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Endogenous BDNF augments NMDA
receptor phosphorylation in the spinal cord via
PLCγ, PKC, and PI3K/Akt pathways during colitis

Miao Liu, Jarren C Kay, Shanwei Shen and Li-Ya Qiao*
Abstract

Background: Spinal central sensitization is an important process in the generation and maintenance of visceral
hypersensitivity. The release of brain-derived neurotrophic factor (BDNF) from the primary afferent neurons to the
spinal cord contributes to spinal neuronal plasticity and increases neuronal activity and synaptic efficacy. The
N-Methyl-D-aspartic acid (NMDA) receptor possesses ion channel properties, and its activity is modulated by
phosphorylation of its subunits including the NMDA receptor 1 (NR1).

Methods: Colonic inflammation was induced by a single dose of intracolonic instillation of tri-nitrobenzene
sulfonic acid (TNBS). NR1 phosphorylation by BDNF in vivo and in culture was examined by western blot and
immunohistochemistry. Signal transduction was studied by direct examination and use of specific inhibitors.

Results: During colitis, the level of NR1 phospho-Ser896 was increased in the dorsal horn region of the L1 and S1
spinal cord; this increase was attenuated by injection of BDNF neutralizing antibody to colitic animals (36 μg/kg,
intravenous (i.v.)) and was also reduced in BDNF+/− rat treated with TNBS. Signal transduction examination
showed that the extracellular signal-regulated kinase (ERK) activation was not involved in BDNF-induced NR1
phosphorylation. In contrast, the phosphatidylinositol 3-kinase (PI3K)/Akt pathway mediated BDNF-induced NR1
phosphorylation in vivo and in culture; this is an additional pathway to the phospholipase C-gamma (PLCγ) and
the protein kinase C (PKC) that was widely considered to phosphorylate NR1 at Ser896. In spinal cord culture, the
inhibitors to PLC (U73122), PKC (bisindolylmaleimide I), and PI3K (LY294002), but not MEK (PD98059) blocked
BDNF-induced NR1 phosphorylation. In animals with colitis, treatment with LY294002 (50 μg/kg, i.v.) blocked the
Akt activity as well as NR1 phosphorylation at Ser896 in the spinal cord.

Conclusion: BDNF participates in colitis-induced spinal central sensitization by up-regulating NR1
phosphorylation at Ser896. The PI3K/Akt pathway, in addition to PLCγ and PKC, mediates BDNF action in the spinal
cord during colitis.
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Background
Spinal central sensitization is suggested to be one of the
key mechanisms underlying visceral hypersensitivity in re-
sponse to visceral irritation and/or inflammation in pa-
tients and experimental animal models [1–3]. Alterations
in the expression and activity levels of neurochemical
compounds and ion channels in the spinal dorsal horn
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underlie the molecular mechanisms of spinal central
sensitization and is modulated by release of neurotrans-
mitters from the primary sensory neurons located in the
dorsal root ganglia (DRG) [4, 5]. Following colonic inflam-
mation such as colitis induced by chemicals including tri-
nitrobenzene sulfonic acid (TNBS), zymosan, acetic acid,
mustard oil, or dextran sulfate sodium, there are increased
levels of neurotrophins and neuropeptides in the DRG
and the spinal cord resulting in visceral hypersensitivity
[6–10]. As a result of zymosan-induced colitis, visceral
hyperalgesia in rats is mediated, at least in part, by spinal
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N-methyl-D-aspartate (NMDA) receptor and is attenuated
by intrathecal administration of the non-competitive
NMDA receptor channel pharmacological blocker [7].
Peripheral tissue and nerve injuries recruit NMDA recep-
tor at synapses within the pain-related spinal dorsal horn
which is highly considered as an important process in
spinal central sensitization under several physiologic and
pathophysiologic conditions [11–16].
The NMDA receptor has an ionotropic property which

regulates Ca2+ influx and Ca2+-dependent physiological
effects thereby regulating neuronal activity and synaptic
efficacy. NMDA receptor forms a heterotetramer com-
posed of two NMDA receptor 1 (NR1) and two NR2 sub-
units [17]. NMDA receptor function may depend on
phosphorylation of the subunits of the NMDA receptor
[18, 19]. The NR1 subunit can be phosphorylated at Ser890

and Ser896 by protein kinase C (PKC) and at Ser897 by pro-
tein kinase A (PKA) [20, 21]. This is also true in animal
models. Phosphorylation of Ser897 of the NR1 subunit in
the spinal dorsal horn and spinothalamic tract neurons
after intradermal injection of capsaicin in rats is mediated
by the PKA pathway and is sensitive to PKA inhibitors
[21]. Phosphorylation of Ser896 of the NR1 subunit in the
spinal dorsal horn following noxious heat stimulation of
the rat hind paw is mediated by activation of PKC [22]. In
cystitis, both Ser896 and Ser897 sites of the NR1 subunit
are phosphorylated in the spinal cord [5]. The Ser897 but
not Ser896 phosphorylation in the spinal cord is regulated
by calcitonin gene-related peptide (CGRP) [5]. We specu-
late that brain-derived neurotrophic factor (BDNF) may
be involved in PKC-mediated NR1 Ser896 phosphorylation
in the spinal cord during visceral inflammation.
BDNF is a member of nerve growth factor family.

The release of BDNF from the neuron somata in the
DRG to the spinal dorsal horn, where BDNF binds high
affinity receptor TrkB, influences associative synaptic
plasticity and increases synaptic efficacy by refinement
of neural connectivity [9, 23, 24]. The involvement of
BDNF in sensory hypersensitive is proved by a line of
evidence and is well discussed in several animal models.
In particular with colitis, systemic injection of BDNF neu-
tralizing antibody reverses colonic hypersensitivity in re-
sponse to colonic distention [25]. Intrathecal infusion of
BDNF neutralizing antibody via mini pump also attenu-
ates colitis-associated bladder hyperactivity [10]. In other
animal models, the role of BDNF in mediating sensory
sensitization is observed during peripheral inflammation-
induced somatic pain [26, 27], cancer-induced bone pain
[28], nerve injury, etc. [29–32]. Traditionally, three signal-
ing pathways are activated by BDNF in neurons: activation
of the Ras-extracellular signal-regulated kinase (ERK) cas-
cade leads to gene transcription promoting cellular
growth, the phosphatidylinositol 3-kinase (PI3K)/Akt
pathway has anti-apoptotic function, and activation of
phospholipase C-gamma (PLCγ) initiates Ca2+ release or
influx via modulation of store activity or ion channels pos-
sibly through diacyl glycerol (DAG)-mediated PKC activa-
tion [33]. These pathways are recently recognized as
essential components in sensory hypersensitivity in several
animal models [34–38].
In culture, BDNF is able to modulate NMDA receptor

in activity-dependent manner [39]. In the spinal cord,
BDNF regulates the activity of the NR2B-containing
NMDA receptor thereby participating in the develop-
ment of neuropathic pain [40, 41]. The interrelationship
of BDNF with the NR1 subunit of the NMDA receptor
has also been reported showing that BDNF can regulate
NR1 protein synthesis in vivo and in culture [28, 42].
Earlier studies demonstrate a role of BDNF in inducing
NR1 phosphorylation on Ser897, the traditional PKA site,
via the ERK and PKC pathways in isolated spinal dorsal
horn [43, 44]. The present study is undertaken to exam-
ine the possibility of BDNF in regulating the NR1 sub-
unit of the NMDA receptor by phosphorylating Ser896,
the traditional PKC site, in vivo and in spinal culture,
and explore the signal transduction in an animal model
of colitis-induced visceral hypersensitivity.

Experimental procedures
Animals and reagents
Adult male rats (150–200 g) were purchased from Harlan
Sprague Dawley, Inc. (Indianapolis, IN). All experimental
protocols involving animal use were approved by the
Institutional Animal Care and Use Committee at the
Virginia Commonwealth University. Animal care was in
accordance with the Association for Assessment and
Accreditation of Laboratory Animal Care (AAALAC)
and National Institutes of Health guidelines. All efforts
were made to minimize the potential for animal pain,
stress, or distress as well as to reduce the number of
animals used. TNBS, β-actin antibody, and other
chemicals used in this experiment were purchased from
Sigma-Aldrich (St. Louis, MO). Antibody against p-NR1
Ser896 was from Santa Cruz Biotechnology (Santa Cruz,
CA). Antibodies for p-Akt and total Akt were from Cell
Signaling Technology (Danvers, MA). Secondary anti-
bodies for western blot were from Pierce Biotechnology
(Rockford, IL), and secondary antibodies for immunohis-
tochemistry were from Molecular Probes (Eugene, OR).

Induction of colonic inflammation
Colonic inflammation was induced in fasted rats under
anesthesia (2 % isoflurane). TNBS solution (60 mg/mL in
50 % EtOH) at a dose of 90 mg/kg (1.5 mL TNBS solution
per kg body weight) was instilled into the lumen of the
distal colon through a syringe-attached polyethylene cath-
eter via the rectum 6 cm proximal to the anus. Control
animals received similar volume of 50 % EtOH enema.
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Euthanasia of animals was performed on day 3 or day 7
after TNBS treatment. To ensure exposure of the distal
colon to TNBS, rats were held head down by lifting up the
tail for 1 min. This treatment regimen caused significant
inflammatory responses identified by histology [45] as well
as the up-regulation of pro-inflammatory factor in the dis-
tal colon (Additional file 1: Supplemental data).

Treatment of animals with antagonists
Animals received antagonists via intravenous (i.v.) injec-
tion. Antagonists used in this study were BDNF neutral-
izing antibody (36 μg/kg body weight) and the PI3K
inhibitor LY 294002 (50 μg/kg body weight). A single
dose of antagonist was injected. When animals were ex-
amined on day 3 post colitis induction, the antagonist
was injected on the same day and post-TNBS treatment.
When animals were examined on day 7 post colitis in-
duction, the antagonist was injected on day 3 after colitis
induction. This treatment design was customized by us
through preliminary studies.

Tissue collection
The L1 and S1 spinal cord segments were dissected out
and used for western blot, immunostaining, or acute
culture. For western blot, spinal segments were freshly
minced and homogenized in T-PER buffer (Pierce
Biotechnology, Rockford, IL) supplemented with prote-
ase and phosphatase inhibitors (Sigma). For immunohis-
tochemistry, spinal segments were fixed with 4 %
paraformaldehyde in 0.1 M PBS (pH = 7.4) followed by
20 % sucrose for cryoprotection. For acute culture,
spinal segments were freshly dissected out from naïve
animals, transversely sectioned at a thickness of 250 μm,
and randomly divided into groups for treatment.

Western blot
The protein extracts were subject to centrifugation at
20,200g for 10 min at 4 °C, and the supernatant was re-
moved to a fresh tube. The protein concentration was
determined using Bio-Rad DC protein assay kit. Proteins
were then separated on a 10 % SDS-PAGE gel and trans-
ferred to a nitrocellulose membrane. The membrane was
blocked with 5 % milk in Tris-buffered saline for 1 h
and then incubated with a specific primary antibody
followed by HRP-conjugated secondary antibody. For in-
ternal loading control, the same membrane was stripped
and re-probed with anti-β-actin antiserum or antibody to
a non-phosphorylated form of the protein examined.
The concentrations of antibodies used were p-NR1:
1:1000; p-Akt and Akt: 1:1000; and β-actin: 1:3000. The
bands were visualized by enhanced chemiluminescence
(ECL). Densitometric quantification of the immunore-
active bands was performed using the software
FluorChem 8800 (Alpha Innotech, San Leandro, CA).
Immunohistochemistry
The spinal cord segments were sectioned transversely at
a thickness of 30 μm and were immunostained by free-
floating method. Generally, sections were incubated with
blocking solution containing 5 % normal donkey serum
(Jackson Immuno Research, West Grove, PA) in PBST
(0.3 % Triton X-100 in 0.1 M PBS, pH 7.4) for 30 min
followed by specific primary antibodies overnight at 4 °C.
After rinsing (3 × 10 min with 0.1 M PBS), tissues were
incubated with fluorescence-conjugated species-specific
secondary antibody for 2 h at room temperature. Follow-
ing washing, the sections were mounted to slides and cov-
erslipped with Citifluor (Citifluor Ltd., London). The
sections were then viewed and analyzed with a Zeiss Axio-
Image Z1 Apitome fluorescent microscope.
The analysis of the immunoreactivity at the dorsal horn

were done as previously reported by converting fluores-
cent images to a grayscale that ranged in intensity from 0
(black) to 255 (white) for the purpose of densitometry
[46]. The same number of standard sized rectangles was
overlaid on the area of interest (i.e., superficial dorsal horn
in this study) for each spinal section. Intensity measured
within the rectangles was averaged as one point.

Spinal cord culture
Spinal cord segments were acutely cultured for 4–6 h in
cell culture wells containing Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 200 units/mL
penicillin, 200 mg/mL streptomycin, and 100 mg/mL
gentamycin. BDNF (50 ng/mL) was added to the culture
medium and incubated for designated time points. After
incubation, tissues were collected for western blot
analysis. All cultures were maintained in a 10 % CO2

environment at 37 °C.

Statistical analysis
Comparison between control and experimental groups
was made by using Kruskal-Wallis non-parametric one-
way ANOVA. For in vivo experiments, 4–6 animals were
used for each experimental group. For culture, 3–4 inde-
pendent experiments were performed. Results were pre-
sented as mean ± SE. Differences between means at a
level of p ≤ 0.05 were considered to be significant.

Results
Up-regulation of NR1 phosphorylation at Ser896 in spinal
dorsal horn during colitis
The expression level and the distribution pattern of the
phospho (p)-NR1 in the spinal cord were examined by
western blot and immunohistochemistry. We used spe-
cific antibody that recognized phospho-Ser896 on the
NR1 subunit as described previously [5]. Western blot
results showed that the level of p-NR1 Ser896 was in-
creased in both L1 (Fig. 1a, b) and S1 (Fig. 1c, d) spinal
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cord at 3 days and 7 days post colitis induction. Immu-
nohistochemistry staining showed that p-NR1 Ser896 im-
munoreactivity was expressed in several regions of the
spinal cord. We paid particular attention to the dorsal
horn region where the primary sensory neuron terminals
ended. As shown in Fig. 2, colitis increased the immuno-
density of p-NR1 Ser896 in the dorsal horn of the L1
(Fig. 2a, b) and S1 spinal cord (Fig. 2c, d). Summary data
(Fig. 2e, f ) presented the changes in p-NR1 Ser896 im-
munoreactivity in the L1 and S1 spinal dorsal horn at
both 3 days and 7 days postcolitis. It is noteworthy that
we have identified that phosphorylation of Ser897 of the
NR1 subunit in the spinal cord was regulated by CGRP
[5]. However, CGRP failed to regulate the phosphoryl-
ation of Ser896 on the NR1 subunit [5]. Thus, the present
study focused on the examination of NR1 phosphoryl-
ation at Ser896 and aimed to identify factors that medi-
ated NR1 Ser896 phosphorylation in the spinal cord in an
animal model of colitis.

BDNF regulated NR1 phosphorylation on Ser896 in vivo
and in culture
BDNF generated by primary afferent neurons is able to
release to the axonal terminals upon stimulation. The
primary afferent neurons that innervate the distal colon
also project to the spinal cord dorsal horn due to their
pseudounipolar nature with two split branches, one going
to the periphery and another going to spinal cord. During
colitis, the level of BDNF was elevated in the DRG [9],
specifically in the colonic afferent neurons [47]. Thus,
we examined whether BDNF was able to elicit NR1
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Fig. 1 Up-regulation of NR1 phosphorylation in the L1 and S1 spinal cord
was examined by western blot (a, c) in the L1 (a, b) and S1 (c, d) spinal co
colitis caused significantly increases in the level of p-NR1 in the L1 and S1
vs. control
phosphorylation at Ser896. Using an acute system of
spinal cord culture as described previously [5, 9], we
found that incubation of the spinal cord slices with
BDNF increased the phosphorylation level of NR1 at
Ser896, which was effectively blocked by pre-treatment
of the spinal slices with Trk inhibitor K252a (100 nM,
Calbiochem) (Fig. 3), suggesting that NR1 phosphoryl-
ation at Ser896 by BDNF was specific and was mediated
by BDNF high affinity receptor. We then examined the
role of endogenous BDNF on NR1 phosphorylation at
Ser896. In both L1 and S1 spinal cord, neutralization of
BDNF action in vivo with specific BDNF antibody re-
versed colitis-induced NR1 phosphorylation (Fig. 4).
We confirmed these findings in BDNF+/− rat (SAGE®
Labs, Boyertown, PA) (Fig. 4).

Signaling pathways in BDNF-induced NR1 phosphorylation
in the spinal cord
We examined the involvement of three pathways, the
MEK/ERK, PLCγ, and PI3K/Akt, in BDNF-induced NR1
phosphorylation at Ser896 in spinal slice culture. This was
an acute system for quick initial screening of pathways.
We used specific inhibitors: PD98059 to block MEK,
U73122 to block PLCγ, and LY294002 to block PI3K.
Since activation of PLCγ could facilitate DAG production
leading to PKC activation, and NR1 Ser896 was considered
to be phosphorylated by PKC [20], we also used bisindo-
lylmaleimide I (BIM) to specifically block PKC in this sys-
tem. Results (Fig. 5) showed that PD98059 (5 μM) did not
have an effect on BDNF-induced NR1 phosphorylation;
thus, the MEK/ERK pathway was not involved. The PLC
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Fig. 2 NR1 phosphorylation was increased in the dorsal horn of the spinal cord during colitis. Up-regulation of p-NR1 in the spinal cord during
colitis was examined by immunohistochemistry (a–d). The p-NR1 immunoreactivity was increased in the region of the spinal dorsal horn in L1
(a–b) and S1 (c–d) spinal cord during colitis (compare b to a and d to c, circled area). Histograms (e, f) summarized the changes in the relative
density of p-NR1 immunoreactivity in the L1 (e) and S1 (f) spinal dorsal horn at 3 days and 7 days of colitis. Microphotographs were from 3 days
of colitis and control animals. *p < 0.05 vs. control. Bar = 250 μm
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inhibitor U73122 (10 μM) and PKC inhibitor BIM (1 μM)
were able to attenuate BDNF-induced NR1 phosphoryl-
ation. The PI3K/Akt pathway was initially examined by
using inhibitor LY294002 (5 μM) and then confirmed by
another PI3K inhibitor wortmannin (0.5 μM). Both inhibi-
tors blocked BDNF-induced NR1 phosphorylation at
Ser896 (Fig. 5).

NR1 phosphorylation at Ser896 in the spinal cord was
mediated by the PI3K/Akt pathway in vivo in colitis
The involvement of the PI3K/Akt pathway in NR1 phos-
phorylation at Ser896 has not been reported previously.
Thus, we confirmed our in vitro data (Fig. 5) with the
in vivo system in animals induced for colitis. Double im-
munostaining (Fig. 6) showed that the p-NR1 (Fig. 6a,
red stain) and p-Akt (Fig. 6b, green stain) had similar
distribution pattern in the spinal cord (sections were L1
from TNBS 7 days). Higher magnification with Apo-
Tome scan visualized the co-localization of p-NR1 and
p-Akt in the spinal dorsal horn region (Fig. 6d–f, white
arrows). These results suggested an association of Akt
with NR1 phosphorylation in the spinal cord. We then
injected the PI3K inhibitor LY294002 to colitic animals
to block the PI3K/Akt activity in vivo (Fig. 7). We
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previously found that colitis increased the phosphoryl-
ation level of Akt in the L1 and S1 spinal cord at 7 days
post-TNBS treatment [46]. Here, we found that
LY294002 treatment reduced the Akt activity in the
spinal cord during colitis examined by western blot
(Fig. 7a, b showed S1 spinal cord; similar results were
seen in L1 spinal cord, data not shown). Immunostain-
ing showed that LY294002 treatment reduced p-Akt im-
munoreactivity in the spinal dorsal horn region during
colitis (Fig. 7c, d showed L1 spinal cord; similar results
were seen in S1 spinal cord, data not shown). LY294002
treatment also reduced colitis-induced NR1 phosphoryl-
ation at Ser896 (Fig. 7e, f ).

Discussion
Colitis-induced spinal central sensitization is attributable
to posttranscriptional and posttranslational regulation in
the spinal dorsal horn and is modulated by mediators
generated in the primary afferent neurons. The NMDA
receptor is one of the key molecules in regulating neur-
onal excitability and synaptic plasticity. The present
study investigated the signaling pathways by which
colonic inflammation facilitated phosphorylation of the
NR1 subunit of the NMDA receptor in the spinal dorsal
horn and identified that endogenous and exogenous
BDNF were able to elicit NR1 phosphorylation at Ser896.
In the spinal cord, colitis caused an increase in the level
of NR1 Ser896 phosphorylation which was attenuated by
inhibition of endogenous BDNF action with a specific
BDNF antibody. The level of NR1 phospho-Ser896 was
also reduced in BDNF+/− rats treated with TNBS. The
signaling pathways that transduced BDNF signal in the
spinal cord leading to NR1 phosphorylation at Ser896 in-
cluded the PLCγ, PKC, and the PI3K/Akt pathways. Even
though the ERK pathway was also activated in the spinal
cord by BDNF during colitis [9], the activation of this
pathway did not lead to NR1 phosphorylation at Ser896.
The phosphorylation of NR1 at Ser896 was traditionally
recognized as the PKC site and was phosphorylated by
PKC [20]. The present study revealed an additional path-
way, i.e., the PI3K/Akt pathway, in mediating NR1 Ser896

phosphorylation in the spinal cord. The PI3K/Akt path-
way was reported to mediate substance P (SP)-regulated
NR2B subunit of the NMDA receptor [4], but had no



p-NR1 S896 p-Akt merge

A B C

D E F

Fig. 6 Co-localization of phospho-Akt and phospho-NR1 in the spinal cord. Double immunostaining of the spinal cord from TNBS animals
showed that p-NR1 (a, d, red cells) and p-Akt (b, e, green cells) had similar anatomic distribution which included the dorsal horn and deep laminae
(a–c). ApoTome scan revealed that majority of p-NR1 (d, red cells) and p-Akt (e, green cells) were expressed in the same cells (f, cells indicated by
white arrows). Some of the p-NR1 positive cells did not express p-Akt (d–f, yellow arrows). Also some of the p-Akt positive cells did not express
p-NR1 (d–f, blue arrows). Figure showed samples of the L1 spinal cord from animals at 7 days of colitis. Bar = 200 μm in a–c; 15 μm in d–f
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role in CGRP-induced NR1 phosphorylation at Ser897 [5].
Taken together, these results suggest that inflammation-
induced spinal central sensitization characterized by site-
and isoform-specific phosphorylation of the NMDA
receptor is regulated by primary afferent release of neuro-
peptides and neurotransmitters such as BDNF that is ex-
amined in the present study. Specific signal transduction
pathways are involved.
Visceral hypersensitivity is a highly complex entity that

can occur due to hyperexcitability of the primary sensory
afferents and dysregulation of spinal neurons (central
sensitization) that modulate nociceptive transmission.
Following noxious stimulation (e.g., colitis in the present
study), excitatory neurotransmitters such as BDNF, sub-
stance P, and CGRP release centrally from the primary
afferent neurons into the spinal dorsal horn [46, 48–50]
where they can bind to their respective receptors and fa-
cilitate signal transduction [4, 9, 35, 46], ultimately
resulting in pain hypersensitivity (central sensitization)
[51]. The mechanism and contribution of neuropeptides
to central sensitization has been well discussed by Seybold
[52]. These neuropeptides are often stored in large dense
core vesicles of unmyelinated (C) and small myelinated
(Aδ) terminals, and their release are triggered by higher
firing frequency-evoked intracellular Ca2+ concentration
and/or by persistent stimuli [53–56]. Neuropeptides
sometimes also co-store with small molecule transmitters
such as glutamate which is released from both the large
and small myelinated fibers that can synapse on NMDA
receptor-containing neurons in the spinal cord in regula-
tion of nociception [57, 58].
The biological responses to neuropeptide release in

the spinal cord involve a series of changes in the intra-
cellular components. Activation of kinases is a key
process in receptor-mediated signal transduction. The
present study characterized three major pathways that
transduce the BDNF signaling in neurons: the MEK/
ERK pathway, the PI3K/Akt pathway, and the PLCγ
pathway. Among these three pathways, MEK/ERK path-
way is activated by BDNF in the spinal cord during col-
itis [9]; however, it is not involved in BDNF-induced
NR1 phosphorylation at Ser896 characterized in the
present study. We have previously reported that the
phosphorylation level of Akt is increased in the L1 and
S1 spinal cord during colitis [46]. In the present study,
the PI3K/Akt pathway also mediates BDNF- and
colitis-induced NR1 phosphorylation at Ser896 in the
spinal cord. This is an additional pathway to the widely
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accepted NR1 Ser896 phosphorylation mechanism by
which PKC is involved [20]. Akt is traditionally consid-
ered as a survival factor targeting Bcl proteins, pro-
caspase, and Forkhead [59, 60]. Several lines of recent
research have suggested a critical role of the PI3K/Akt
pathway in mediating sensory sensitization in response
to peripheral inflammation or injury [4, 5, 61]. The ac-
tivity of Akt is regulated by PI3K-facilitated formation
of phosphatidylinositol (3,4,5)-trisphosphate (PIP3)
which results in Akt trafficking and activation [62]. In
the periphery, Akt is activated in the sensory neurons
and regulates pain perception by activating TRPV1 re-
ceptor [61, 63]. In the spinal cord, the Akt activity can
be regulated by BDNF, CGRP, and SP in a PI3K-
dependent manner [4, 5, 46]. In terms of visceral
inflammation, activation of the PI3K/Akt pathway is
unable to regulate NR1 phosphorylation at Ser897, but
mediates NR1 phosphorylation at Ser896 (the present
study) in the spinal cord, suggesting that the PI3K/Akt
pathway is important but not the sole pathway in vis-
ceral inflammation-induced NMDA receptor activation
and spinal central sensitization.
The interrelationship of Akt activation and NMDA re-

ceptor activity has been demonstrated in several systems.
A study in a formalin-induced hyperalgesia model shows
that inhibition of the PI3K/Akt pathway blocks periph-
eral inflammation-induced phosphorylation of NR2 sub-
unit of the NMDA receptor in the spinal cord [4]. In
cerebellar granule, cell culture activation of Akt is also
able to mediate forskolin-induced phosphorylation of
Ser897 in the NR1 subunit [64]. In inflammatory and
neuropathic pain models, the NR1 phosphorylation is
enhanced in the spinal cord [65, 66], and in these stud-
ies, the antibodies used for NR1 phosphorylation are se-
lective for either the Ser897 site alone or both the Ser897

and Ser896 sites together but not Ser896 alone. In our
current study, we use an antibody that recognizes specif-
ically Ser896 of the NR1 and find that this site is phos-
phorylated in vivo during colitis. We have previously
tested that CGRP is unable to increase NR1 phosphoryl-
ation levels at Ser896 [5]. The present study demonstrates
that p-NR1 Ser896 is regulated by BDNF-induced PLCγ
and PKC cascade, consistent to the established findings
[20, 67]. The present study also reveals that BDNF- and
colitis-induced NR1 phosphorylation at Ser896 is regu-
lated by the PI3K/Akt pathway. However, there is no
biochemical evidence to show whether the PI3K and/or
Akt can use Ser896 of NR1 as a phosphorylation sub-
strate. Akt serves as a convergent point in signaling net-
work and is activated by growth factors and G-protein
coupled receptors and also cross talks with other signal-
ing pathways in cells and tissues. In the complex PI3K/
Akt signaling network, the mammalian target of rapamy-
cin complex can promote the stability and activity of
PKC [68]. In spinal slice culture, it takes 1 h for BDNF
to stimulate NR1 phosphorylation, which implies that
complicated signaling cross talk may exist within the
spinal cord. Akt can be activated by a number of cyto-
kines that are discovered in the spinal cord, such as the
pro-inflammatory cytokine tumor necrosis factor (TNF)
that is released from spinal glial cells [34, 69]. The in-
volvement of cytokines in persistent pain has been well
discussed recently [70]. These studies along with our
current findings suggest a key modulatory role of the
PI3K/Akt pathway in the generation and maintenance of
visceral and somatic hypersensitivity and pain by being
activated by a number of inflammatory and neuronal
factors and regulating a number of ion channels.

Conclusion
The role of BDNF in mediating sensory hypersensitivity
has been well recognized. The present study explores
the molecular mechanisms and pathways that underlie
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the BDNF action in the spinal cord during colitis. BDNF
in the spinal cord regulates NR1 phosphorylation which
is mediated by specific signaling pathways. Especially,
the PI3K/Akt pathway is found to be an additional path-
way to PKC in regulating the NR1 phosphorylation at
Ser896. The PI3K/Akt pathway is also important in the
regulation of the NMDA receptor activity due to its ability
in mediating NR2B subunit [4, 64]. The phosphorylation
of these subunits is regulated specifically by diverse neuro-
peptides, such as BDNF, CGRP, and SP, converging on Akt
and ultimately leads to NMDA receptor activation, which
further mediates Ca2+ flux and modifies the strength and
efficacy of synaptic transmission.
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