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Themean residual life (MRL) function for a lifetime randomvariableT0 is one of the basic parameters of interest in survival analysis.
In this paper, we propose a new estimator of theMRL function with length-biased right-censored data and evaluate its performance
through a small Monte Carlo simulation study. The results of the simulations show that the proposed estimator outperforms the
existing one referred to in Data and Model Setup Section in terms of Monte Carlo bias and mean square error, especially when the
censoring rate is heavy. We also show that the proposed estimator converges in distribution under some conditions.

1. Introduction

The MRL function at time 𝑡 is defined to be the expected
remaining lifetime of a system given survival up to time 𝑡.
It can be used to model various lifetime data in many areas
of science. For example, a life insurance company may be
interested in the life expectancy of a person, or an engineering
firm may wish to estimate the expected remaining lifetime
of a system, given survival up to time 𝑡. In literature, there
has been a lot of work on the inference of the MLR function.
Based on the i.i.d copies of the life time and the closed rela-
tionship between the MRL function and survival function,
nonparametric estimators andNA based confidence intervals
have been constructed (see [1, 2]). For right-censored data,
consistent estimator of the MRL function with its asymp-
totic normal distribution has been given by Yang [3] and
Kumazawa [4]. EL approach has been developed to construct
the confidence interval of theMRL function by Zhao andQin
[5], where, for censored data, the corresponding log-EL ratio
was defined and the limiting distribution was proved to be a
scaled 𝜒

2 distribution. A class of transformed MRL function
for fitting survival data under right censoring was proposed
and efficiency and robustness of estimators have been studied
by Sun and Zhang [6]. A more recent work on estimation
of the MRL with left-truncated and right-censored data has

been constructed by Zhao et al. [7], and they showed that the
proposed estimator converges weakly to a Gaussian process.

This paper considers survival data arising from length-
biased sampling, which is a special case of left truncation. Fol-
lowing the terminology in the literature (see [8, 9]), length-
biased data are defined for left-truncated and right-censored
data under the stationarity assumption, whichmeans that the
probability of the survival time being sampled is proportional
to its length or the survival times are left-truncated by
uniformly distributed random truncation times. Statisti-
cal inferences of length-biased data have been considered
by many authors. Vardi [9] considered the nonparametric
maximum likelihood estimator of the survival distribution.
Gupta and Keating [10] obtained the relations for reliability
measures of the length-biased distribution and some char-
acterization results. Concerning the effect of the length bias
on the sampling distribution of the covariates, Bergeron et
al. [11] presented a joint likelihood approach and studied the
large-sample behavior of the resulting maximum likelihood
estimators. To estimate the survival distribution, Luo and
Tsai [12] proposed a pseudopartial likelihood approach, and
Huang and Qin [8] proposed a new nonparametric estimator
based on the product-limit estimator. Their estimators were
proved to be uniformly consistent and converge weakly to
Gaussian processes.
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In this paper we propose a new estimator of the MRL
function with length-biased and right-censored data. We
compare the performance of our estimator with the existing
one referred to in Section 2.1 through a small Monte Carlo
simulation study and the results of the simulations show
that the proposed estimator outperforms the existing one in
terms of Monte Carlo bias and mean square error, especially
when the censoring rate is heavy. The research is organized
as follows. In Section 2, we introduce the model and the
proposed estimator of the MRL function. The large sample
property of our proposed estimator is stated in Section 3.The
performance of the estimators is illustrated in Section 4.

2. Notations and Estimators

2.1. Data and Model Setup Section. Let 𝐴
0 and 𝑇

0 be two
independent nonnegative randomvariables denoting the left-
truncated time and the lifetime of a system, respectively.
Assume that the truncation probability 𝛼 = Pr(𝐴0 ≤ 𝑇

0
) >

0. Let 𝐴 and 𝑇 denote the observed truncation time and
lifetime; that is, the pair (𝐴, 𝑇) is a realization from the
conditional distribution of (𝐴

0
, 𝑇
0
) given that 𝐴

0
≤ 𝑇
0.

Under the stationarity assumption,𝐴 is uniformly distributed
on [0, 𝑇], so𝑇 has a length-biased distribution. Coupled with
the censoring time𝐶, which is applied to the residual lifetime
𝑉 = 𝑇 − 𝐴 instead of 𝑇 and independent of (𝐴, 𝑇), the
observed data is composed of i.i.d. copies of (𝐴, 𝑌, 𝛿), where
𝑌 = min(𝑇, 𝐴+𝐶),𝛿 = 𝐼(𝑉 ≤ 𝐶). Nowwe suppose {(𝑎

𝑖
, 𝑦
𝑖
, 𝛿
𝑖
),

𝑖 = 1, 2, . . . , 𝑛} to be a sequence of i.i.d. random samples of
(𝐴, 𝑌, 𝛿) which one observes.

Denote by 𝑓(𝑡) and 𝑆(𝑡) the marginal density function
and survival function of 𝑇

0 and by 𝑔(𝑡) and 𝐺(𝑡) the
corresponding density function and survival function of the
length-biased random variable 𝑇. Let 𝜏 = inf{𝑡 : 𝑆(𝑡) = 0},
𝜏 ∈ 𝑅

+
∪ {+∞}. Under length-biased sampling, 𝐴 and 𝑇

are stochastically dependent and (𝐴, 𝑇) has the joint density
function (see [13])

𝑓
𝐴,𝑇 (𝑎, 𝑡) =

𝑓 (𝑡)

𝜇
, 0 ≤ 𝑎 < 𝑡 < 𝜏, (1)

and the density function𝑓of𝑇0 is related to the length-biased
density function 𝑔 of 𝑇, as follows:

𝑔 (𝑡) =
𝑡𝑓 (𝑡)

𝜇
, 0 ≤ 𝑡 < 𝜏, (2)

where 𝜇 = [∫
𝜏

0
𝑢
−1
𝑔(𝑢)𝑑𝑢)]

−1 is finite.
According to the definition of the MRL function, the

mean residual life of 𝑇0 at time 0 ≤ 𝑡 < 𝜏 is expressed as

𝑚(𝑡) = 𝐸 (𝑇
0
− 𝑡 | 𝑇

0
> 𝑡) =

∫
𝜏

𝑡
𝑆 (𝑢) 𝑑𝑢

𝑆 (𝑡)
, (3)

and𝑚(𝑡) = 0 when 𝑡 ≥ 𝜏.
In Huang and Qin [8], the nonparametric maximum

likelihood estimator of 𝑆(𝑡) has been given:

𝑆 (𝑡) = ∏

𝑢∈[0,𝑡]

{1 − 𝑑Λ̂ (𝑢)} , (4)

where Λ̂ is the estimated cumulative hazard function

Λ̂ (𝑡) = ∫

𝑡

0

𝑑𝑁 (𝑢)

𝑅 (𝑢)

, (5)

with 𝑁(𝑢) = 𝑛
−1

∑
𝑛

𝑖=1
𝛿
𝑖
𝐼(𝑦
𝑖
≤ 𝑢), 𝑅(𝑢) = 𝑛

−1
∑
𝑛

𝑖=1
𝐼(𝑦
𝑖
≥

𝑢) − 𝑆
𝐴
(𝑢), 𝑆

𝐴
(𝑢) = ∏V∈[0,𝑢]{1 − (𝑑𝑄(V)/�̃�(V))}, 𝑄(V) =

𝑛
−1

∑
𝑛

𝑖=1
𝐼{𝐼(𝑎
𝑖

≤ V) + 𝛿
𝑖
𝐼(𝑦
𝑖
− 𝑎
𝑖

≤ V)}, and �̃�(V) =

𝑛
−1

∑
𝑛

𝑖=1
{𝐼(𝑎
𝑖
≥ V) + 𝐼(𝑦

𝑖
− 𝑎
𝑖
≥ V)}.

Applying (3) and (4), when 0 ≤ 𝑡 ≤ 𝑦
(𝑛)
, the estimator of

𝑚(𝑡) can be naturally derived:

�̂� (𝑡) =

∫
𝑦(𝑛)

𝑡
𝑆 (𝑢) 𝑑𝑢

𝑆 (𝑡)

, (6)

where 𝑦
(𝑛)

= max(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
). If 𝑡 > 𝑦

(𝑛)
, �̂�(𝑡) = 0.

Let 𝑆
𝐶
(⋅) be the survival function of 𝐶 and 𝜏

𝐶
= inf{𝑡 :

𝑆
𝐶
(𝑡) = 0}. Assume the following conditions hold:

(i) 𝐿 is a nonnegative constant satisfying 𝐿 < sup{𝑡 :

𝑆(𝑡)𝑆
𝐶
(𝑡) > 0};

(ii) 𝑆 and 𝑆
𝐶
are absolutely continuous on [0, 𝐿];

(iii) ∫𝜏
𝑡
𝑔(𝑢)𝑑𝑢 < ∞, ∫𝜏

𝑡
𝑢
−1
𝑔(𝑢)𝑑𝑢 < ∞, 𝑡 ∈ [0, 𝜏);

(iv) either 𝜏
𝐶
< 𝜏 with 𝑆

𝐶
(𝜏
−

𝐶
) > 0 or 𝜏

𝐶
≥ 𝜏.

As a straightforward result of the functional delta
method, when 𝑛 → ∞, √𝑛(�̂�(𝑡) − 𝑚(𝑡)) converges
in distribution to a zero mean normal variable with the
variance function 𝜎

2
(𝑡) = 𝑆

−4
(𝑡)[𝑆
2
(𝑡)𝐸(∫

𝜏

𝑡
𝑍(𝑢)𝑑𝑢)

2
−

2𝑆(𝑡) ∫
𝜏

𝑡
𝑍(𝑢)𝑑𝑢𝐸𝑍(𝑡) ∫

𝜏

𝑡
𝑍(𝑢)𝑑𝑢 + (∫

𝜏

𝑡
𝑆(𝑢)𝑑𝑢)

2
𝐸𝑍
2
(𝑡)] for

every 𝑡 ∈ [0, 𝐿] under Assumptions (i–iv).
In the next subsection, we shall state our proposed

estimator of 𝑚(𝑡), and the simulation study in Section 4
shows that it performs better in several terms than the one
in (6).

2.2. The Proposed Estimator. According to the joint density
function of (𝐴, 𝑇), we can derive that

𝐸[
𝐼 (𝑌 ≥ 𝑡) 𝛿

𝑆
𝐶 (𝑌 − 𝐴)

]

= ∫

𝜏

𝑡

𝑓 (𝑢)

𝜇
∫

𝑢

0

(∫

∞

𝑢−𝑎

𝑓
𝐶
(V) 𝑑V)

1

𝑆
𝐶
(𝑢 − 𝑎)

𝑑𝑎 𝑑𝑢

= ∫

𝜏

𝑡

𝑔 (𝑢) 𝑑𝑢,

𝐸 [
𝐼 (𝑌 ≥ 𝑡) 𝛿

𝑌𝑆
𝐶
(𝑌 − 𝐴)

]

= ∫

𝜏

𝑡

𝑓 (𝑢)

𝜇
∫

𝑢

0

(∫

∞

𝑢−𝑎

𝑓
𝐶
(V) 𝑑V)

1

𝑢

1

𝑆
𝐶 (𝑢 − 𝑎)

𝑑𝑎 𝑑𝑢

= ∫

𝜏

𝑡

𝑢
−1
𝑔 (𝑢) 𝑑𝑢,

(7)

where 𝑓
𝐶
(⋅) is the density function of the censoring time 𝐶.
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Applying (7) we shall use the method of moments to
derive an estimator for the MRL function 𝑚(𝑡). To proceed
we note that𝑚(𝑡) can be written as

𝑚(𝑡) = 𝐸 [𝑇
0
− 𝑡 | 𝑇

0
> 𝑡] =

∫
𝜏

𝑡
𝑢𝑓 (𝑢) 𝑑𝑢

∫
𝜏

𝑡
𝑓 (𝑢) 𝑑𝑢

− 𝑡

=

∫
𝜏

𝑡
𝑔 (𝑢) 𝑑𝑢

∫
𝜏

𝑡
𝑢
−1
𝑔 (𝑢) 𝑑𝑢

− 𝑡.

(8)

An alternative estimator of the MLR function 𝑚(𝑡), for
0 ≤ 𝑡 ≤ 𝑦

(𝑛)
, can be derived as follows:

�̃� (𝑡) =
(1/𝑛)∑

𝑛

𝑖=1
𝐼 (𝑦
𝑖
> 𝑡) 𝛿

𝑖
/𝑆
𝐶
(𝑦
𝑖
− 𝑎
𝑖
)

(1/𝑛)∑
𝑛

𝑖=1
𝑦
−1

𝑖
𝐼 (𝑦
𝑖
> 𝑡) 𝛿

𝑖
/𝑆
𝐶
(𝑦
𝑖
− 𝑎
𝑖
)

− 𝑡, (9)

where 𝑆
𝐶
(𝑡) is the product-limit estimation of 𝑆

𝐶
(𝑡), and it is

expressed as

𝑆
𝐶
(𝑡) =

𝑛

∏

𝑖=1

(1 −
(1 − 𝛿

𝑖
) 𝐼 (𝑦
𝑖
− 𝑎
𝑖
≤ 𝑡)

𝑅 (𝑦
𝑖
− 𝑎
𝑖
)

) , (10)

where 𝑅(𝑡) = ∑
𝑛

𝑗=1
𝐼(𝑦
𝑗
− 𝑎
𝑗
≥ 𝑡). If 𝑡 > 𝑦

(𝑛)
, �̃�(𝑡) = 0.

In the next section we shall establish that �̃�(𝑡) con-
verges in distribution under some conditions by using the
Hadamard derivative method.

3. The Asymptotic Properties

Firstly, let us introduce some notations and lemmas.
Denote

𝑀(𝑡) = ∫

𝜏

𝑡

𝑔 (𝑢) 𝑑𝑢,

𝑁 (𝑡) = ∫

𝜏

𝑡

𝑢
−1
𝑔 (𝑢) 𝑑𝑢,

�̂� (𝑡) =
(1/𝑛)∑

𝑛

𝑖=1
𝐼 (𝑦
𝑖
> 𝑡) 𝛿

𝑖

𝑆
𝐶
(𝑦
𝑖
− 𝑎
𝑖
)

,

�̂� (𝑡) =
(1/𝑛)∑

𝑛

𝑖=1
𝑦
−1

𝑖
𝐼 (𝑦
𝑖
> 𝑡) 𝛿

𝑖

𝑆
𝐶
(𝑦
𝑖
− 𝑎
𝑖
)

,

𝛾 (𝑀 (𝑡) ,𝑁 (𝑡)) = 𝑚 (𝑡) =
𝑀 (𝑡)

𝑁 (𝑡)
− 𝑡,

𝛾 (�̂� (𝑡) , �̂� (𝑡)) = �̃� (𝑡) =
�̂� (𝑡)

�̂� (𝑡)

− 𝑡,

(11)

and assume that

∬
1

𝑆
𝐶
(𝑡 − 𝑎)

𝐹
∗
(𝑑𝑎, 𝑑𝑡) < ∞,

∬
1

𝑡
2
𝑆
𝐶
(𝑡 − 𝑎)

𝐹
∗
(𝑑𝑎, 𝑑𝑡) < ∞,

(12)

where 𝐹∗(⋅, ⋅) is the joint distribution function of (𝐴, 𝑇).
Lemma 1 gives the Hadamard derivative of 𝛾 at (𝑀(𝑡),

𝑁(𝑡)).

Lemma 1. For 𝑡 ∈ [0, 𝐿], the function 𝛾 is Hadamard-
differentiable at (𝑀(𝑡),𝑁(𝑡)), where its derivative is equal to

𝛾


(𝑀(𝑡),𝑁(𝑡))
(ℎ
1
(⋅) , ℎ
2
(⋅)) =

ℎ
1
(𝑡)

𝑁 (𝑡)
−

𝑀 (𝑡) ℎ
2
(𝑡)

𝑁
2
(𝑡)

. (13)

Lemma 2. Assume the conditions (i–iv) and (12) hold, for
every 𝑡 ∈ [0, 𝐿], as 𝑛 → ∞. Then

(i) 𝑍
1𝑛
(𝑡)=̂√𝑛(�̂�(𝑡) − 𝑀(𝑡)) converges in distribution to

a zero mean normal variable 𝑍
1
with the variance

function 𝐸(𝐼(𝑌 ≥ 𝑡)𝛿/𝑆
2

𝐶
(𝑌 − 𝐴)) − 𝑀

2
(𝑡);

(ii) 𝑍
2𝑛
(𝑡)=̂√𝑛(�̂�(𝑡) − 𝑁(𝑡)) converges in distribution to

a zero mean normal variable 𝑍
2
with the variance

function 𝐸(𝐼(𝑌 > 𝑡)𝛿/𝑌
2
𝑆
2

𝐶
(𝑌 − 𝐴)) − 𝑁

2
(𝑡).

Proof. Firstly, let us give the proof of the result in Lemma 2(i).
Under the regular conditions (i–iv) and (12), since 𝐸(𝐼(𝑌 >

𝑡)𝛿/𝑆
𝐶
(𝑌 − 𝐴)) = 𝑀(𝑡), by the central limit theorem, we can

derive

√𝑛(
1

𝑛

𝑛

∑

𝑖=1

𝐼 (𝑦
𝑖
> 𝑡) 𝛿

𝑖

𝑆
𝐶
(𝑦
𝑖
− 𝑎
𝑖
)
− 𝑀 (𝑡))

L
→ 𝑁(0, 𝐸

𝐼 (𝑌 > 𝑡) 𝛿

𝑆
2

𝐶
(𝑌 − 𝐴)

− 𝑀
2
(𝑡)) ,

(14)

where L
→ denotes weak convergence.

Since



1

𝑛

𝑛

∑

𝑖=1

𝐼 (𝑦
𝑖
> 𝑡) 𝛿

𝑖

𝑆
𝐶
(𝑦
𝑖
− 𝑎
𝑖
)

− 𝑀 (𝑡)



=



1

𝑛

𝑛

∑

𝑖=1

𝐼 (𝑦
𝑖
> 𝑡) 𝛿

𝑖

𝑆
𝐶
(𝑦
𝑖
− 𝑎
𝑖
)

−
1

𝑛

𝑛

∑

𝑖=1

𝐼 (𝑦
𝑖
> 𝑡) 𝛿

𝑖

𝑆
𝐶
(𝑦
𝑖
− 𝑎
𝑖
)

+
1

𝑛

𝑛

∑

𝑖=1

𝐼 (𝑦
𝑖
> 𝑡) 𝛿

𝑖

𝑆
𝐶
(𝑦
𝑖
− 𝑎
𝑖
)
− 𝑀 (𝑡)



≤



1

𝑛

𝑛

∑

𝑖=1

𝐼 (𝑦
𝑖
> 𝑡) 𝛿

𝑖

𝑆
𝐶
(𝑦
𝑖
− 𝑎
𝑖
)

−
1

𝑛

𝑛

∑

𝑖=1

𝐼 (𝑦
𝑖
> 𝑡) 𝛿

𝑖

𝑆
𝐶
(𝑦
𝑖
− 𝑎
𝑖
)



+



1

𝑛

𝑛

∑

𝑖=1

𝐼 (𝑦
𝑖
> 𝑡) 𝛿

𝑖

𝑆
𝐶
(𝑦
𝑖
− 𝑎
𝑖
)
− 𝑀 (𝑡)



≤
1

𝑛

𝑛

∑

𝑖=1

𝐼 (𝑦
𝑖
> 𝑡) 𝛿

𝑖



1

𝑆
𝐶
(𝑦
𝑖
− 𝑎
𝑖
)

−
1

𝑆
𝐶
(𝑦
𝑖
− 𝑎
𝑖
)



+



1

𝑛

𝑛

∑

𝑖=1

𝐼 (𝑦
𝑖
> 𝑡) 𝛿

𝑖

𝑆
𝐶
(𝑦
𝑖
− 𝑎
𝑖
)
− 𝑀 (𝑡)



,

(15)
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and recall that 𝑆
𝐶
(⋅) is the product-limit estimator of 𝑆

𝐶
(⋅), so

on the basis of (14) and the consistency of 𝑆
𝐶
(⋅) (see [14]), we

can obtain



1

𝑛

𝑛

∑

𝑖=1

𝐼 (𝑦
𝑖
> 𝑡) 𝛿

𝑖

𝑆
𝐶
(𝑦
𝑖
− 𝑎
𝑖
)
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Var (𝑍
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(16)

Since 𝐼(𝑦
𝑖
> 𝑡)𝛿

𝑖
/𝑆
𝐶
(𝑦
𝑖
− 𝑎
𝑖
), 𝑖 = 1, 2, . . . , 𝑛, are i.i.d, it

is easy to derive the result of Lemma 2(i) by the central limit
theorem.

Using the same method, let us give the proof of Lemma 2
(ii). Under the regular conditions (i–iv) and (12), because
𝐸(𝐼(𝑌 > 𝑡)𝛿/𝑌𝑆

𝐶
(𝑌 − 𝐴)) = 𝑁(𝑡), by the central limit

theorem, we can derive
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(17)

Since
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(18)

so on the basis of (17) and the consistency of 𝑆
𝐶
(⋅), we can

derive
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→ 0, 𝑛 → ∞,
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(19)

Since 𝐼(𝑦
𝑖
> 𝑡)𝛿
𝑖
/𝑦
𝑖
𝑆
𝐶
(𝑦
𝑖
− 𝑎
𝑖
), 𝑖 = 1, 2, . . . , 𝑛, are i.i.d, it

is easy to derive the result of Lemma 2(ii) by the central limit
theorem. The proof of Lemma 2 is completed.

On the basis of Lemmas 1 and 2, now we can discuss the
asymptotic property of �̃�(𝑡).

Theorem 3. Assume the conditions (i–iv) and (12) hold, for
every 𝑡 ∈ [0, 𝐿], as 𝑛 → ∞, then √𝑛(�̃�(𝑡) − 𝑚(𝑡)) converges
in distribution to a zero mean normal variable with the vari-
ance function (𝐸𝑍

2

1
(𝑡)/𝑁

2
(𝑡)) − (𝑀(𝑡)𝐸𝑍
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3
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2
(𝑡)𝐸𝑍

2

2
(𝑡)/𝑁

4
(𝑡)).

Proof. Under the conditions (i–iv) and (12), Lemma 2 allows
a straightforward application of Lemma 1. So we can derive

√𝑛 (�̃� (𝑡) − 𝑚 (𝑡))
𝑑

→ N
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𝑁
2
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, (20)

where 𝑑→ denotes convergence in distribution. N
�̃�
is Gaus-

sian as a linear form on two Gaussian variables and it is easy
to check that𝐸N

�̃�
= 0, since𝑍

1
and𝑍

2
are centered. It is also

easy to calculate the variance of N
�̃�
and it can be expressed

as
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4
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.

(21)

The proof is completed.

4. Simulations

To compare the performance of our proposed estimator
with the one in (6), we conducted a series of Monte Carlo
simulations with 𝑛 = 100 and 200. In these simulations, the
underlying survival time𝑇0 has a uniform (0, 1) distribution.
Then the length-biased density function of 𝑇 is 𝑔(𝑡) =

2𝑡, 𝑡 ∈ (0, 1), and the left-truncated time 𝐴 is uniformly
distributed on [0, 𝑇].We simulated the censoring time𝐶 from
either a uniform (0, 1), a uniform (0, 5/3) or a uniform (0, 5)

distribution, corresponding to a censoring rate of 50%, 30%,
and 10%.

Table 1 summarizes the Monte Carlo bias, standard
deviation, and mean square error for each estimator
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Table 1: Simulation results for nonparametric estimators based on
1000 replications.

𝑡 𝑚(𝑡)
�̂�(𝑡) �̃�(𝑡)

Bias SE MSE Bias SE MSE
𝑛 = 100, 𝐶 ∼ Un(0, 5)

0.2 0.4 51 28 34 2 29 8
0.4 0.3 50 21 30 0 20 4
0.6 0.2 50 16 28 0 15 2
0.8 0.1 50 14 27 0 11 1

𝑛 = 200, 𝐶 ∼ Un(0, 5)
0.2 0.4 51 20 30 1 20 4
0.4 0.3 51 14 28 1 14 2
0.6 0.2 50 11 26 0 11 1
0.8 0.1 50 7 25 0 7 1

𝑛 = 100, 𝐶 ∼ Un(0, 5/3)
0.2 0.4 49 32 35 1 30 9
0.4 0.3 49 28 31 1 22 5
0.6 0.2 48 29 31 0 17 3
0.8 0.1 45 56 51 0 12 1

𝑛 = 200, 𝐶 ∼ Un(0, 5/3)
0.2 0.4 50 21 30 1 21 5
0.4 0.3 50 16 28 0 15 2
0.6 0.2 50 15 28 1 12 1
0.8 0.1 51 15 28 1 8 1

𝑛 = 100, 𝐶 ∼ Un(0, 1)
0.2 0.4 49 62 62 2 32 10
0.4 0.3 53 233 572 −2 26 7
0.6 0.2 37 160 268 5 21 5
0.8 0.1 107 1733 30130 −1 15 2

𝑛 = 200, 𝐶 ∼ Un(0, 1)
0.2 0.4 49 24 30 2 22 5
0.4 0.3 50 43 43 2 19 4
0.6 0.2 48 26 30 −2 14 2
0.8 0.1 53 134 208 −1 11 1
Notes for the numerical results based on 1000 replications in Table 1:
(1) Bias = the empirical bias × 103;
(2) SE = the empirical standard deviation × 103;
(3) MSE = the empirical mean square error × 104.

at 𝑡 = 0.2, 0.4, 0.6 and 0.8 based on 1000 replications. The
survival probabilities at the selected time-points are 0.8, 0.6,
0.4, and 0.2. The corresponding true values of 𝑚(𝑡) at the
selected time-points are 0.4, 0.3, 0.2, and 0.1, respectively.

The outcomes show that the proposed estimator works
very well.Through the numerical results in Table 1, we derive
the following conclusions:

(1) �̃�(𝑡) outperforms �̂�(𝑡) obviously in terms of Monte
Carlo bias and mean square error for every values of
𝑡 when 𝑛 = 200 or 𝑛 = 100;

(2) the two estimators are very close to each other in
terms of theMonteCarlo standard deviationwhen the
censoring rate is small;

(3) when the censoring rate is heavy, �̃�(𝑡) outperforms
�̂�(𝑡) obviously in all terms that we referred to in the
simulations.

Through the conclusions given above, it is appropriate to
explore our proposed method in real applications.
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