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The peristaltic transport of Johnson-Segalman fluid by means of an infinite train of si-
nusoidal waves traveling along the walls of a two-dimensional flexible channel is investi-
gated. The fluid is electrically conducted by a transverse magnetic field. A perturbation
solution is obtained for the case in which amplitude ratio is small. Numerical results are
reported for various values of the physical parameters of interest.

1. Introduction

Peristalsis is an important mechanism for mixing and transporting fluids, which is gen-
erated by a progressive wave of contraction or expansion moving on the wall of the tube.
The mechanism is found in the gastrointestinal, urinary, reproductive tracts, and many
other glandular ducts in a living body. Considerable analysis of this mechanism has been
carried out, primarily for a Newtonian fluid with a periodic train of sinusoidal peri-
staltic waves. The inertia-free peristaltic flow with long-wavelength analysis was given by
Shapiro et al. [17]. The early developments on mathematical modeling and experimental
fluid mechanics of peristaltic flow were given in a comprehensive review by Jaffrin and
Shapiro [7]. The main features of the peristaltic pumping, such as trapping and reflux
phenomena, have been studied extensively for Newtonian fluids. However, the rheologi-
cal properties of the fluids can affect these characteristics significantly. Further, many of
the physiological fluids are known to be non-Newtonian. Peristaltic transport of blood in
small vessels was investigated using the viscoelastic, power-law, micropolar, Casson fluid
models by [2, 14, 20, 22], respectively. Peristaltic flow of a second-order fluid in a planar
channel and in an axisymmetric tube is studied by Siddiqui et al. [18, 19] under long-
wavelength assumption. The power-law model was used to study the fluid transport in
the male reproductive tract by [24], small intestine and oesophagus by [13, 23].

Although there are many models to describe non-Newtonian behavior of the fluids but
in recent years, the Johnson-Segalman fluid has acquired a special status, as it includes
as special cases the classical Newtonian fluid and Maxwell fluid. The Johnson-Segalman
model is a viscoelastic fluid model which was developed to allow for nonaffine defor-
mations [8]. Some researchers [9, 10, 11] used this model to explain the phenomenon
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of “spurt.” “Spurt” is a phenomenon found in the flow of a number of non-Newtonian
fluids in which there is a large increase in the volume throughout for a small increase
in the driving pressure gradient, at a critical pressure gradient. Experimentalists usually
associate “spurt” with slip at the wall and there have been a number of experiments [5] to
support this hypothesis. Rao and Rajagopal [16], and Rao [15] have also been advanced
towards explaining the phenomenon of “spurt.” Peristaltic motion of Johnson-Segalman
fluids in a planar channel was investigated by Hayat et al. [6].

The magnetohydrodynamic (MHD) flow of a fluid in a channel with elastic, rhythmi-
cally contracting walls (peristaltic flow) is of interest in connection with certain problems
of the movement of conductive physiological fluids, for example, the blood and blood
pump machines, and with the need for theoretical research on the operation of a peri-
staltic MHD compressor. The effect of moving magnetic field on blood flow was studied
by Sud et al. [25], and they observed that the effect of suitable moving magnetic field ac-
celerates the speed of blood. Srivastava and Agrawal [21] considered the blood as an elec-
trically conducting fluid and constitutes a suspension of red cell in plasma. Also, Agrawal
and Anwaruddin [1] studied the effect of magnetic field on blood flow by taking a simple
mathematical model for blood through an equally branched channel with flexible walls
executing peristaltic waves using long-wavelength approximation method and observed,
for the flow of blood in arteries with arterial disease like arterial stenosis or arterioscle-
rosis, that the influence of magnetic field may be utilized as a blood pump in carrying
out cardiac operations. Mekheimer [12] studied peristaltic flow of blood under effect of
a magnetic field in nonuniform channels. He observed that the pressure rise for a cou-
plestress fluid (as a blood model) is greater than that for a Newtonian fluid and is smaller
for a magnetohydrodynamic fluid than for a fluid without an effect of a magnetic field.

In this paper, we study the MHD peristaltic motion of Johnson-Segalman fluid in the
planar channel. A perturbation solution is obtained for the case in which amplitude ratio
is small. Numerical results are reported for various values of the physical parameters of
interest.

2. Basic equations and formulation of the problem

We will consider a two-dimensional channel of uniform width 2d filled with an incom-
pressible electrically conducting Johnson-Segalman fluid. We assume an infinite wave
train traveling with velocity c along the walls (see Figure 2.1). The continuity equation,
the equation of motion, and the Maxwell equations governing the flow of a magnetohy-
drodynamic incompressible Johnson-Segalman fluid are

div V= 0, (2.1)

ρ
dV
dt
= divΣ+ J×B, (2.2)

div B= 0, curlB= µmJ, curlE=−∂B
∂t

, (2.3)

where V = (u(x, y, t),v(x, y, t),0) is the velocity field, Σ is the Cauchy stress tensor, J is
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Figure 2.1. Geometry of the problem.

the current density, B is the total magnetic field, E is the total electric field, µm is the
electric permeability, and ρ is the density. The generalized Ohm’s law is

J= σ(E + V×B), (2.4)

where σ is the electrical conductivity. It is assumed following [3, 4] that there is no applied
or polarization voltage so that E= 0. Now we assumed that a magnetic field B= (0,B0,0)
with a constant magnetic flux density B0 is applied in the y-direction. Regardless of the
induced magnetic field, it follows from (2.4) that the magnetohydrodynamic force is

J×B=−σB2
0ui. (2.5)

According to Johnson and Segalman [8], the constitutive equations for Johnson-
Segalman fluid are

Σ=−PI + 2µD + S,

S +m
(
dS
dt

+ S(W− lD) + (W− lD)TS
)
= 2ξD,

(2.6)

where, −PI is the spherical part of the stress due to the constraint of incompressibility,
d/dt is the material time derivative, µ and ξ are the viscosities, m is the relaxation time,
and l is the slip parameter. The tensors D and W are defined as follows:

D= 1
2

(
L + LT

)
, W= 1

2

(
L−LT

)
, L= gradV. (2.7)

It should be noted that this model includes the viscous Navier-Stokes fluid as a special case
for m = 0. Further, when l = 1, the Johnson-Segalman model reduces to the Oldroyd-B
fluid; and when µ = 0 and l = 1, the model reduces to the Maxwell fluid. For unsteady
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two-dimensional flow, we find that (2.1)–(2.7) take the following form:

∂u

∂x
+
∂v

∂y
= 0, (2.8)

ρ
(
∂u

∂t
+u

∂u

∂x
+ v

∂u

∂y

)
=−∂P

∂x
+µ
(
∂2u

∂x2
+
∂2u

∂y2

)
+
∂Sxx
∂x

+
∂Sxy
∂y

− σB2
0u, (2.9)

ρ
(
∂v

∂t
+u

∂v

∂x
+ v

∂v

∂y

)
=−∂P

∂y
+µ
(
∂2v

∂x2
+
∂2v

∂y2

)
+
∂Sxy
∂x

+
∂Syy
∂y

, (2.10)

Sxx +m
(
∂Sxx
∂t

+u
∂Sxx
∂x

+ v
∂Sxx
∂y

)
+m

(
(1− l)∂v

∂x
− (1 + l)

∂u

∂y

)
Sxy − 2lm

∂u

∂x
Sxx = 2ξ

∂u

∂x
,

(2.11)

Sxy +m
(
∂Sxy
∂t

+u
∂Sxy
∂x

+ v
∂Sxy
∂y

)
+
m

2

(
(1− l)∂u

∂y
− (1 + l)

∂v

∂x

)
Sxx

+
m

2

(
(1− l)∂v

∂x
− (1 + l)

∂u

∂y

)
Syy = ξ

(
∂v

∂x
+
∂u

∂y

)
,

(2.12)

Syy +m
(
∂Syy
∂t

+u
∂Syy
∂x

+ v
∂Syy
∂y

)
+m

(
(1− l)∂u

∂y
− (1 + l)

∂v

∂x

)
Sxy

− 2lm
∂v

∂y
Syy = 2ξ

∂v

∂y
.

(2.13)

Let the vertical displacements of the upper and lower walls be η and−η, respectively. The
geometry of the wall surface is defined as

η = aCos
2π
λ

(x− ct), (2.14)

where a is the amplitude, λ is the wavelength, and c is the wave speed. The horizontal
displacement will be assumed zero. Hence, the boundary conditions for the fluid are

u= 0, v =±∂η
∂t

at y =±d±η. (2.15)

We introduce nondimensional variables and parameters as follows:

x∗= x

d
, y∗= y

d
, u∗= u

c
, v∗ = v

c
, t∗ = ct

d
, p∗ = p

ρc2
, η∗ = η

d
,

S∗xx =
dSxx
µc

, S∗xy =
dSxy
µc

, S∗yy =
dSyy
µc

, amplitude ratio ε = a

d
,

(2.16)

wave number α=2πd/λ, Reynolds numberR=cdρ/µ, magnetic parameterM2=dσB2
0/ρc,

and Weissenberg number We= cm/d.
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In terms of the stream function ψ(x, y, t), after eliminating P and dropping the asterisk
over the symbols, (2.9)–(2.15) become

∂

∂t
∇2ψ +ψy∇2ψx −ψx∇2ψy = 1

R

[∇4ψ + Sxx,xy + Sxy,yy − Sxy,xx − Syy,yx
]−M2ψyy ,

(2.17)

Sxx+We
[
Sxx,t+ψySxx,x−ψxSxx,y

]−We
[
(1−l)ψxx+(1 + l)ψyy

]
Sxy − 2lWeψxySxx = 2ξ

µ
ψxy ,

(2.18)

Sxy + We
[
Sxy,t +ψySxy,x −ψxSxy,y

]− We
2

[
(1− l)ψxx + (1 + l)ψyy

]
Syy

+
We
2

[
(1 + l)ψxx + (1− l)ψyy

]
Sxx = ξ

µ

(
ψyy −ψxx

)
,

(2.19)

Syy + We
[
Syy,t +ψySyy,x −ψxSyy,y

]
+ We

[
(1 + l)ψxx + (1− l)ψyy

]
Sxy + 2lWeψxySyy =−2ξ

µ
ψxy ,

(2.20)

η = εCosα(x− t), (2.21)

ψy = 0, ψx =∓αεSinα(x− t) at y =±1±η, (2.22)

where∇2 denotes the Laplacian operator and subscripts indicate partial differentiation.

3. Method of solution

We obtain the solution for the stream function as a power series in terms of the small
parameter ε, by expanding ψ, Sxx, Sxy , Syy , and ∂p/∂x in the following form:

ψ = ψ0 + εψ1 + ε2ψ2 + ··· , (3.1)(
∂p

∂x

)
=
(
∂p

∂x

)
0

+ ε
(
∂p

∂x

)
1

+ ε2
(
∂p

∂x

)
2

+ ··· , (3.2)

Sxx = Sxx0 + εSxx1 + ε2Sxx2 + ··· , (3.3)

Sxy = Sxy0 + εSxy1 + ε2Sxy2 + ··· , (3.4)

Syy = Syy0 + εSyy1 + ε2Syy2 + ··· . (3.5)

The first term on the right-hand side in (3.2) corresponds to the imposed pressure gra-
dient associated with the primary flow and the other terms correspond to the peristaltic
motion. Substituting (3.1)–(3.5) into (2.17)–(2.20) and (2.22) and collecting terms of
like powers of ε, we obtain three sets of coupled differential equations with their corre-
sponding boundary conditions in ε0, ε1, and ε2. The first set of differential equations in
ε0, subject to the steady parallel flow and transverse symmetry assumption for a constant
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pressure gradient in the x-direction, yields

ψ0 = 2K
RM2

(
y− SinhΓy

ΓCoshΓ

)
, (3.6)

K =−R
2

(
dP

dx

)
0
, Γ=M

√
µR

µ+ ξ
. (3.7)

The last solution (3.6) (when ξ and M → 0) agrees with the work of Fung and Yin [26],
this means that the flow at this order is independent of the viscoelastic parameter. The
second and third sets of differential equations in ψ1 and ψ2 with their corresponding
boundary conditions are satisfied by

ψ1(x, y, t)= 1
2

(
φ1(y)eiα(x−t) +φ∗1 (y)e−iα(x−t)),

Sxx1(x, y, t)= 1
2

(
φ2(y)eiα(x−t) +φ∗2 (y)e−iα(x−t)),

Sxy1(x, y, t)= 1
2

(
φ3(y)eiα(x−t) +φ∗3 (y)e−iα(x−t)),

Syy1(x, y, t)= 1
2

(
φ4(y)eiα(x−t) +φ∗4 (y)e−iα(x−t)),

ψ2(x, y, t)= 1
2

(
φ20(y) +φ22(y)e2iα(x−t) +φ∗22(y)e−2iα(x−t)),

Sxx2(x, y, t)= 1
2

(
φ30(y) +φ33(y)e2iα(x−t) +φ∗33(y)e−2iα(x−t)),

Sxy2(x, y, t)= 1
2

(
φ40(y) +φ44(y)e2iα(x−t) +φ∗44(y)e−2iα(x−t)),

Syy2(x, y, t)= 1
2

(
φ50(y) +φ55(y)e2iα(x−t) +φ∗55(y)e−2iα(x−t)),

(3.8)

where the asterisk denotes the complex conjugate. A substitution of (3.8) into the differ-
ential equations and their corresponding boundary conditions in ψ1 and ψ2, we obtain
three sets of coupled linear differential equations with their corresponding boundary con-
ditions. These equations are sufficient to determine the solution up to the second order
in ε. But these equations are fourth-order ordinary differential equations with variable
coefficients and the boundary conditions are not all homogeneous and the problem is
not an eigenvalue problem. However, we can restrict our investigation to the case of free-
pumping. Physically, this means that the fluid is stationary if there is no peristaltic waves.
In this case, we put (∂p/∂x)0 = 0, which means that K = 0, under this assumption, we get

(
d2

dy2
−α2

)(
d2

dy2
−α2 + iαR

)
φ1 = RM2φ′′1 + iαφ′4− iαφ′2−φ′′3 −α2φ3, (3.9)

µ(1− iαWe)φ2 = 2iαξφ′1, (3.10)

µ(1− iαWe)φ3 = ξ
(
φ′′1 +α2φ1

)
, (3.11)

µ(1− iαWe)φ4 =−2iαξφ′1, (3.12)
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with

φ1(±1)=±1, φ′1(±1)= 0, (3.13)

and

φ′′′′20 +φ′′40 =
iαR

2

[
φ∗1 φ

′′
1 −φ1φ

∗′′
1

]′
+RM2φ′′20, (3.14)

φ30 =− iαWe
2

[
φ∗1 φ2−φ1φ

∗
2

]′
+ iαlWe

[
φ∗2 φ

′
1−φ2φ

∗′
1

]
+

We
2

[
(1 + l)

(
φ′′1 φ

∗
3 +φ∗

′′
1 φ3

)−α2(1− l)(φ1φ
∗
3 +φ∗1 φ3

)]
,

(3.15)

φ40 = iαWe
2

[
φ∗3 φ1−φ3φ

∗
1

]′
− We

4

[
(1− l)(φ′′1 φ∗2 +φ∗

′′
1 φ2

)−α2(1− l)(φ1φ
∗
4 +φ∗1 φ4

)

+ (1 + l)
(
φ′′1 φ

∗
4 +φ∗

′′
1 φ4

)−α2(1 + l)
(
φ1φ

∗
2 +φ∗1 φ2

)]
+
ξ

µ
φ′′20,

(3.16)

φ50 = iαWe
4

[
φ∗4 φ1−φ4φ

∗
1

]′
− We

2

[
(1− l)(φ′′1 φ∗3 +φ∗

′′
1 φ3

)−α2(1 + l)
(
φ1φ

∗
3 +φ∗1 φ3

)]
+ iαlWe

[
φ∗

′
1 φ4−φ′1φ∗4

]
,

(3.17)

with

φ′20(±1)=∓1
2

(
φ′′1 (±1) +φ∗

′′
1 (±1)

)
, (3.18)

and

(
d2

dy2
− 4α2

)(
d2

dy2
− 4α2 + 2iαR

)
φ22 = RM2φ′′22 +

iαR

2

(
φ′1φ

′′
1 −φ1φ

′′′
1

)−φ′′44

− 4α2φ44− 2iαφ′33 + 2iαφ′55,
(3.19)

(1− 2iαWe)φ33 = 4iαξ
µ

φ′22−
iαWe

2

[
φ′1φ2−φ1φ

′
2

]
+ iαlWeφ′1φ2

+
We
2

[
(1 + l)φ′′1 φ3−α2(1− l)φ1φ3

]
,

(3.20)

(1− 2iαWe)φ44 = ξ

µ

(
φ′′22 + 4α2φ22

)− We
4

[
(1− l)φ′′1 φ2− a2(1 + l)φ1φ2

]

− iαWe
2

[
φ′1φ3−φ1φ

′
3

]
+

We
4

[
(1 + l)φ′′1 φ4−α2(1− l)φ1φ4

]
,

(3.21)

(1− 2iαWe)φ55 =−4iαξ
µ

φ′22−
iαWe

2

[
φ′1φ4−φ1φ

′
4

]− iαlWeφ′1φ4

+
We
2

[
a2(1 + l)φ1φ3− (1− l)φ′′1 φ3

]
,

(3.22)
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with

φ22(±1)=∓1
4
φ′1(±1), (3.23)

φ′22(±1)=∓1
2
φ′′1 (±1), (3.24)

where (′) denotes the derivative with respect to y. The solutions of (3.9)–(3.12) are

φ1(y)= A1Sinhα1y +B1Sinhβ1y,

φ2(y)= A2Coshα1y +B2Coshβ1y,

φ3(y)= A3Sinhα1y +B3Sinhβ1y,

φ4(y)=−A2Coshα1y−B2Coshβ1y,

(3.25)

where

A1= −β1 Coshβ1

α1 Coshα1 Sinhβ1−β1 Coshβ1 Sinhα1
,

B1= α1 Coshα1

α1 Coshα1 Sinhβ1−β1 Coshβ1 Sinhα1
,

A2= 2iαα1ξA1
µ(1− iαWe)

, B2= 2iαβ1ξB1
µ(1− iαWe)

,

A3=
(
α2 +α2

1

)
ξA1

µ(1− iαWe)
, B3=

(
α2 +β2

1

)
ξB1

µ(1− iαWe)
,

α2
1 =

N +
√
N2− 4α2β2

2
, β2

1 =
N −

√
N2− 4α2β2

2
,

N = α2 +β2− i
(
α2−β2

)
M2

α
, β2 = α2− iαRµ(1− iαWe)(

µ(1− iαWe) + ξ
) .

(3.26)

Next, in the expansion of ψ2, we need only to concern ourselves with the terms φ′20(y) as
our aim is to determine the mean flow only. Thus, the differential equations (3.14)–(3.17)
subject to the boundary condition (3.18) give the expression

φ′20(y)= F(y) + 2C1
Cosh(Γy)−Cosh(Γ)

Γ2 Cosh(Γ)
+
(
D−F(1)

)Cosh(Γy)
Cosh(Γ)

,

D = φ′20(±1)=−1
2

[
α2

1A1Sinhα1 +α∗2
1 A1∗ Sinhα∗1 +β2

1B1Sinhβ1 +β∗2
1 B1∗ Sinhβ∗1

]
,

F(y)= s1 Cosh
(
α1 +β∗1

)
y + s2 Cosh

(
α1−β∗1

)
y + s3 Cosh

(
α∗1 +β1

)
y

+ s4 Cosh
(
α∗1 −β1

)
y + s5 Cosh

(
α1 +α∗1

)
y + s6 Cosh

(
β1 +β∗1

)
y

+ s7 Cosh
(
β1−β∗1

)
y + s8 Cosh

(
α1−α∗1

)
y,
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s1 = µ
(
α1 +β∗1

)
4(µ+ ξ)

((
α1 +β∗1

)2−Γ2
)

× [iαR(α1−β∗1
)
A1B1∗ + We

(
α2

1−α2)A1B2∗ − iαWe
(
α1 +β∗1

)(
A1B3∗ −A3B1∗

)
+ We

(
β∗2

1 −α2)A2B1∗
]
,

s2 = µ
(
α1−β∗1

)
4(µ+ ξ)

((
α1−β∗1

)2−Γ2
)

× [− iαR(α1 +β∗1
)
A1B1∗ + We

(
α2

1−α2)A1B2∗

+ iαWe
(
α1−β∗1

)(
A1B3∗ −A3B1∗

)
+ We

(
α2−β∗2

1

)
A2B1∗

]
,

s3 = µ
(
α∗1 +β1

)
4(µ+ ξ)

((
α∗1 +β1

)2−Γ2
)

× [iαR(β1−α∗1 )A1∗B1 + We
(
β2

1−α2)B1A2∗ − iαWe
(
β1 +α∗1

)(
B1A3∗ −B3A1∗

)
−We

(
α2−α∗2

1

)
B2A1∗

]
,

s4 = µ
(
α∗1 −β1

)
4(µ+ ξ)

((
α∗1 −β1

)2−Γ2
)

× [iαR(β1 +α∗1
)
A1∗B1−We

(
β2

1−α2)B1A2∗ − iαWe
(
β1−α∗1

)(
B1A3∗ −B3 A1∗

)
−We

(
α2−α∗2

1

)
B2A1∗

]
,

s5 = µ
(
α1 +α∗1

)
4(µ+ ξ)

((
α1 +α∗1

)2−Γ2
)

× [iαR(α1−α∗1
)
A1A1∗ + We

(
α2

1−α2)A1B2∗ − iαWe
(
α1 +α∗1

)(
A1A3∗ −A3A1∗

)
+ We

(
α∗2

1 −α2)A2A1∗
]
,

s6 = µ
(
β1 +β∗1

)
4(µ+ ξ)

((
β1 +β∗1

)2−Γ2
)

× [iαR(β1−β∗1
)
B1B1∗ + We

(
β2

1−α2)B1B2∗ − iαWe
(
β1 +β∗1

)(
B1B3∗ −B3B1∗

)
+ We

(
β∗2

1 −α2)B2B1∗
]
,

s7 = µ
(
β1−β∗1

)
4(µ+ ξ)

((
β1−β∗1

)2−Γ2
)

× [− iαR(β1 +β∗1
)
B1B1∗ + We

(
β2

1−α2)B1B2∗

+ iαWe
(
β1−β∗1

)(
B1B3∗ −B3B1∗

)−We
(
β∗2

1 −α2)B2B1∗
]
,

s8 = µ
(
α1−α∗1

)
4(µ+ ξ)

((
α1−α∗1

)2−Γ2
)

× [− iαR(α1 +α∗1
)
A1A1∗ + We

(
α2

1−α2)A1A2∗

+ iαWe
(
α1−α∗1

)(
A1A3∗ −A3A1∗

)−We
(
α∗2

1 −α2)A2A1∗
]
,

(3.27)
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Figure 4.1. Effect of the viscoelastic parameter We on variation ofD with wave number α forM = 0.5,
ξ/µ= 1, and R= 10.

Thus, we see that one constant C1 remains arbitrary in the solution. Substituting (3.1)–
(3.5) into (2.9), and time-average equation of the second order of ε with assumptions
that K = 0, we find that

C1= R
(
∂p

∂x

)
2
. (3.28)

Also, the mean time-average velocity may be written as

ū(y)= ε
2

2
φ′20(y)

= ε
2

2

[
F(y) +

(
D−F(1)

)CoshΓy
CoshΓ

+
2R
Γ2

(
∂p

∂x

)
2

(
CoshΓy−CoshΓ

CoshΓ

)]
.

(3.29)

Note that if we put the magnetic parameterM, Weissenberg number We, and the viscosity
ξ equal to zero, then the results of the problem reduce exactly to the same as that found
by Fung and Yin [26] for Newtonian fluid.

4. Numerical results and discussion

A close look at (3.29) reveals that the mean axial velocity of a hydromagnetic flow of
Johnson-Segalman fluid is controlled by viscoelastic parameter, magnetic parameter,
wave number, Reynolds number, and second-order time-averaged pressure gradient. In
this section, the mean velocity at the boundaries of the channel, the time-averaged mean
axial-velocity distribution, and reversal flow are calculated for various values of these
parameters in the free-pumping case. Numerical calculations based on (3.29) show that
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Figure 4.2. Effect of the magnetic parameter M on variation of D with wave number α for We= 0.1,
ξ/µ= 1, and R= 10.
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Figure 4.3. Effect of the viscosity ratio ξ/µ on variation ofD with wave number α for We= 0.1,M = 1,
and R= 10.

the mean axial velocity of the fluid due to peristaltic motion is dominated by the constant
D and the term (2R/Γ2)(∂p/∂x)2((Cosh(Γy)−Cosh(Γ))/Cosh(Γ)). In addition to these
terms, there is a perturbation term F(y)− F(1)(Cosh(Γy)/Cosh(Γ)) which controls the
direction of the peristaltic mean flow across the cross-section. The constant D, which
initially arose from the nonslip condition of the axial velocity on the wall, is due to the
value of φ′20(y) at the boundary and is related to the mean velocity at the boundaries of
the channel by ū(±1)= (ε2/2)φ′20(±1)= (ε2/2)D. Figures 4.1, 4.2, and 4.3 represent the
variation of D with α for various values of the magnetic parameter M, the viscosity ratio
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Figure 4.5. Effect of the magnetic parameter M on variation of critical reflux pressure gradient
(∂p/∂x)2 critical reflux with wave number α for We= 0.5, ξ/µ= 0.5, and R= 0.5.

ξ/µ, and the Weissenberg number We. The numerical results indicate that D decreases
with increasing We and ξ/µ and increases with increasing M and α. Yin and Fung [26]
define a flow reflux whenever there is a negative mean velocity in the flow field. Then
according to (3.29), the critical reflux condition is given by

(
∂p

∂x

)
2 critical reflux

= Γ2

2R
(
1−Cosh(Γ)

)(F(1)−F(0)Cosh(Γ)−D), (4.1)
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Figure 4.6. Effect of the viscosity ratio ξ/µ on variation of critical reflux pressure gradient
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and the reflux occurs when (∂p/∂x)2 > (∂p/∂x)2 critical reflux. Figures 4.4, 4.5, and 4.6 rep-
resent the variation of (∂p/∂x)2 critical reflux with α for various values of M, ξ/µ and We.
The results reveal that (∂p/∂x)2 critical reflux decreases with increasing M, ξ/µ and We. The
effects of M, ξ/µ, and We on mean velocity and reversal flow are displayed in Figures 4.7,
4.8, and 4.9. The results reveal that the reversal flow increases with increasing M, ξ/µ and
We.
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