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Dynamics of Lotka-Volterra population with jumps (LVWJ) have recently been established (see Bao et al., 2011, and Bao and Yuan,
2012). They provided some useful criteria on the existence of stationary distribution and some asymptotic properties for LVWJ.
However, the uniqueness of stationary distribution for 𝑛 ≥ 2 and asymptotic pathwise estimation lim

𝑡→+∞
(1/𝑡) ∫

𝑡

0
|𝑋(𝑠)|

𝑝
𝑑𝑠 (𝑝 > 0)

are still unknown for LVWJ. One of our aims in this paper is to show the uniqueness of stationary distribution and asymptotic
pathwise estimation for LVWJ. Moreover, some characterizations for stationary distribution are provided.

1. Introduction

Recently, Bao et al. [1] introduced a jump process into
the underlying population dynamics to characterize sudden
environmental shocks, for example, earthquakes, hurricanes,
epidemics, and so forth. They assume that population sizes
follow the following stochastic differential equations:

𝑑𝑋 (𝑡) = diag (𝑋
1
(𝑡) , . . . , 𝑋

𝑛
(𝑡))

× [ (𝑎 (𝑡) − 𝐵 (𝑡)𝑋 (𝑡
−
)) 𝑑𝑡 + 𝜎 (𝑡) 𝑑𝑊 (𝑡)

+∫

Y

𝛾 (𝑡, 𝑢) �̃� (𝑑𝑡, 𝑑𝑢)] ,

(1)

where 𝑋(𝑡−) stands for the left limit of 𝑋(𝑡), 𝑋(𝑡) =

(𝑋
1
(𝑡), . . . , 𝑋

𝑛
(𝑡))
𝑇, 𝐵(𝑡) = (𝑏

𝑖𝑗
(𝑡))
𝑛×𝑛

, 𝜎(𝑡) = (𝜎
𝑖𝑗
(𝑡))
𝑛×𝑛

,
and 𝛾(𝑡, 𝑢) = (𝛾

1
(𝑡, 𝑢), . . . , 𝛾

𝑛
(𝑡, 𝑢)). Here 𝑏

𝑖𝑗
(𝑡) represents

the effect of interspecies (if 𝑖 ̸= 𝑗) or intraspecies (if 𝑖 =
𝑗) interaction and 𝑊(𝑡) = (𝑊

1
(𝑡), . . . ,𝑊

𝑛
(𝑡))
𝑇 is an 𝑛-

dimensional Brownianmotion.𝑁(𝑑𝑡, 𝑑𝑢) is a Poisson count-
ing measure with characteristic measure 𝜆 on a measurable
subset Y of [0, +∞) with 𝜆(Y ) < ∞ and �̃�(𝑑𝑡, 𝑑𝑢) :=
𝑁(𝑑𝑡, 𝑑𝑢)−𝜆(𝑑𝑢)𝑑𝑡. Besides, we suppose that𝑊(𝑡) and𝑁(𝑡)

are independent and for 𝑖, 𝑗 = 1, . . . , 𝑛, 𝜎
𝑖𝑗
(𝑡) are nonnegative

constants. If 𝑏
𝑖𝑖
(𝑡) > 0, 𝑏

𝑖𝑗
(𝑡) ≤ 0, 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ̸= 𝑗, then the

model (1) is termed as the facultative Lotka-Volterra model
with jumps. If 𝑏

𝑖𝑖
(𝑡) > 0, 𝑏

𝑖𝑗
(𝑡) > 0, 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ̸= 𝑗, then the

model (1) is termed as the competitive Lotka-Volterra model
with jumps. Bao et al. [1, 2] reveal some important and nice
properties.

(i) Jump processes can suppress the explosion.
(ii) Under Assumption A1 (see Section 2), there exists

an invariant measure for the solution of population
model (1).

(iii) When the white noise and sudden noise are large,
stochastic population dynamics (1) tend to be extinct.
To be precisely, under Assumptions A1 and A2 (see
Section 2), the population dynamics (1) tend to be
extinct.

(iv) When the white noise and sudden noise are small,
stochastic population dynamics (1) is stochastically
permanent and has a unique stationary distribution.

It is a natural question that when the white noise and sudden
noise are small do the population dynamics (1) have a unique
stationary distribution for 𝑛 ≥ 2? If yes, can we give
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some characterizations of the stationary distribution? In this
paper, we shall show that the population dynamics have the
following properties.

(i) Under Assumption A1 (see Section 2), there exists
a unique stationary distribution and it has ergodic
property.

(ii) Under Assumptions A1 and A3 (see Section 2), the
average in time of any 𝑝 of the path |𝑋(𝑡)| is bound
with probability one. Besides, we have

Lim
𝑡→∞

1

𝑡

∫

𝑡

0

|𝑋 (𝑠)|
𝑝
𝑑𝑠 = ∫

R𝑛
+

|𝑥|
𝑝
𝜋 (𝑑𝑥) ≤ 𝐾 a.s., (2)

where 𝜋 is the stationary distribution and 𝑝 is a
positive constant.

(iii) Some characterizations of the stationary distribution
are provided.

2. Notation

Throughout this paper, we let (Ω,F, {{F
𝑡
}
𝑡≥0
}, 𝑃) be a com-

plete probability space with a filtration {F
𝑡
}
𝑡≥0

satisfying the
usual conditions (i.e., it is right continuous andF

0
contains

all 𝑃-null sets). Let | ⋅ | denote the Euclidean norm in R𝑛. If
𝐴 is a vector or matrix, its transpose is denoted by 𝐴𝑇. If 𝐴
is a matrix, its trace norm is denoted by √trace(𝐴𝑇𝐴). Let
R𝑛 be 𝑛-dimensional real Euclidean space and R𝑛

+
be the set

{𝑥 ∈ R𝑛 : 𝑥
𝑖
> 0, 1 ≤ 𝑖 ≤ 𝑛}; |𝐴|: the trace norm of matrix 𝐴;

that is, |𝐴| := √trace(𝐴𝑇𝐴).
We shall need a fewmore notations. Define𝐵(𝑦, 𝜀) = {𝑥 ∈

R𝑛
+
: |𝑥 − 𝑦| ≤ 𝜀}, 𝐵𝑐(𝑦, 𝜀) = {𝑥 ∈ R𝑛

+
: |𝑥 − 𝑦| > 𝜀}.

Denote transition probabilities of (1) by

𝑃
𝑡
(𝑥, 𝑑𝑦) = 𝑃 (𝑋 (𝑡) ∈ 𝑑𝑦 | 𝑋 (0) = 𝑥) . (3)

The transition probabilities can be thought of as operators
on bounded Borel measurable functions 𝑓 : R𝑛

+
→ R via

𝑃
𝑡
𝑓 (𝑥) = ∫

R𝑛
+

𝑃
𝑡
(𝑥, 𝑑𝑦) 𝑓 (𝑦) . (4)

Following Bao et al. [2], the following assumptions are
imposed for the model (1).

Assumption A1. For any 𝑡 ≥ 0 and 𝑖, 𝑗 = 1, 2, . . . , 𝑛 with 𝑖 ̸= 𝑗,
𝑎
𝑖
(𝑡) > 0, 𝑏

𝑖𝑖
(𝑡) > 0, 𝑏

𝑖𝑗
(𝑡) ≥ 0, 𝜎

𝑖𝑗
(𝑡), and 𝛾

𝑖
(𝑡, 𝑢) are bounded

functions; 𝜎(𝑡) ̸= (0)
𝑛×𝑛

, ̂𝑏 := inf
𝑡∈R+𝑏𝑖𝑖(𝑡) > 0, and 𝛾𝑖(𝑡, 𝑢) >

−1, 𝑢 ∈ Y .

Assumption A2. For 𝑡 ≥ 0 and 𝑖 = 1, 2, . . . , 𝑛, the coefficients
of𝑋(𝑡) determined by (1) obey the following condition:

𝜂
𝑖
= lim sup
𝑡→+∞

1

𝑡

∫

𝑡

0

(𝑎
𝑖
(𝑠) −

1

2

𝑛

∑

𝑗=1

𝜎
2

𝑖𝑗
(𝑠)

− ∫

Y

(𝛾
𝑖
(𝑠, 𝑢)

− ln (1 + 𝛾
𝑖
(𝑠, 𝑢))) 𝜆 (𝑑𝑢))𝑑𝑠 < 0.

(5)

Assumption A3. There exists a constant 𝐾(𝑝) > 0 such that
for some 𝑝 > 1, 𝑡 ≥ 0, 𝑖 = 1, . . . , 𝑛, we have

∫

Y





𝛾
𝑖
(𝑡, 𝑢)






𝑝

𝜆 (𝑑𝑢) ≤ 𝐾 (𝑝) . (6)

We know from Bao et al. [1] that Assumption A1 is a basic
condition which guarantees that for any initial condition
𝑋(0) = 𝑥

0
, (1) has a unique global positive solution; namely,

𝑃(𝑋(𝑡) ∈ R𝑛
+
, for all 𝑡 ≥ 0) = 1. Besides, throughout this

paper, we let 𝐾 be a generic positive constant whose values
may vary at its different appearances.

3. Main Results

With the notations introduced in the previous section, we can
state one of our main results.

Theorem 1. Under Assumption A1, the SDE model (1) has a
unique stationary distribution and it has ergodic property.

The proof of Theorem 1 relies on the following several
lemmas. The first lemma is taken from Theorem 3.1 in Bao
et al. [1].

Lemma 2 (Bao et al. [1]). (1) Under Assumption A1, for any
0 ≤ 𝑝 ≤ 1, there is a constant 𝐾 such that sup

𝑡∈R+𝐸|𝑋(𝑡)|
𝑝
≤

𝐾.
(2) Under Assumptions A1 and A3, for any 𝑝 > 1, there is

a constant 𝐾(𝑝) such that sup
𝑡∈R+𝐸|𝑋(𝑡)|

𝑝
≤ 𝐾(𝑝).

Define 𝜏
𝐷

to be the first time the diffusion exists in
domain𝐷:

𝜏
𝐷
= inf {𝑡 ≥ 0; 𝑋 (𝑡) ∉ 𝐷} . (7)

Similar to Proposition 7.2 in Karatzas and Shreve [3, pages
364-365], we have the following lemma.

Lemma 3. Suppose that for the open, bounded domain 𝐷
and for some 1 ≤ 𝑖 ≤ 𝑛, if the following condition:
min
(𝑡,𝑥)∈R+×𝐷∑

𝑛

𝑗=1
𝜎
2

𝑖𝑗
(𝑡)𝑥
2

𝑖
> 0 holds, then 𝐸𝑥𝜏

𝐷
< ∞, for

any 𝑥 ∈ 𝐷.
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Proof. For simplicity, let 𝑎
𝑖𝑖
(𝑡, 𝑥) = (1/2)∑

𝑛

𝑗=1
𝜎
2

𝑖𝑗
(𝑡)𝑥
2

𝑗
,

𝑏
𝑖
(𝑡, 𝑥) = 𝑎

𝑖
(𝑡) − ∑

𝑛

𝑗=1
𝑏
𝑖𝑗
(𝑡)𝑥
𝑗
, and let 𝑎 = min

(𝑡,𝑥)∈R+×𝐷

𝑎
𝑖𝑖
(𝑡, 𝑥), 𝑏 = max

(𝑡,𝑥)∈R+×𝐷|𝑏𝑖(𝑡, 𝑥)|, 𝑞 = min
𝑥∈𝐷
𝑥
𝑖
.

Consider the function ℎ(𝑥) = −𝜇 exp(V𝑥
𝑖
); 𝑥 = (𝑥

1
, . . . ,

𝑥
𝑛
) ∈ 𝐷, where the positive constants V,𝜇 shall be determined

later. Then, we have

𝐿ℎ (𝑥) = − 𝜇𝑒
V𝑥
𝑖

{

1

2

V2𝑎
𝑖𝑖
(𝑡, 𝑥) + V𝑏

𝑖
(𝑡, 𝑥)

+ ∫

Y

(exp (V𝑥
𝑖
𝛾
𝑖
(𝑡, 𝑢)) − 1

−V𝑥
𝑖
𝛾
𝑖
(𝑡, 𝑢)) 𝜆 (𝑑𝑢) } .

(8)

Note that the inequality 𝑒𝑥 − 1 − 𝑥 ≥ 0 for all 𝑥 ∈ R; then,

𝐿ℎ (𝑥) ≤ −

1

2

𝜇V𝑎𝑒V𝑞 (V −
2𝑏

𝑎

) . (9)

Consequently, if Assumption (i) holds, then we can choose
V > 2𝑏/𝑎 and a sufficiently large 𝜇 such that for any 𝑥 ∈ 𝐷, we
have

𝐿ℎ (𝑥) ≤ −1. (10)

With the boundedness of the function ℎ and its derivatives on
𝐷, Dnykin’s formula implies, 𝑥 ∈ 𝐷, 𝑡 ≥ 0, the following:

𝐸
𝑥
(𝑡 ∧ 𝜏
𝐷
) = ℎ (𝑥) + 𝐸

𝑥
𝐿ℎ (𝑋 (𝑠))

≤ ℎ (𝑥) − 𝐸
𝑥
ℎ (𝑋
𝑡∧𝜏
𝐷

)

≤ 2max
𝑦∈𝐷





ℎ (𝑦)





< ∞.

(11)

By letting 𝑡 → ∞, we obtain

𝐸
𝑥
𝜏
𝐷
< ∞, 𝑥 ∈ 𝐷. (12)

Lemma 4. Under Assumption A1, the SDE model (1) has the
(weak) Feller property.

Proof. To prove the weak Feller property, byTheorem 5.1 (see
Bhattacharya andWaymire [4, pages 643–645]), we only need
to show that for every bounded Lipschitzian function 𝑓 on
R𝑛
+
, if 𝑥
0
→ 𝑦
0
is well defined, we have





𝐸𝑓 (𝑋

𝑥
0

(𝑡)) − 𝐸𝑓 (𝑋
𝑦
0

(𝑡))




→ 0 as 𝑥

0
→ 𝑦
0
. (13)

The proof of the limit above is essentially the same as that
of Lemma 3.2 in Tong et al. [5]. Consequently, we only need
to prove that 𝑥

0
→ 𝑦

0
is well defined. For any 𝑋(0) =

𝑥
0
:= (𝑥

01
, . . . , 𝑥

0𝑛
)
𝑇, let 𝜀

0
= (1/2)min{𝑥

01
, . . . , 𝑥

0𝑛
}. By

Assumption A1, we have

min
𝑥∈𝐵(𝑥0,𝜀0)

1

2

𝑛

∑

𝑗=1

𝜎
2

𝑖𝑗
(𝑡) 𝑥
2

𝑗
> 0. (14)

By Lemma 3, we have 𝐸𝑥0𝜏
𝐵(𝑥
0
,𝜀
0
)
< +∞, which implies that

𝑥
0
→ 𝑦
0
is well defined.

We are now able to prove Theorem 1.

Proof of Theorem 1. The proof of this theorem is divided into
two steps.

Step 1. (Existence). Bao et al. [1] show that (1) exists as an
invariant measure:

𝑃
𝑡
(𝑥
0
, 𝑑𝑧) → 𝜋 (𝑑𝑧) , ∀𝑥

0
∈ R
𝑛

+
. (15)

Step 2. (Uniqueness). By Lemma 4 and the same discussion
as that of Theorem 3.1 in Tong et al. [5], one can easily prove
that 𝜋 is the unique station distribution.

Lemma 5. Suppose that condition (A1) holds. If 𝑓(𝑥) is a
function integrable with respect to the measure 𝜋, then

𝑃{ lim
𝑡→∞

1

𝑡

∫

𝑡

0

𝑓 (𝑋 (𝑠)) 𝑑𝑠 = ∫

R𝑛
+

𝑓 (𝑥) 𝜋 (𝑑𝑥)} = 1. (16)

Proof. The proof is essentially the same as the proof of
Theorem 5.1 of Has’minskĭı [6]. We omit its proof.

With the lemma above, we can get the following long time
behavior of population system (1).

Theorem 6. If Assumptions A1 and A3 hold, for any 𝑝 > 0,
then we have

lim
𝑡→+∞

1

𝑡

∫

𝑡

0

𝑋
𝑝

𝑖
(𝑠) 𝑑𝑠 = ∫

R𝑛
+

𝑦
𝑝

𝑖
𝜋 (𝑑𝑦) , a.s.

lim
𝑡→+∞

1

𝑡

∫

𝑡

0

|𝑋 (𝑠)|
𝑝
𝑑𝑠 = ∫

R𝑛
+





𝑦





𝑝

𝜋 (𝑑𝑦) , a.s.
(17)

Proof. Let 𝑓(𝑥) = 𝑥
𝑝

𝑖
∧ 𝑘 and 𝑔(𝑥) = |𝑥|

𝑝
∧ 𝑘 for some

𝑘 > 0, where 𝑎 ∧ 𝑏 = min{𝑎, 𝑏}. Obviously, 𝑓(𝑥) and 𝑔(𝑥) are
integrablewith stationary distribution𝜋. Hence, by Lemma 5,
we get

lim
𝑡→+∞

1

𝑡

∫

𝑡

0

(𝑋
𝑝

𝑖
(𝑠) ∧ 𝑘) 𝑑𝑠 = ∫

R𝑛
+

(𝑦
𝑝

𝑖
∧ 𝑘) 𝜋 (𝑑𝑦) , a.s.,

(18)

lim
𝑡→+∞

1

𝑡

∫

𝑡

0

(|𝑋 (𝑠)|
𝑝
∧ 𝑘) 𝑑𝑠 = ∫

R𝑛
+

(




𝑦





𝑝

∧ 𝑘) 𝜋 (𝑑𝑦) , a.s.

(19)

According to Lemma 2, it follows that

𝐸[ lim
𝑡→+∞

1

𝑡

∫

𝑡

0

(𝑋
𝑝

𝑖
(𝑠) ∧ 𝑘) 𝑑𝑠]

= lim
𝑡→+∞

1

𝑡

∫

𝑡

0

𝐸 (𝑋
𝑝

𝑖
(𝑠) ∧ 𝑘) 𝑑𝑠 ≤ 𝐾, a.s.,

(20)

𝐸[ lim
𝑡→+∞

1

𝑡

∫

𝑡

0

(|𝑋 (𝑠)|
𝑝
∧ 𝑘) 𝑑𝑠]

= lim
𝑡→+∞

1

𝑡

∫

𝑡

0

𝐸 (|𝑋 (𝑠)|
𝑝
∧ 𝑘) 𝑑𝑠 ≤ 𝐾 a.s.

(21)
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From (18) and (20), (19), and (21), we get

∫

R𝑛
+

(𝑦
𝑝

𝑖
∧ 𝑘) 𝜋 (𝑑𝑦) ≤ 𝐾,

∫

R𝑛
+

(




𝑦





𝑝

∧ 𝑘) 𝜋 (𝑑𝑦) ≤ 𝐾.

(22)

By letting 𝑘 → +∞, it follows that

∫

R𝑛
+

(𝑦
𝑝

𝑖
) 𝜋 (𝑑𝑦) ≤ 𝐾,

∫

R𝑛
+

(




𝑦





𝑝

) 𝜋 (𝑑𝑦) ≤ 𝐾.

(23)

Namely, 𝑓
𝑖
(𝑥) = 𝑥

𝑝

𝑖
and 𝑔

𝑖
= |𝑥|
𝑝 are integrable with respect

to the unique invariant measure 𝜋(⋅). Again by Lemma 5, the
proof is complete.

4. Characterizations of Stationary Distribution

In what follows, we consider some characterizations of the
stationary distribution of (1). ByTheorem 4.6 of Bao et al. [1],
for 1 ≤ 𝑖, 𝑗 ≤ 𝑛, if

lim sup
𝑡→+∞

1

𝑡

∫

𝑡

0

(𝑎
𝑖
(𝑠) −

1

2

𝑛

∑

𝑗=1

𝜎
2

𝑖𝑗
(𝑠)

− ∫

Y

(𝛾
𝑖
(𝑠, 𝑢) − ln (1 + 𝛾

𝑖
(𝑠, 𝑢))) 𝜆 (𝑑𝑢))𝑑𝑠

< 0,

(24)

then stochastic population dynamics (1) are exponential
extinctions; that is the unique stationary distribution 𝜋(0) =
1. We shall show that condition (24) also is necessary
condition for exponential extinction if we replace the
bounded coefficients with uniformly bounded coefficients
under Assumption A1. Hence, we impose a stronger assump-
tion on coefficients of population dynamics (1).

Assumption A4. For any 𝑡 ≥ 0 and 𝑖, 𝑗 = 1, 2, . . . , 𝑛 with 𝑖 ̸= 𝑗,
𝑎
𝑖
(𝑡) > 0, 𝑏

𝑖𝑖
(𝑡) > 0, 𝑏

𝑖𝑗
(𝑡) ≥ 0, 𝜎

𝑖
(𝑡) ̸= 0, and 𝛾

𝑖
(𝑡, 𝑢) are

uniformly bounded functions on time 𝑡, ̂𝑏 := inf
𝑡∈R+𝑏𝑖𝑖(𝑡) >

0, and 𝛾
𝑖
(𝑡, 𝑢) > −1, 𝑢 ∈ Y .

Theorem 7. Under Assumption A4, stochastic population
dynamics (1) are exponential extinctions if and only if condition
(24) holds.

Proof. Sufficiency: By Itô’s lemma, we have

ln𝑋
𝑖
(𝑡) = ln𝑋

𝑖
(0)

+ ∫

𝑡

0

(𝑎
𝑖
(𝑠) −

1

2

𝑛

∑

𝑗=1

𝜎
2

𝑖𝑗
(𝑠)

−∫

Y

𝛾
𝑖
(𝑠, 𝑢) 𝜆 (𝑑𝑢))𝑑𝑡

−

𝑛

∑

𝑗=1

∫

𝑡

0

𝑏
𝑖𝑗
(𝑠)𝑋
𝑗
(𝑠) 𝑑𝑠

+𝑀
1
(𝑡) + 𝑀

2
(𝑡)

+ ∫

𝑡

0

∫

Y

ln (1 + 𝛾
𝑖
(𝑠, 𝑢)) 𝜆 (𝑑𝑢) 𝑑𝑠,

(25)

where 𝑀
1
(𝑡) = ∑

𝑛

𝑗=1
∫

𝑡

0
𝜎
𝑖𝑗
(𝑠)𝑑𝑊

𝑗
(𝑠), 𝑀

2
(𝑡) = ∫

𝑡

0
∫
Y
ln(1 +

𝛾
𝑖
(𝑠, 𝑢))�̃�(𝑑𝑠, 𝑑𝑢). Under Assumption A4, the sharp bracket

process is as follows:

⟨𝑀
1
⟩ (𝑡) =

𝑛

∑

𝑖=1

∫

𝑡

0

𝜎
2

𝑖𝑗
(𝑠) 𝑑𝑠 ≤ 𝐾𝑡,

⟨𝑀
2
⟩ (𝑡) = ∫

𝑡

0

∫

Y

(ln (1 + 𝛾
𝑖
(𝑠, 𝑢)))

2

𝜆 (𝑑𝑢) 𝑑𝑠

≤ 𝐾𝑡.

(26)

By the strong law of large numbers of martingales, we have

lim
𝑡→∞

𝑀
1
(𝑡)

𝑡

= 0, a.s.,

lim
𝑡→∞

𝑀
2
(𝑡)

𝑡

= 0 a.s.
(27)

If stochastic population dynamics are exponential extinctions
a.s., then lim sup

𝑡→+∞
((ln𝑋

𝑡
)/𝑡) < 0, which implies the

assertion.
Necessity: the proof can be found in Theorem 4.6 of Bao

et al. [1].
In the rest of this paper, we consider the nontrivial

stationary distribution case.

Assumption A5.We have

lim sup
𝑡→+∞

1

𝑡

∫

𝑡

0

(𝑎
𝑖
(𝑠) −

1

2

𝑛

∑

𝑗=1

𝜎
2

𝑖𝑗
(𝑠)

−∫

Y

(𝛾
𝑖
(𝑠, 𝑢) − ln (1 + 𝛾

𝑖
(𝑠, 𝑢))) 𝜆 (𝑑𝑢))𝑑𝑠

≥ 0.

(28)
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Next, we consider the mean vector and covariance matrix of
the stationary distribution. If we assume that Assumptions A1
and A3 hold, then Theorem 6 implies that both mean vector
𝜇 = (𝜇

1
, . . . , 𝜇

𝑛
)
𝑇 and covariance matrix Σ = (Σ

𝑖𝑗
)
𝑛×𝑛

of the
stationary distribution; namely,

𝜇 = ∫

R𝑛
+

𝑦𝜋 (𝑑𝑦) , Σ = ∫

R𝑛
+

(𝑦 − 𝜇) (𝑦 − 𝜇) 𝜋 (𝑑𝑦) (29)

are well defined.
The next theorem gives an explicit formula for the mean

vector of the stationary distribution of (1).

Theorem 8. If conditions A1 and A3 hold, then the mean
vector 𝜇 of the stationary distribution follows

∫

𝑡

0

(𝑎
𝑖
(𝑠) −

1

2

𝑛

∑

𝑗=1

𝜎
2

𝑖𝑗
(𝑠) −

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝜇
𝑗
(𝑠))𝑑𝑠

− ∫

𝑡

0

(∫

Y

(𝛾
𝑖
(𝑠, 𝑢) − ln (1 + 𝛾

𝑖
(𝑠, 𝑢)) 𝜆 (𝑑𝑢))) 𝑑𝑠 = 0.

(30)

Proof. Consider the function ln𝑋
𝑖
(𝑡). By the proof of

Theorem 7, it immediately obtains this result.
To get some further characterizations for the stationary

distribution defined by (15), we consider its Laplace trans-
form:

𝐹 (𝜃) := ∫

∞

0

𝑒
−𝜃𝑦
𝜋 (𝑑𝑦) , Re (𝜃) > 0, (31)

where Re(𝜃) stands for the real part of complex 𝜃. Recall that
𝑋(𝑡) ∈ R𝑛

+
a.s., which implies that the stationary distribution

is concentrated on [0, +∞). By the bounded property of the
distribution function, the Laplace transform of stationary
distribution is well defined on Re(𝜃) > 0.

Lemma 9. If lim
𝑡→+∞

(1/𝑡) ∫

𝑡

0
𝑔(𝑠)𝑑𝑠 = 𝑔 and the process

𝑋(𝑡) has a unique stationary distribution 𝜋, then

lim
𝑡→+∞

1

𝑡

∫

𝑡

0

𝑓 (𝑋 (𝑠)) 𝑔 (𝑠) 𝑑𝑠 = 𝑔∫

R𝑛
+

𝑓 (𝑥) 𝜋 (𝑑𝑥) 𝑎.𝑠.

(32)

Proof. According to the condition lim
𝑡→+∞

(1/𝑡) ∫

𝑡

0
𝑔(𝑠)𝑑𝑠 =

𝑔, then function 𝑔(𝑠) can be rewritten as

1

𝑡

∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠 = 𝑔 + 𝛽 (𝑡) , (33)

where 𝛽(𝑡) is infinitesimal; that is, lim
𝑡→∞

𝛽(𝑡) = 0. In virtue
of equality (33), we have

𝑔 (𝑡) = 𝑔 + 𝛽

(𝑡) 𝑡 + 𝛽 (𝑡) . (34)

Consequently,

lim
𝑡→+∞

1

𝑡

∫

𝑡

0

𝑓 (𝑋 (𝑠)) 𝑔 (𝑠) 𝑑𝑠

= lim
𝑡→+∞

(

𝑔

𝑡

∫

𝑡

0

𝑓 (𝑋 (𝑠)) 𝑑𝑠 +

1

𝑡

∫

𝑡

0

𝑓 (𝑋 (𝑠)) 𝛽

(𝑠) 𝑠𝑑𝑠

+

1

𝑡

∫

𝑡

0

𝑓 (𝑋 (𝑠)) 𝛽 (𝑠) 𝑑𝑠)

:= 𝐼
1
+ 𝐼
2
+ 𝐼
3
.

(35)

Note that lim
𝑡→∞

𝛽(𝑡) = 0. For any 𝜀 > 0, there exists a
sufficiently large constant 𝑀, such that for any 𝑡 > 𝑀, we
have





𝛽 (𝑡)





< 𝜀. (36)

Consequently,

𝐼
3
=

1

𝑡

(∫

𝑀

0

𝑓 (𝑋 (𝑠)) 𝛽 (𝑠) 𝑑𝑠 + ∫

𝑡

𝑀

𝑓 (𝑋 (𝑠)) 𝛽 (𝑠) 𝑑𝑠) → 0.

(37)

As for the second term, it is not hard to show that 𝐼
2
→ 0.

According to the ergodic lemma, we have

𝐼
1
→ 𝑔∫

R𝑛
+

𝑓 (𝑥) 𝜋 (𝑑𝑥) . (38)

To state ourmain result, we need the following conditions
about the coefficients.

Assumption A6. There exist constants 𝑎
𝑖
, 𝑏
𝑖𝑗
, 𝜎
𝑖𝑗
, 𝛾
𝑖
(𝑢) such

that

lim
𝑡→+∞

1

𝑡

∫

𝑡

0

𝑎
𝑖
(𝑠) 𝑑𝑠 = 𝑎

𝑖
,

lim
𝑡→+∞

1

𝑡

∫

𝑡

0

𝑏
𝑖𝑗
(𝑠) 𝑑𝑠 = 𝑏

𝑖𝑗
,

lim
𝑡→+∞

1

𝑡

∫

𝑡

0

𝜎
𝑖𝑗
(𝑠) 𝑑𝑠 = 𝜎

𝑖𝑗
,

lim
𝑡→+∞

1

𝑡

∫

𝑡

0

𝛾
𝑖
(𝑠, 𝑢) 𝑑𝑠 = 𝛾

𝑖
(𝑢) .

(39)

We now state the main result of this section.

Theorem 10. Assume that Assumptions A1, A4, A5, and A6
hold. The stationary distribution 𝜋 defined by (15) satisfies, for
any complex number 𝜃, with Re(𝜃) > 0, the following:

𝜃∫

R𝑛
+

𝑒
−𝜃𝑦
𝑖

𝑦
𝑖
(𝑎
𝑖
−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑦
𝑗
− ∫

Y

𝛾
𝑖
(𝑢) 𝜆 (𝑑𝑢))𝜋 (𝑑𝑦)
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=

1

2

𝜃
2

𝑛

∑

𝑗=1

𝜎
2

𝑖𝑗
∫

R𝑛
+

𝑒
−𝜃𝑦
𝑖

𝑦
2

𝑖
𝜋 (𝑑𝑦)

+ ∫

R𝑛
+

∫

Y

(𝑒
−𝜃𝑦
𝑖
(1+𝛾
𝑖
(𝑢))
− 𝑒
−𝜃𝑦
𝑖

) 𝜆 (𝑑𝑢) 𝜋 (𝑑𝑦) .

(40)

Proof. Let 𝑓(𝑧) = 𝑒−𝜃𝑧, 0 < Re(𝜃) < +∞, 0 ≤ 𝑧 < +∞. By
Itô’s formula, we have

𝑑𝑒
−𝜃𝑋
𝑖
(𝑡)
= − 𝜃𝑒

−𝜃𝑋
𝑖
(𝑡)
𝑑𝑋
𝑐

𝑖
(𝑡)

+

1

2

𝜃
2
𝑒
−𝜃𝑋
𝑖
(𝑡)
(𝑋
𝑐

𝑖
(𝑡))
2

𝑛

∑

𝑗=1

𝜎
2

𝑖𝑗
(𝑡) 𝑑𝑡

+ ∫

𝑌

(𝑒
−𝜃𝑋
𝑖
(𝑡)(1+𝛾

𝑖
(𝑡,𝑢))

− 𝑒
−𝜃𝑋
𝑖
(𝑡)
)𝑁 (𝑑𝑡, 𝑑𝑢) ,

(41)

where 𝑋𝑐
𝑖
(𝑡) stands for the continuous part of the process

𝑋
𝑖
(𝑡). In integral form, we get

𝑒
−𝜃𝑋
𝑖
(𝑡)
= 𝑒
−𝜃𝑋
𝑖
(0)

− 𝜃∫

𝑡

0

𝑒
−𝜃𝑋
𝑖
(𝑠)
𝑋
𝑖
(𝑠)(𝑎

𝑖
(𝑠) −

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑠)𝑋
𝑗
(𝑠)

−∫

Y

𝛾
𝑖
(𝑠, 𝑢) 𝜆 (𝑑𝑢))𝑑𝑠

+

1

2

𝜃
2
∫

𝑡

0

𝑒
−𝜃𝑋
𝑖
(𝑠)
(𝑋
𝑖
(𝑠))
2

𝑛

∑

𝑗=1

𝜎
2

𝑖𝑗
(𝑠) 𝑑𝑡

+ ∫

𝑡

0

∫

Y

(𝑒
−𝜃𝑋
𝑖
(𝑠)(1+𝛾

𝑖
(𝑠,𝑢))

− 𝑒
−𝜃𝑋
𝑖
(𝑠)
) 𝜆 (𝑑𝑢) 𝑑𝑠

− 𝜃𝑀
5
(𝑡) + 𝑀

6
(𝑡) ,

(42)

where

𝑀
5
(𝑡) = ∫

𝑡

0

(𝑒
−𝜃𝑋
𝑖
(𝑠)
𝑋
𝑖
(𝑠)

𝑛

∑

𝑗=1

𝜎
𝑖𝑗
(𝑠))𝑑𝑊

𝑗
(𝑠) ,

𝑀
6
(𝑡) = ∫

𝑡

0

∫

Y

(𝑒
−𝜃𝑋
𝑖
(𝑠)(1+𝛾

𝑖
(𝑠,𝑢))

− 𝑒
−𝜃𝑋
𝑖
(𝑠)
) �̃� (𝑑𝑠, 𝑑𝑢) .

(43)

ByTheorem 6 and Assumption A4, it is easy to see the sharp
bracket process:

⟨𝑀
5
⟩ (𝑡) < 𝐾𝑡, ⟨𝑀

6
⟩ (𝑡) < 𝐾𝑡 a.s. (44)

Hence, by the strong law of large numbers of martingales,

lim
𝑡→∞

𝑀
5
(𝑡)

𝑡

= 0, a.s.,

lim
𝑡→∞

𝑀
6
(𝑡)

𝑡

= 0 a.s.
(45)

Therefore, by dividing both sides by 𝑡of equality (42) and then
letting 𝑡 → ∞, one gets, by Lemmas 5 and 9 andTheorem 6,
that the assertion (40) holds.

BecauseTheorem 10 holds for all Re(𝜃) > 0, one can get a
series equality with different values of 𝜃. In particular, If we let
𝜃 → 0 on the both sides of (40), then we immediately obtain
a characterization for covariance matrix of the stationary
distribution.

The next result presents the characterization of expecta-
tion of the stationary distribution.

Corollary 11. If conditions A1, A5, and A6 hold, then the
covariance matrix Σ = (Σ

𝑖𝑗
)
𝑛×𝑛

of the stationary distribution
obeys

𝑎
𝑖
𝜇
𝑖
−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(Σ
𝑖𝑗
+ 𝜇
𝑖
𝜇
𝑗
) = 0, 1 ≤ 𝑖 ≤ 𝑛. (46)

Proof. ByTheorem 10, the stationary distribution 𝜋 satisfies

∫

R𝑛
+

𝑒
−𝜃𝑦
𝑖

𝑦
𝑖
(𝑎
𝑖
−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑦
𝑗
− ∫

Y

𝛾
𝑖
(𝑢) 𝜆 (𝑑𝑢))𝜋 (𝑑𝑦)

=

1

2

𝜃

𝑛

∑

𝑗=1

𝜎
2

𝑖𝑗
∫

R𝑛
+

𝑒
−𝜃𝑦
𝑖

𝑦
2

𝑖
𝜋 (𝑑𝑦)

+

1

𝜃

∫

R𝑛
+

∫

Y

(𝑒
−𝜃𝑦(1+𝛾

𝑖
(𝑢))
− 𝑒
−𝜃𝑦
) 𝜆 (𝑑𝑢) 𝜋 (𝑑𝑦) .

(47)

By letting 𝜃 ↓ 0, we get

∫

R𝑛
+

𝑦
𝑖
(𝑎
𝑖
−

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑦
𝑗
− ∫

Y

𝛾
𝑖
(𝑢) 𝜆 (𝑑𝑢))𝜋 (𝑑𝑦)

= −∫

R𝑛
+

∫

Y

𝑦
𝑖
𝛾
𝑖
(𝑢) 𝜆 (𝑑𝑢) 𝜋 (𝑑𝑦) .

(48)

This completes the proof.

Remark 12. Mao [7] obtains the result (46) for the facultative
model without jumps with nonsingular noise coefficients and
Tong et al. [5] obtain the result (46) for the facultative model
without jumps with singular noise coefficients.

Corollary 13. Under Assumptions A1, A5, and A6, for 𝑘 ∈ N+,
we have

𝑘∫

R𝑛
+

𝑦
𝑘

𝑖
(𝑎
𝑖
−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑦
𝑗
)𝜋 (𝑑𝑦)

+

1

2

𝑘 (𝑘 − 1)

𝑛

∑

𝑗=1

𝜎
2

𝑖𝑗
∫

R𝑛
+

𝑦
𝑘

𝑖
𝜋 (𝑑𝑦)

+ ∫

R𝑛
+

∫

Y

𝑦
𝑘

𝑖
[(1 + 𝛾

𝑖
(𝑢))
𝑘

− 1] 𝜆 (𝑑𝑢) 𝜋 (𝑑𝑦) = 0.

(49)
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Proof. By virtue of Theorem 6, the 𝑘th moment of stationary
distribution ∫

R𝑛
+

|𝑥|
𝑘
𝜋(𝑑𝑥) is well defined. Expanding the

exponential function exp(−𝜃𝑥) into the power series and
comparing the terms with the same powers of 𝜃𝑘, one can
obtain the equality (49) immediately.
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