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In order to solve the nonlinear mechanism in the process of actual control application of six-degree-of-freedom parallel Stewart
platform, the chaos theory was applied in the paper to analyze the acceleration control signal. The research included correlation
dimension calculation by use of the G-P method, the maximum Lyapunov coefficient of the acceleration control signal, and
Kolmogorov entropies of the acceleration control signal. The results show that the acceleration signals are of chaos characteristics,
and there are lots of influencing factors to the acceleration variables.

1. Introduction

There are a lot of uncertainty factors and nonlinear mech-
anisms in the process of actual control application of six-
degree-of-freedom parallel Stewart platform [1–3]. It is very
obvious that vibration characteristics of the new type of
passive super static vibratory platform [4] are of prodigious
complexity. Chang-Jian and Chang [5] perform a system-
atic analysis of the dynamic behavior of a single degree-
of-freedom spur gear system with and without nonlinear
suspension (resp.), in which the onset of chaotic motion is
identified from the phase diagrams, power spectra, Poincaré
maps, Lyapunov exponents, and fractal dimension of the
gear system. The numerical results reveal that the system
exhibits a diverse range of periodic, subharmonic, and chaotic
behaviors. Li et al. [6] give a mathematically analytical
proof on the existence of chaos in a generalized Duffing-
type oscillator with fractional-order deflection and provide
a rigorous theoretical foundation to support studies and
applications of this important class of dynamical systems. Hu
et al. [7] use a chaotic analysis method to analyze pressure
signal of a slurry column in order to indicate the flow
pattern. Gao et al. [8] identify time-delay fractional-order
chaos systems via the differential evolution algorithms, and
the experiments’ results show that the proposed inversion
mechanism for time-delay fractional-order chaotic systems

is a successful method for the advantages of high precision
and robustness. Farshidianfar and Saghafi [9] use Melnikov
analysis to develop a practical model of gear system to
control and eliminate the chaotic behavior. Gaume et al. [10]
study the rainfall time series, it resulting from stochastic or
low-dimensional deterministic chaotic processes; the authors
used nonlinear analysis tools dedicated to the identification
of chaotic behavior. Miandoab et al. [11, 12] study nonlin-
ear dynamics and chaos in MEMS/NEMS resonators and
indicate that the necessary condition for the creation of
chaos in the resonator is the intersection of the system
steady state response with the homoclinic orbit. Khatibi
et al. [13] investigate the existence of chaotic behavior in
the river stage and observe discharge time series at the
Sogutluhan hydrometric station, Turkey. The results indicate
the existence of low-dimensional chaos in the two time series.
In order to complete identification of chaos of nonlinear
nonholonomic systems, Chang and Ge [14] study the scope
of the chaos; the most reliable Lyapunov exponents, phase
portraits, Poincaré maps, and bifurcation diagrams are also
proved. Yuan et al. [15] apply the 0-1 test for chaos to detect
chaos exhibited by fractional-order delayed systems. Luo and
Wang [16] investigate dynamic behaviors of a fractional-
order chaotic system in complex space. Mahmoud et al. [17]
investigate the phenomenon of chaos synchronization of two
different chaotic complex systems of theChen and Lü type via
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Figure 1: Test system of Stewart platform with six degrees.

the methods of active control and global synchronization.
Wu and Baleanu [18] propose a discrete fractional logistic
map from bifurcation diagrams; (in addition,) the chaotic
behaviors are numerically illustrated. Chaos appears in non-
linear system mainly, and the classification of the nonlinear
system is mainly composed of attractor for calibration, which
is the core of the chaotic motions of the nonlinear dissipative
system [19]. Li et al. [20, 21] study analytical control of chaos
based on theoretical analysis and experimental verification
and the research results which are of exciting significance are
used to study on algebraic criteria for second-order global
consensus in multiagent networks [22, 23].

Attractor refers to the motion of nonlinear dynamic
system eventually formed in the phase space of the invariant
manifold or point set; thus it approximately can be divided
into three categories [24–26]: (1) A fixed point that is
tracked through all phase spaces is named as the first kind
of attractor that can describe calibration final state of the
nonlinear time invariant system. (2) The phase space of the
closed curve and curved surface is named as the second
kind of attractor that can describe the state of the time
variant system. (3) Besides, the other kinds of attractors
are collectively regarded as strange attractors or chaotic
attractors.

So for the vibration control of the piezoelectric actuator,
the acceleration test data of the piezoelectric actuatormust be
analyzed. In order to take a precise control of the piezoelectric
actuator, the nonlinear characteristic of the actuator must
be known, so the control method can be designed based on
the analyzed result. In the paper, the chaos algorithm was
applied to distinguish whether the system was a chaos system
or not. Chaos analysis for nonlinear system is mainly the
study of the strange attractor, and its nature can be described

as follows: the Lyapunov coefficient which represents the
characteristic index of dynamic system, Kolmogorov entropy
which represents the chaos level of the dynamic system, and
the correlation dimension which stands for the complexity
of the dynamic system. In order to determine whether a
dynamic system is a chaotic system or not, the chaotic
attractor must be provided with the following two basic
characteristics: (1) The attractor of the system in the phase
space has a structure of self-similar fractal dimension. (2)
The system is sensitive to initial condition. If the conditions
above can be available to the attractor, the system is of chaotic
characteristic.

2. Chaos Fractal Research on
Acceleration Time Series Based on
the Piezoelectric Actuator

In order to establish a vibration control model of six-
degree-of-freedom parallel Stewart platform, the detection
acceleration signals from the piezoelectric actuator load
side are regarded as control reference, and the acceleration
responses of piezoelectric actuator 1, piezoelectric actuator
2, piezoelectric actuator 3, piezoelectric actuator 4, piezo-
electric actuator 5, and piezoelectric actuator 6 are recorded
by using of acceleration sensor A, acceleration sensor B,
acceleration sensor C, acceleration sensor D, acceleration
sensor E, and acceleration sensor F and data acquisition
equipment based on the influences of the mechanical dis-
turbances coming from the bottom of parallel Stewart
platform as shown in Figure 1. The type of acceleration
sensor is YD121-1000 ICP. The data acquisition equipment is
LMS SCADAS Mobile.
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The acceleration values are shown in Figure 2 and acceler-
ation time series are reconstructed to obtain the novel phase
space of the attractors; then it can be identified whether
acceleration time series are of chaotic characteristic or not.

2.1. Phase Space Reconstruction. The phase space reconstruc-
tion theory is put forward by Takens [27] and it can be
used to analyze the chaotic characteristic of time series as a
kind of low order nonlinear dynamic systems. Assuming that
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑗
, . . . , 𝑥

𝑛
are acceleration time series of actuator

as is shown in Figure 2 and 𝜏 is selected as delay time, 𝑚 for

embedding dimension, then the reconstructed phase space
was expressed as

X (𝑡)

= {𝑥 (𝑡) , 𝑥 (𝑡 + 𝜏) , 𝑥 (𝑡 + 2𝜏) , . . . , 𝑥 [𝑡 + (𝑚 − 1) 𝜏]}
𝑇
,

𝑡 = 1, 2, . . . , 𝑁,

(1)

where 𝑁 represents phase points, 𝑁 = 𝑛 − (𝑚 − 1)𝜏; X(𝑡)
represents dimensional phase space vector of𝑚.

Then the phase space sequence composed by (1) is
expressed as
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(2)

There are interactions in evolution among the compo-
nents in (2); therefore, the information of the system is
implied in the process of the development of each compo-
nent; thus a certain change rule can be found and extracted
from the system. As long as delay time 𝑡 and the embedding
dimension 𝑚 are known, phase space can be reconstructed
from (2).

It is well known that autocorrelation method, mean dis-
placement, multiple correlation method, and mutual infor-
mation are often used to calculate the delay time 𝜏 as themain
methods. In the paper, the autocorrelationmethod is adopted
and its computational formula is expressed as

𝑓 (𝜏) =

∑
𝑛−𝑘

𝑡=1
(𝑥
𝑡
− 𝑥) (𝑥

𝑡+𝑘
− 𝑥)

∑
𝑛−𝑘

𝑡=1
(𝑥
𝑡
− 𝑥)
2

, (3)

where 𝑓(𝜏) represents the 𝑘 order autocorrelation coefficient;
𝑥 is the average value of {𝑥

𝑡
}.

When the correlation coefficient is close to zero, the
corresponding 𝑘 is the desired delay time 𝜏.

In the process of chaos study, how to determine whether
the attractor is scale-free interval or fractal is a firstly
important thing. Thus the concept of correlation dimension
is brought by Grassberger and Procaccia, or G-P method for
short. The calculation process is expressed as follows.

The integral function 𝐶
𝑚
(𝜀) can be defined as [27]

𝐶
𝑚
(𝜀) =

1

𝑁
2

𝑚

𝑁
𝑚

∑

𝑖=1

𝑁
𝑚

∑

𝑗=1

𝐻(𝜀 −

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
𝑖
− 𝑋
𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
) , (4)

where 𝜀 represents the selected distance; ‖𝑋
𝑖
−𝑋
𝑗
‖ represents

the Euclidean distance between 𝑋
𝑖
and 𝑋

𝑗
;𝐻 represents the

function of Heaviside.
Then 𝜀 is selected; 𝐶

𝑚
(𝜀) represents the probability of

Euclidean distance between 𝑋
𝑖
and 𝑋

𝑗
less than 𝜀; with the

increase of 𝜀, 𝐶
𝑚
(𝜀) will increase as rate; the corresponding

relation is expressed as

𝐶
𝑚
(𝜀) ∝ 𝜀

𝐷
2

. (5)

After both ends of (5) are taken by logarithm simultane-
ously, (6) can be obtained [27]:

ln𝐶
𝑚
(𝜀) ∝ 𝐷

2
ln 𝜀. (6)

From (6), in scale-free interval, the relationship between
ln𝐶
𝑚
(𝜀) and ln(𝜀) is linear; the correlation dimension 𝐷

2
is

the slope of the line. For deterministic dynamics, with the
increase of 𝑚, 𝐷

2
will tend to be saturated. This shows that

there exists a fractal time series distribution characteristic and
the attractor dimension𝐷

2
is equal to the linear slope.

2.2. Chaotic Diagnosis of Actuator Acceleration Signals. Based
on formula (3), the time series of the actuator acceleration
signals basically satisfies the independent requirements of
dimensional phase space when the lag time 𝜏 = 2. And G-P
method is applied to calculate the corresponding correlation
dimension; thus the results are shown in Figure 3.

As shown in Figure 3, the correlation dimensions of the
six actuators are 5, 8, 6, 5, 7, and 6, respectively; the results
represent that there are 5, 8, 6, 5, 7, and 6 unknown impact
factors on acceleration signals; thus the chaos system is
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Figure 2: Acceleration signals of the actuators.

determined. With the increase of the embedding dimension
of the time series of acceleration signals, ln(𝜀) ∼ ln[𝐶

𝑚
(𝜀)]

curve has linear correlation regional; therefore, the time
series of acceleration signals has chaotic characteristics.

The slopes of curves are obtained after the least-squares
fitting through the acceleration of time sequence correlation
dimension figure. Figure 4 shows the relationship between
the embedding dimension𝑚 and correlation dimension𝐷

2
.
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Figure 3: Correlation dimension on acceleration signals of the actuators.
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Figure 4: Change curve of the embedding dimension𝑚 and saturated correlation dimension𝐷
2
.

According to Figures 3 and 4, some results can be
concluded as follows: (1) When the acceleration time series
of the embedding phase space dimension 𝑚 of actuator 1 are
greater than or equal to 5, the correlation dimension tends

to be stable, and the corresponding saturated correlation
dimension 𝐷

2
= 0.78. (2) When the acceleration time series

of the embedding phase space dimension𝑚 of actuator 2 are
greater than or equal to 8, the correlation dimension tends
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to be stable, and the corresponding saturated correlation
dimension 𝐷

2
= 3.11. (3) When the acceleration time series

of the embedding phase space dimension𝑚 of actuator 3 are
greater than or equal to 6, the correlation dimension tends
to be stable, and the corresponding saturated correlation
dimension 𝐷

2
= 2.04. (4) When the acceleration time series

of the embedding phase space dimension 𝑚 of actuator 4
are greater than or equal to 5, and the correlation dimension
tends to be stable, the corresponding saturated correlation
dimension 𝐷

2
= 3.4. (5) When the acceleration time series

of the embedding phase space dimension𝑚 of actuator 5 are
greater than or equal to 7, the correlation dimension tends
to be stable, and the corresponding saturated correlation
dimension 𝐷

2
= 1.7. (6) When the acceleration time series of

the embedding phase space dimension 𝑚 of actuator 6 are
greater than or equal to 6, the correlation dimension tends
to be stable, and the corresponding saturated correlation
dimension𝐷

2
= 1.88.

2.3.MaximumLyapunov Index of the Acceleration Time Series.
The calculation of the saturated correlation dimension is a
necessary condition to discriminate whether the acceleration
series are chaotic or not. To determine whether the system
is really chaotic, a more critical judgment of maximum
Lyapunov index needs to be computed, which reflects the
system adjacent track in the phase space of convergence
and divergence of the long-term average. For maximum
Lyapunov index time series, when 𝜆 < 0, the system has
a stable fixed point; when 𝜆 = 0, it corresponds to the
bifurcation point or system periodic solution of the system
for the cycle system. When 𝜆 > 0, it shows that the system is
chaotic, and the greater the value of the index of the system,
the more obvious the chaos characteristic and the higher the
degree of chaos it represents.

The calculation process of maximum Lyapunov index is
shown below [28, 29].

After reconstructing actuator acceleration signals in
phase space, the initial shortest distance between each point
is calculated and separated in a short time due to

𝑑
𝑖
(0) = min 󵄩󵄩󵄩

󵄩
𝑋
𝑖
− 𝑋
𝑖̂

󵄩
󵄩
󵄩
󵄩
,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖 − 𝑖̂

󵄨
󵄨
󵄨
󵄨
󵄨
> 𝑤, (7)

where𝑤 represents the sequence of the sampling period, and
it can be obtained by Fourier transform estimates

𝑤 =

𝐿

∑

𝑗=1

𝐴
𝑗
(

𝐿

∑

𝑗=1

𝑓
𝑗
𝐴
𝑗
)

−1

, (8)

where 𝑓
𝑗
is evenly distributed between 0 and Nyquist fre-

quency point; 𝐴
𝑗
is amplitude corresponding to 𝑓

𝑗
.

For each point 𝑋
𝑖
in the phase space, calculate the near

point of the distance after 𝑗 discrete time step:

𝑑
𝑖
(𝑗) =

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋
𝑖+𝑗

− 𝑋
𝑖̂+𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
,

𝑗 = 1, 2, . . . ,min (𝑛 − 𝑖, 𝑛 − 𝑖̂) .
(9)

Table 1: Maximum Lyapunov index of the acceleration time series.
Time series Maximum Lyapunov index Is there chaos?
Actuator 1 0.0873 Yes
Actuator 2 0.0694 Yes
Actuator 3 0.0932 Yes
Actuator 4 0.0739 Yes
Actuator 5 0.0833 Yes
Actuator 6 0.0497 Yes

Assuming the 𝑖th is the adjacent point approximation to
maximum Lyapunov index rate index, thus

𝑑
𝑖
(𝑗) = 𝐶

𝑖
𝑒
𝜆
1
(𝑗Δ𝑡)

, (10)

where 𝐶
𝑖
is the initial separation distance and it is constant.

After taking logarithm into both ends of (10), (11) can be
obtained:

ln 𝑑
𝑖
(𝑗) = ln𝐶

𝑖
+ 𝜆
𝑖
(𝑗Δ𝑡) , 𝑖 = 1, 2, . . . , 𝑛. (11)

The equation represents a collection of approximate
parallel lines; the slope was 𝜆

1
. After the least-squares fitting,

the maximum Lyapunov index of 𝜆
1
is expressed as

𝜆
1
=

1

∑ 𝑗
2
∑[𝑗 ∗ 𝑦 (𝑗)] , (12)

where 𝑦(𝑖) can be expressed as

𝑦 (𝑖) =

1

𝑝Δ𝑡

𝑝

∑

𝑖=1

ln 𝑑
𝑖
(𝑗) , (13)

where 𝑝 is the number of nonzero 𝑑
𝑖
(𝑗).

Through calculating the maximum Lyapunov indexes of
the acceleration time sequence of six actuators, the results are
shown in Table 1.

From Table 1, the six acceleration time series are of
obvious chaos characteristic, which means that there are lots
of influencing factors to the acceleration variables.

2.4. Kolmogorov Entropies of Acceleration Time Series. Kol-
mogorov entropies [30–32] are proposed by Kolmogorov
based on information entropy; the value of 𝐾 entropy can
distinguish regular motion from chaotic system and random
motion. When 𝐾 entropy is greater than 0, it can be used
to identify the chaotic characteristics of dynamic system and
describe the chaos degree of dynamics. The bigger value
of 𝐾 entropy means the larger loss of information rate;
meanwhile, the bigger the chaos degree of the system is,
the more complex the system is. Kolmogorov entropy is
defined as the average loss rate of information, and it is
difficult to calculate the value of Kolmogorov entropy in
practical application since the dynamic equations of the
system are impossible to be established correctly. However,
the association of Kolmogorov entropy with Renyi entropy
and the topological entropy can be expressed [32]:

𝐾
2
≤ 𝐾
1
≤ 𝐾
0
, (14)

where 𝐾
2
is Renyi entropy; 𝐾

1
is Kolmogorov entropy; 𝐾

0
is

topological entropy.
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Table 2: Result of Kolmogorov entropy.

Time series Kolmogorov entropy (nats/s)
Actuator 1 0.081
Actuator 2 0.216
Actuator 3 0.107
Actuator 4 0.088
Actuator 5 0.109
Actuator 6 0.188

Therefore, Renyi entropy is usually used to calculate the
approximate of Kolmogorov entropy [32]

𝐾
2
(𝑚, 𝜀) =

1

𝜏

ln
𝐶
𝑚
(𝜀)

𝐶
𝑚+1

(𝜀)

, (15)

where 𝐶
𝑚
(𝜀) represents the integral function in the correla-

tion dimension of (4).
The calculation results of Kolmogorov entropy are

obtained in Table 2.
As shown in Table 2, it can be concluded that the six

values of Kolmogorov entropy are small, among which the
smaller one represents a lower degree of chaos while the
bigger one represents a higher degree of chaos. By comparing
𝐾 entropy and correlation dimension, it can be found that the
two are corresponding.

3. Conclusion

(1) The acceleration time series of the piezoelectric actu-
ators are of chaotic character, and the time series is a
chaotic sequence.

(2) When the lag time 𝜏 = 2, the acceleration time series
of the piezoelectric actuators basically satisfies the
independent requirements of the phase space of each
dimension.

(3) The acceleration time series of the piezoelectric actua-
tors result from the nonlinear chaotic dynamic system
evolution, and the maximum or the minimum of the
internal factors affecting acceleration time series of
the piezoelectric actuators is 6 or 1.

(4) The maximum Lyapunov indexes and Kolmogorov
entropy of the acceleration time series of the piezo-
electric actuators are solved and calculated, and the
results show that the maximum Lyapunov indexes
and Kolmogorov entropies are positive and the accel-
eration signals of the actuators are of chaos character-
istics.
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complex Chen and Lü systems,” Nonlinear Dynamics, vol. 55,
no. 1-2, pp. 43–53, 2009.

[18] G.-C. Wu and D. Baleanu, “Discrete fractional logistic map and
its chaos,” Nonlinear Dynamics, vol. 75, no. 1-2, pp. 283–287,
2014.

[19] D. Ruelle and F. Takens, “On the nature of turbulence,” Com-
munications in Mathematical Physics, vol. 20, no. 3, pp. 167–192,
1971.

[20] H. Li, X. Liao, J. Huang, G. Chen, Z. Dong, and T. Huang,
“Diverting homoclinic chaos in a class of piecewise smooth
oscillators to stable periodic orbits using small parametrical
perturbations,” Neurocomputing, vol. 149, pp. 1587–1595, 2015.

[21] H. Li, X. Liao, and R. Liao, “A unified approach to chaos
suppressing and inducing in a periodically forced family of non-
linear oscillators,” IEEE Transactions on Circuits and Systems. I.
Regular Papers, vol. 59, no. 4, pp. 784–795, 2012.

[22] H. Li, X. Liao, X. Lei, T. Huang, and W. Zhu, “Second-
order consensus seeking in multi-agent systems with nonlinear
dynamics over random switching directed networks,” IEEE
Transactions on Circuits and Systems—I: Regular Papers, vol. 60,
no. 6, pp. 1595–1607, 2013.

[23] H. Li, X. Liao, T. Huang, Y. Wang, Q. Han, and T. Dong,
“Algebraic criteria for second-order global consensus in multi-
agent networks with intrinsic nonlinear dynamics and directed
topologies,” Information Sciences, vol. 259, no. 1, pp. 25–35, 2014.

[24] C. H. Wang, X. W. Luo, and Z. Wan, “Generation and circuit
implementation of multi-block multidirectional grid multi-
scroll chaotic attractors,” Optik, vol. 125, no. 22, pp. 6716–6721,
2014.

[25] D. Kim and P. H. Chang, “A new butterfly-shaped chaotic
attractor,” Results in Physics, vol. 3, pp. 14–19, 2013.

[26] L. Pan, W. N. Zhou, and J. A. Fang, “On dynamics analysis of
a novel three-scroll chaotic attractor,” Journal of the Franklin
Institute, vol. 347, no. 2, pp. 508–522, 2010.

[27] F. Takens, Dynamical System and Turbulence, Lecture Notes in
Mathematics, Springer, New York, NY, USA, 1981.

[28] P. Balenzuela and C. O. Dorso, “Maximum Lyapunov exponent
of highly excited finite systems,” Physica A: Statistical Mechanics
and Its Applications, vol. 283, no. 1-2, pp. 267–272, 2000.

[29] W. Caesarendra, B. Kosasih, A. K. Tieu, and C. A. S. Moodie,
“Application of the largest Lyapunov exponent algorithm for
feature extraction in low speed slew bearing condition moni-
toring,”Mechanical Systems and Signal Processing, vol. 50-51, pp.
116–138, 2015.

[30] X. L. Jia, C. D. Zhao, and X. B. Yang, “Global attractor and
Kolmogorov entropy of three component reversible Gray–
Scott model on infinite lattices,” Applied Mathematics and
Computation, vol. 218, no. 19, pp. 9781–9789, 2012.

[31] L. I. Aftanas, N. V. Lotova, V. I. Koshkarov, V. L. Pokrovskaja, S.
A. Popov, and V. P. Makhnev, “Non-linear analysis of emotion
EEG: calculation of Kolmogorov entropy and the principal
Lyapunov exponent,”Neuroscience Letters, vol. 226, no. 1, pp. 13–
16, 1997.

[32] J. Q. E, Y. N. Wang, C. Mei, and J. K. Gong, “Chaotic behavior
of crude copper composition time series in the process of matte
converting and its predicable time scale,” Nonlinear Analysis:
Real World Applications, vol. 7, no. 4, pp. 651–661, 2006.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


