𝐴
𝑛−𝑖−1

𝐵 (𝐷
𝑑
)

𝑛+2

0 (−𝐶𝐴
𝑑
− 𝐷Δ)

∞

∑

𝑛=0

𝐴
𝑛
𝐵 (𝐷
𝑑
)

𝑛+2

+ (𝐼 − 𝐶Γ − 𝐷Δ𝐴Γ)

∞

∑

𝑛=1

𝑛−1

∑

𝑖=0

𝐷
𝑖
𝐶𝐴
𝑛−𝑖−1

𝐵 (𝐷
𝑑
)

𝑛+2

]

]

]

]

]

]

=

[

[

[

[

[

[

0

∞

∑

𝑛=0

𝐴
𝑛
𝐵 (𝐷
𝑑
)

𝑛+2

0

∞

∑

𝑛=1

𝑛−1

∑

𝑖=0

𝐷
𝑖
𝐶𝐴
𝑛−𝑖−1

𝐵 (𝐷
𝑑
)

𝑛+2

]

]

]

]

]

]

.

(64)

From (62) and (64) it follows (48). The proof is finished.



The Scientific World Journal 7

Theorem 12. Let 𝐴 and 𝐷 be generalized Drazin invertible
and let𝑀 be matrix of form (26). If 𝐴𝐴𝜋𝐵𝐷𝜋 = 𝐵𝐷, 𝐵𝐶 = 0,
𝐶𝐴
𝑑
= 0, and 𝐶𝐵𝐷𝜋 = 0. Then

𝑀
𝑑
=
[

[

[

𝐴
𝑑

(𝐴
𝑑
)

2

𝐵

𝑋
0
𝐷
𝑑
+

∞

∑

𝑛=0

𝑋
𝑛+1
𝐵𝐷
𝑛

]

]

]

, (65)

where

𝑋
𝑛
=

∞

∑

𝑖=0

(𝐷
𝑑
)

𝑖+𝑛+2

𝐶𝐴
𝑖
, 𝑛 ≥ 0. (66)

Proof. We can split matrix𝑀 as𝑀 = 𝑃 + 𝑄, where

𝑃 = [
𝐴
2
𝐴
𝑑
𝐵

0 0

] , 𝑄 = [

𝐴𝐴
𝜋
0

𝐶 𝐷
] ,

𝑃
𝑑
= [
𝐴
𝑑
(𝐴
𝑑
)

2

𝐵

0 0

] , 𝑃
𝜋
= [
𝐴
𝜋
−𝐴
𝑑
𝐵

0 𝐼

] .

(67)

Applying Lemma 7, we have (𝐴𝐴𝜋)𝑑 = 0, so we get

(𝑄
𝑑
)

𝑛

= [

0 0

𝑋
𝑛−1

(𝐷
𝑑
)

𝑛] , 𝑄
𝜋
= [

𝐼 0

−𝐷𝑋
0
𝐷
𝜋] , (68)

where𝑋
𝑛
is defined in (28).

Since 𝐴𝐴𝜋𝐵𝐷𝜋 = 𝐵𝐷, 𝐵𝐶 = 0, 𝐶𝐵𝐷𝜋 = 0, and 𝐶𝐴2𝐴𝑑 =
0, we obtain 𝑃𝑄 = 𝑃𝜋𝑄𝑃𝑄𝜋. ApplyingTheorem 4, we get

(𝑃 + 𝑄)
𝑑
= 𝑄
𝜋
𝑃
𝑑
+ 𝑄
𝑑
𝑃
𝜋

+

∞

∑

𝑛=0

(𝑄
𝑑
)

𝑛+2

𝑃 (𝑃 + 𝑄)
𝑛
𝑃
𝜋

+ 𝑄
𝜋

∞

∑

𝑛=0

(𝑃 + 𝑄)
𝑛
𝑄(𝑃
𝑑
)

𝑛+2

−

∞

∑

𝑛=0

∞

∑

𝑘=0

(𝑄
𝑑
)

𝑘+1

𝑃 (𝑃 + 𝑄)
𝑛+𝑘
𝑄(𝑃
𝑑
)

𝑛+2

−

∞

∑

𝑛=0

(𝑄
𝑑
)

𝑛+2

𝑃 (𝑃 + 𝑄)
𝑛
𝑄𝑃
𝑑
.

(69)

From 𝐶𝐴
𝑑
= 0, we have 𝑄𝑃𝑑 = 0. Hence from (69) we

obtain

(𝑃 + 𝑄)
𝑑
= 𝑄
𝜋
𝑃
𝑑
+ 𝑄
𝑑
𝑃
𝜋
+

∞

∑

𝑛=0

(𝑄
𝑑
)

𝑛+2

𝑃 (𝑃 + 𝑄)
𝑛
𝑃
𝜋
,

(70)

where𝑋
𝑛
𝐴
𝑑
= 0, we get

𝑄
𝜋
𝑃
𝑑
= 𝑃
𝑑
, 𝑄

𝑑
𝑃
𝜋
= 𝑄
𝑑
,

(𝑄
𝑑
)

2

𝑃𝑃
𝜋
= [

0 0

𝑋
1
(𝐷
𝑑
)

2] [
𝐴
2
𝐴
𝑑
𝐵

0 0

] [
𝐴
𝜋
−𝐴
𝑑
𝐵

0 𝐼

]

= [

0 0

0 𝑋
1
𝐵
] .

(71)

The conditions 𝐴𝐴𝜋𝐵𝐷𝜋 = 𝐵𝐷 and 𝐵𝐶 = 0 imply that
𝐵𝐷
𝑖
𝐶 = 0. So we get

∞

∑

𝑛=0

(𝑄
𝑑
)

𝑛+2

𝑃 (𝑃 + 𝑄)
𝑛
𝑃
𝜋

=
[

[

[

0 0

0

∞

∑

𝑛=1

𝑋
𝑛+1
𝐵𝐷
𝑛

]

]

]

, 𝑛 ≥ 1.

(72)

From (71) and (72) it follows (65).
The proof is finished.

Using (40) andTheorem 12, we have the following result.

Theorem 13. If 𝐶𝐴 = 𝐷
𝜋
𝐷𝐶𝐴
𝜋, 𝐵𝐷𝑑 = 0, 𝐶𝐵 = 0, and

𝐵𝐶𝐴
𝜋
= 0. Then

𝑀
𝑑
=
[

[

[

𝐴
𝑑
+

∞

∑

𝑛=0

𝑋
𝑛+2
𝐶𝐴
𝑛
𝑋
1

(𝐷
𝑑
)

2

𝐶 𝐷
𝑑

]

]

]

, (73)

where

𝑋
𝑛
=

∞

∑

𝑖=0

(𝐴
𝑑
)

𝑖+𝑛+1

𝐵𝐷
𝑖
, 𝑛 ≥ 1. (74)

Using the case ofTheorem 3, we get the following results.

Theorem 14. Let 𝐴 and 𝐷 be generalized Drazin invertible
and let𝑀 be matrix of form (26). If 𝐷𝐶𝐴𝜋 = 𝐶𝐴, 𝐴𝐵𝐷 = 0,
𝐵𝐶 = 0, and 𝐶𝐵 = 0. Then

𝑀
𝑑
=

[

[

[

[

[

𝐴
𝑑
+

∞

∑

𝑛=0

𝐵 (𝐷
𝑑
)

𝑛+3

𝐶𝐴
𝑛
(𝐴
𝑑
)

2

𝐵 + 𝐵 (𝐷
𝑑
)

2

∞

∑

𝑛=0

(𝐷
𝑑
)

𝑛+2

𝐶𝐴
𝑛

𝐷
𝑑

]

]

]

]

]

.

(75)

Proof. We can split matrix𝑀 as𝑀 = 𝑃 + 𝑄, where

𝑃 = [

0 0

𝐶 0
] , 𝑄 = [

𝐴 𝐵

0 𝐷
] . (76)

From 𝐴𝐵𝐷 = 0, we have

(𝑄
𝑑
)

𝑖

=
[

[

(𝐴
𝑑
)

𝑖

𝑋
𝑖

0 (𝐷
𝑑
)

𝑖
]

]

,

𝑄
𝜋
= [
𝐴
𝜋
−𝐴𝑋
1
− 𝐵𝐷
𝑑

0 𝐷
𝜋 ] ,

(77)

where

𝑋
𝑛
= (𝐴
𝑑
)

𝑛+2

𝐵 + 𝐵 (𝐷
𝑑
)

𝑛+2

, 𝑛 ≥ 0. (78)

Note that 𝑃 is quasinilpotent; since 𝐷𝐶𝐴𝜋 = 𝐶𝐴, 𝐴𝐵𝐷 =
0, 𝐵𝐶 = 0, and 𝐶𝐵 = 0, we obtain 𝑃𝑄 = 𝑄𝑃𝑄

𝜋. Applying
Theorem 3, we get

(𝑃 + 𝑄)
𝑑
= 𝑄
𝑑
+

∞

∑

𝑛=0

(𝑄
𝑑
)

𝑛+2

𝑃 (𝑃 + 𝑄)
𝑛
. (79)
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From 𝐵𝐶 = 0, we have

(𝑄
𝑑
)

2

𝑃 =
[

[

(𝐴
𝑑
)

2

𝑋
2

0 (𝐷
𝑑
)

2
]

]

[

0 0

𝐶 0
]

= [

𝑋
2
𝐶 0

(𝐷
𝑑
)

2

𝐶 0

] =
[

[

𝐵 (𝐷
𝑑
)

3

0

(𝐷
𝑑
)

2

𝐶 0

]

]

.

(80)

The conditions 𝐷𝐶𝐴𝜋 = 𝐶𝐴 and 𝐶𝐵 = 0 imply that
𝐶𝐴
𝑖
𝐵 = 0. From 𝐴𝐵𝐷 = 0, 𝐶𝐴𝑖𝐵 = 0, and 𝐵𝐶 = 0, we get
∞

∑

𝑛=1

(𝑄
𝑑
)

𝑛+2

𝑃 (𝑃 + 𝑄)
𝑛

=

[

[

[

[

[

∞

∑

𝑛=1

𝑋
𝑛+2
𝐶𝐴
𝑛

∞

∑

𝑛=1

𝑋
𝑛+2
𝐶𝐴
𝑛−1
𝐵

∞

∑

𝑛=1

(𝐷
𝑑
)

𝑛+2

𝐶𝐴
𝑛

∞

∑

𝑛=1

(𝐷
𝑑
)

𝑛+2

𝐶𝐴
𝑛−1
𝐵

]

]

]

]

]

=

[

[

[

[

[

∞

∑

𝑛=1

𝐵 (𝐷
𝑑
)

𝑛+3

𝐶𝐴
𝑛
0

∞

∑

𝑛=1

(𝐷
𝑑
)

𝑛+2

𝐶𝐴
𝑛
0

]

]

]

]

]

.

(81)

From (77), (80), and (81) it follows (75).

Using (40) andTheorem 14, we have the following result.

Theorem 15. Let 𝐴 and 𝐷 be generalized Drazin invertible
and let𝑀 be matrix of form (26). If 𝐴𝐵𝐷𝜋 = 𝐵𝐷, 𝐷𝐶𝐴 = 0,
𝐵𝐶 = 𝐴𝐵𝐶𝐴

𝑑, and 𝐶𝐵 = 0. Then

𝑀
𝑑
=

[

[

[

[

[

𝐴
𝑑

∞

∑

𝑛=0

(𝐴
𝑑
)

𝑛+2

𝐵𝐷
𝑛

(𝐷
𝑑
)

2

𝐶 + 𝐶 (𝐴
𝑑
)

2

𝐷
𝑑
+

∞

∑

𝑛=0

𝐶 (𝐴
𝑑
)

𝑛+3

𝐵𝐷
𝑛

]

]

]

]

]

.

(82)
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