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ABSTRACT. The basic problem in this paper is that of detemnining the geometry of an

arbitrary multiply connected bounded region in R3 together with the mixed boundary conditions,
from the complete knowledge of the eigenvalues {,}= for the negative Laplacian, using the

asymptotic expansion of the spectral function O(t)= ezp(- tA) as t-,O.
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1. INTRODUCTION.
The underlying problem is to deduce the precise shape of a membrane from the complete

3
(0)2knowledge of the eigenvalues {A}o= for the negative Laplacian -&3=- E in the
10x

(z], 2, z3) space.

Let tic_Ra be a simply connected bounded domain with a smooth bounding surface .’;.

Consider the Dirichlet/Neumann problem

(A+A)u=0 in fl, (1.1)
Ouu=0 or -- 0 on S, (1.2)

where denotes differentiation along the inward pointing normal to $. Denote its eigenvalues,
counted according to multiplicity, by

0 < < 2 -< < ’ < as i-" (1.3)

The problem of determining the geometry of f has been discussed by Pleijel [4], McKean and

Singer [3], Waechter [5], Gottlieb [1], Hsu [2] and Z,yed [6-8, 11], using the asymptotic expansion

of the spectral function

O(t) y] ezp(- t,,) as t--O. (1.4)
j=l

It has been shown that, in the case of Dirichlet boundary conditions (D.b.c)

o(t)- v ISl n dS+ao+O(t) as t-0, (1.5)(4rt)3/2 16xt + 12r3/2t S

while, in the case of Neumann boundary conditions (N.b.c.),

o(t)= v ISI H dS+ao+O(t as t0, (1.6)(4rt)3/2 + 1--’- +
12x312t S

In these formulae, V and SI are respectively the volume and the surface area of ft, while
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( ) is the mean curvature of S, where R and R are the principal radii of curvature.

Furtherxnore, the constant term a0 in (1.5) and (1.6) has the following forms:

f -isf(-- ’-}V-as, in the case of D.b.c. (see [5]),
(1.7)a0

s-if(--s -1’Vas, in the case of N.b.c. (see [2]).

In terms of the mean curvature H and Gaussian curvature N (1.7) may be rewritten--,
in the forms:

{’f(n N)es, in the case of D.b.c.,
"0

$ (1.8)
f(n m)dS, in the case of N.b.c.

The object of this paper is to discuss the following more general inverse problem: Let fl be

an arbitrary multiply connected bounded region in R3 which is surrounded internally by simply

connected bounded domains fl, with smooth bounding surfaces S,,i 1,2 m-I, and externally

by a simply connected bounded domain f,, with a smooth bounding surface S,. Suppose that

the eigenvaJues (1.3) are given for the eigenvalue equation

(A3 + ,)u 0 in f, (1.9)

together with one of the following mixed boundary conditions:

O.__U_oon$,, i=l, k, u=OonS,, i=k+l...m, (1.10)

or
=0onS,, i= , -,=0onS, =+1 m, (1.11)

o denote differentiations along the inward pointing normals to S,,i m. Determinewhere

the geometry of fl from the asymptotic form of the spectral function O(t) for small positive t.

Note that problem (1.)-(1.11) has been investigated recently by Zayed [11] in the special

case when f is an arbitrary doubly connected region (i.e., m 2).
2. STATEMENT OF RESULTS.

Suppose that the bounding surfaces S,(i= m) of the region fl are given hwallv

infinitely differentiable functions r"= v"(a,),n 1,2,3, of the parameters tr, constants, arv

of curvature, the first and second fundamental forms of Si(i m) can be written

in the following forms:

l’I(, ,) "t,i) , +",) ,),

and

In terms of the coefficients a,,a2i, bl,,bi the principal raxtii of curvatures for S0(i m) are

given by:

Rlt ali/bl, and R2i

Consequently, the mean curvatures H, and Gaussian curvatures N, of the bounding surfaces

S,(i m) are defined by:

Let I$i1,(i= m) be the surface areas of the bounding surfaces S, (i m) respectively.

Then, the results of problem (1.9)-(1.11) can be summarized in the following cases:

CASE 1. (N.b.c. on S,,i k and D.b.c. on S,, =/ + m)

(4xt)3/2 i=l i=k+l 12r3/2t i= S,

+
Si i=k+l S
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{ }+tl..") 3 .,ds,- ,,,dS,i
,q,

+ O() gs
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CASE 2. (D.b.c. on S,,i k and N.b.c. on S,,i + m)

In this case, the asyInptotic expansion of O(tl as t----(I follows directly from (2.1) with the

interchanges S., k.-,S., k +
With reference to formulae (1.5), (1.6) and to the articles [1], [2], [7], [11], the a.symptotic

expansion (2.1) may be interpreted as follows:

(i) fl is an arbitrary multiply connected bounded region in R3 and we have the mixed

boundary conditions (1.10) or (1.11) as indicated in the specifications of the two respective cases.

(if) For the first five terms, fl is an arbitrary multiply connected bounded region in R3 of

volume V.
In Case the bounding surfaces S,,i 1, k are of surface areas E IS, l, mean curvatures

I=1

//, and Gaussian curvature N together with Neumann boundary conditions, while the bounding
surfaces S,,i k + in are of surface areas IS, I, mean curvatures H, and Gaussian

I=k+l
curvature/v, together with Dirichlet boundary conditions.

We close this section with the following remarks:

REMARK 2.1. On setting/ 0 in (2.1) with the usual definition that is zero, we obtain

the result of D.b.c. on S,,i m.

REMARK 2.2. On setting/ m in (2.1) with the usual definition that is zero, we
I=rn+l

obtain the result of N.b.c. on Si, m.

3. FORMULATION OF THE MATHEMATICAL PROBLEM.

In analogy with the two-dimensional problem (soe tg, 10]), it is easy to show that

associated with problem (1.9)-(1.11)is given by:
,:,

where (, i, ill) i reell>s lmlction for the hai, equation

subject to the mixed boundary conditions (1.10) or (1.11) and the initial condition

limoG , z;t) $( - ), (3.3)

where $( - z) is the Dirac delta function located at the source point, .
Let us write

G( , ;t)= G0, ;t)+x, ;t), (3.4)

where
Go( l, 2;t) (4rt)-3/2ep{ 4 (3.5)

is the "fundamental solution" of the heat equation (3.2) while x( 1, ;t) is the "regular solution"

chosen so that G( , ;t)satisfies the mixed boundary conditions (1.10) or (1.11).
On setting we find that

O(t)
(4rt)3/2 +

K(t), (3.6)

where

In what follows, we shall use Laplace transforms with respect to t, and use as the Laplace
transform parameter; thus we define + 0

( 1, 2; s2) / e-S2tG( 1, 2;t)at" (3.8)
o
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An application of the Laplace transform to the heat equation (3.2) shows that i ,,2;s2)
satisfies the membraue equation

A s-s)( t,L 2;s2) -/i -2) in , (3.9)

together with the mixed boundary conditions (1.10) or (1.11).
The ymptotic expsion of K(t) s t0, may then deduced directly from the ymptotic

expsion of K" (sz) s--, where

4. CONSTRUCTION OF GREEN’S FUNCTION.
It is well known [7] that the membrane equation (3.9) h the fundeutal solution

0 z, ; sz) =e=p(-s z) (4.1)4ri
where r,,2= It-21 is the distance between the points t=,2,) and, 22, ]) of the domain ft. The existence of the solution (4.1) enables us to construct
integral equations for ,;sz) satisfying the mixed boundary conditions (1.10) or (1.11).
Therefore, in Case 1, Green’s theorem gives:

i=1Si

dy. (4.2)

On applying the iteration method (see. [7], [9], [11]) to the integral equation (4.2),
the Green’s function ( 1, 2;s) which hs the regular part:

{& ,, z;sz) ".
i=1 ~IY it L r

it’’-
d

(4.3)
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where
M,(,V’)= Z. K!V}(,V), (4.4)

v-0

M’(,’) *K!)(y ",y ), (4.5)
’=0

L,( ,v ")= /t’{( ", ), (4.6)
v----0

L’(y ,y’)= "K(..v{(V ",,.V.,y ), (4.7)

0 p( Sty
(4.8)

Ki(y ",y 0

and

emp( Sry Y ")
(4.10)K_,(y’,)= r

(4.11)

In the same way, we can show that in Case 2. the Grin’s function G" ( , 2;s2) h,as a regula,
part of the same form (4.3) with the interchanges S,,, .S,,i : + m.

On the basis of (4.3) the function ( ,
and 2 lie in the neighborhood of the bounding surfaces Si, i= m of t2 is particulari>

interesting. For this case, we need to use the following coordinates.

5. COORDINATES IN THE NEIGHBORHOOD OF Si, m.

Let h > O(i m) be sufficiently small. Let ni(i m) be the minimum distances from a

point =(,z2,za) of the domain f to its bounding surfaces Si(i= m) respectively. Let

n i(tri)(i= m) denote the inward drawn unit normals to S,(i m) respectively. We note
that the coordinates in the neighborhood of Si(i k + m) are in the same form as in Section

5.1 of [11] with the interchanges a ai, tr, (i k+l m). Thus we have the same formulae (5.1.1)-(5.1.fi) of Section 5.1 in [11] with

the interchanges n ai, (a2) i(ai), II! IIii, II2 II2i, H H, and N N,
(i=+

Similarly, the coordinates in the neighborhood of Si,(i :) are similar to those obtained

0"21 t?, 111 tli, h hi, I1 li, *(II)in Section 5.2 of [11] with the interchanges

(li) and 6 6i, (i k). Thus, we have the same formulae (5.2.1)-(5.2.5) of Section 5.1 in

[11] with the interchanges n n,, n (%)
N,, (i k + l, .m)

6. SOME LOCAL EXPANSIONS.
It now follows that the local expansions of the functions

Fxf ,i=1 m, (6.1)
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when the distance between and y is small are very similar to those obtained in Section 6 of

[11]. Consequently, the local behavior of the kernels

’,(y ", ),’’_,( ",y ), (6.2)

g,(g ",g ), ’_,(g" g ), (6.3)

when the distance between y and y’is small, follows directly from the local expansions of the

functions (6. ).
DEFINITION I. If and are points in the half-part f3 > 0, then we define

An ex( x, z;s)-function is defined for points and belong to sufficiently small domains

except when =2 li,(i= m) and , is called the degree of this function. For every

positive integer A, it has the local expansion (see [11])"

where * denotes a sum of a finite number of erms in which J(,) are infinitely differentiable

functions. In this expansion P, P, , , are integers, where P > 0, P >_ 0, > 0, >0,

, nB(P / P-), - 4- / and the minimum is taken over all terms which occur in the

summation E’. The remainder RA( 1, 2) has continuous derivatives of order d < A satisfying

LtRA( 1, 2;s)= 0 [,- ^etp(- As12) as

where A is a positive constant.

Thus, using methods similar to those obtained in Section 7 of [11], we can show that the

functions (6.1) are e-functions with degrees , 1, 2 respectively. Consequently. the function.

(6.2) are eX-functions with degrees , 0,- while the functions (6.3) are t-functions with, 0,1 respectively.
DEFINITION 2. If and are points in large domains fl + S,, then we define

’,: mn(rt +rt : )if .$i,i=l

and

An Ex, ;)-function is defined and infinitely differentiable with respect to and

when these points belong to large domains fl + $i except when 2 Si, m. Thus, the

r-ftmctioa ha a similar local expansion of the -fuaction (see [7], [11]).
With the help of Section 8 in [11], it is easily seen that formula (4.3) is an E- 1, ;)-

function and consequently
/= m

i=1 i=/+1

which is valid for s--.oo, where Ai(i m) are positive constants. Formula (6.4) shows that

0 , 2,s) is exponentially small for

With reference to Sections 7 and 9 in [11], if the -expansions of the functions (6.1)-(6.3) are

introduced into (4.3) and if we use formulae similar to (7.4) and (7.10) of Section 7 in [11], we

obtain the following local behavior of [, ;2) as -.oo which is valid when and are
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(6.5)

where, if, and belong to sufficiently small domains (1,), m, then

( ,, ;,2) _P(-2)+o as -. (6.6)

When ,2 > ti, > 0,i k and h,2 > $, > 0.i k + 1, m, the function 2 ( t, 2; is of order

0{ep(- sNo) s,N0 > 0. Thus, since lira ’ $im 2 (s [11]), then the locMr12__O R12OP12
havior of the formula (4.3) h the form (6.5), where if and belong o large domains

S,, t, we get

8.12 + Ot r12 J
(6.7)

while, if and belong to large domains f + S,, t + m, we get:

7. CONSTRUCTION OF RESULTS.
Since for 3 >_ hi > 0, m the functions ] ,( , ;s2) are of orders O(e- 2A,,,,), the integral

over 1 of the function ( ,-s) can be approximated in the following way (see (3.10))"

h!

" (s2)= E ,( ,z "s2){ l-2311, +({3)2N,}d{3dS,
i=k+l S, 3= 0

h

E / / ,(.t.. ’:s2){l+2{311,+({3)2N,}d{3dS,
i= ls, 3 =0

rtt
2Atsht+ 0( as s-o. (7

i=1

If the eX-expansions of ,( , ;s2) are introduced into (7.1) and with the help of formula

(10.2) of Section 10 in [111 we deduce after inverting Laplace transforms, that

where

and

a a
K(t) =-T+77- +a3 +a4t/2 +O(t) as t-,O,

k

E [Si[ ’a2= E HidS"
k + tgX3"2 1"-" C,

a3 1-’
S,

E H2 N,)dS,
i=k+l S,

"= S, i=k+l

(7.2)

On inserting (7.2) into (3.6) we arrive at our result (2.1).
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