
Research Article
Dichotomous Binary Differential Evolution for
Knapsack Problems

Hu Peng,1 ZhijianWu,2 Peng Shao,3 and Changshou Deng1

1School of Information Science and Technology, Jiujiang University, Jiujiang 332005, China
2State Key Lab of Software Engineering, School of Computer, Wuhan University, Wuhan 430072, China
3School of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang 330045, China

Correspondence should be addressed to Zhijian Wu; zhijianwu@whu.edu.cn

Received 12 June 2016; Revised 12 November 2016; Accepted 21 November 2016

Academic Editor: Dan Simon

Copyright © 2016 Hu Peng et al.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Differential evolution (DE) is one of the most popular and powerful evolutionary algorithms for the real-parameter global
continuous optimization problems. However, how to adapt into combinatorial optimization problems without sacrificing the
original evolution mechanism of DE is harder work to the researchers to design an efficient binary differential evolution (BDE).
To tackle this problem, this paper presents a novel BDE based on dichotomous mechanism for knapsack problems, called DBDE,
in which two new proposed methods (i.e., dichotomous mutation and dichotomous crossover) are employed. DBDE almost has
any difference with original DE and no additional module or computation has been introduced. The experimental studies have
been conducted on a suite of 0-1 knapsack problems and multidimensional knapsack problems. Experimental results have verified
the quality and effectiveness of DBDE. Comparison with three state-of-the-art BDE variants and other two state-of-the-art binary
particle swarm optimization (PSO) algorithms has proved that DBDE is a new competitive algorithm.

1. Introduction

The knapsack problems, as one of the classical NP-hard
combinational optimization problem, have a lot of imme-
diate applications in project selection, resource distribution,
investment decision-making, financial management, and so
on. The 0-1 knapsack problem and multidimensional knap-
sack problem are the most common and important in the
family of knapsack problems and have been extensively
studied [1]. In recent decades, evolutionary algorithms, such
as genetic algorithms (GA) [2–4], particle swarm optimiza-
tion (PSO) [5, 6], and differential evolution (DE) [7, 8],
have been well-adopted for solving the knapsack problems.
Although many knapsack problems have been tackled by
these approaches, some new and more difficult knapsack
problems (such as high dimension knapsack problems) hid-
den in the real world have not been properly solved [9, 10]. So
the research on them is still important and necessary.

DE, proposed by Storn and Price [11], has drawn the
attention of many researchers all over the world. As one
of the most popular and powerful optimization techniques,

DE has many advantages, for example, fast, simple, easy to
use, and efficient for the real-parameter global continuous
optimization problems. Initially, DE was designed as an opti-
mization technique for used in real-number spaces. As the
emergence of DE, many researchers around the world study
from different aspects and proposed a lot of improved DE
variants [12–17]. However, many combinational optimization
problems are set in a space featuring binary and the classical
DE is not suitable for it. Therefore, a number of binary
versions of DE (BDE) have been proposed. Some work is
mainly dedicated to design a mapping from continuous-
space to binary space. For example, in the early days of BDE
research, Pampara et al. [18] proposed an anglemodulatedDE
(AMDE), in which a trigonometric function was employed
as a bit string generator. Thus AMDE can operate in binary
spaces without deviating from the basic search mechanism
of the classical DE. Hota and Pat [7] proposed an adaptive
quantum-inspired DE (AQDE), in which mutation operator
is similar to that of classical DE and operates directly on the
Q-bit (𝜃) where 𝜃 is defined in [0, 2𝜋]. Besides the abovemen-
tioned methods, many attempts as well focused on operating

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2016, Article ID 5732489, 12 pages
http://dx.doi.org/10.1155/2016/5732489



2 Mathematical Problems in Engineering

on binary space directly. For example, He and Han [19] first
use logical operators to replace the original operations of
the mutation mechanism in DE, and thus the individual can
be evolved directly using binary string. Gong and Tuson
[20] proposed binary-adapted DE operators based on forma
analysis to directly manipulate bit strings. Additionally, some
BDE variants with new binary mutation operators, such as
MBDE [21], NMBDE [8], and BLDE [22], are proposed one
after another. However, we have noted that it is a challenging
task to design an efficient BDE. If the BDE still evolves in
the real-number spaces, the expensive computational cost of
transforming the real-coded individuals into binary strings
is a hard problem. Moreover, if the BDE evolves in the
binary spaces directly, the weak exploration ability of directly
operating bit-stings has definitely hindered the BDE to solve
the difficult and high-dimensional knapsack problems.

In psychology, dichotomous thinking, also known as
“black or white thinking,” is a tendency to only see extremes.
Based on dichotomous thinking, the result of executing XOR
operation on any two binary strings can be divided into two
types, that is, common and difference, and the mutation and
crossover operations of BDE can also be divided into two
types. If the result is common then we can perform one
operation, else if it is difference then we can perform another
heterogeneous operation. Motivated by these observations,
we proposed a novel dichotomous binary differential evolu-
tion (DBDE), in which dichotomousmechanism is fused into
the mutation and crossover operations. As the main contri-
bution in DBDE, dichotomous mechanism is learning from
the dichotomous thinking of psychology.The primary idea of
dichotomous mechanism is that each of the two features (i.e.,
0 and 1) after the XOR operation corresponds to two different
strategies, the result increases the diversity of population and
enhances the exploration ability in the binary search space.
Comprehensive experiments have been conducted on a suite
of 0-1 knapsack problems and multidimensional knapsack
problems to verify the effectiveness and efficiency of the
proposed approach.

The rest of the paper is organized as follows. In Section 2,
the 0-1 knapsack problems and multidimensional knapsack
problems are introduced. Section 3 gives a brief review of
the DE algorithm. Our proposed DE variant, called DBDE,
is described in Section 4. The analysis of solution quality of
DBDE is presented in Section 5. Experimental results and
discussions are presented in Section 6. Finally, the work is
concluded in Section 7.

2. Knapsack Problems

The knapsack problem is one of typical NP-hard combina-
torial optimization problems in operation research, which
includes a variety of knapsack problems such as the 0-1 knap-
sack problems and multidimensional knapsack problems.

2.1. The 0-1 Knapsack Problems. Generally, in an instance
of the 0-1 knapsack problem, given a set of 𝑛 items, each
item 𝑖 having an integer profit 𝑝𝑖 and an integer weight𝑤𝑖, the task is to maximise the sum of profits of items
packed in the knapsack without exceeding a given capacity𝐶.

Mathematically, the 0-1 knapsack problem can be formulated
as follows:

Maximize 𝑓 (𝑋) = 𝑛∑
𝑗=1

𝑝𝑗𝑥𝑗

s.t. 𝑛∑
𝑗=1

𝑤𝑗𝑥𝑗 ≤ 𝐶
𝑥𝑗 ∈ {0, 1} , 𝑗 = 1, 2, . . . , 𝑛,

(1)

where 𝑥𝑗 = 1 or 0 is used to indicate whether item 𝑗 is
included in the knapsack or not. It may be assumed that
all profits and weights are positive, and that all weights are
smaller than the capacity 𝐶 but the total weight of all items
exceeds 𝐶.
2.2. The 0-1 Multidimensional Knapsack Problems. The 0-1
multidimensional knapsack problem is similar to 0-1 knap-
sack problem, but where a set of knapsack constraints are
satisfied rather than one. Therefore, it is more complex and
more difficult to be solved. A comprehensive overview of
practical and theoretical results for the 0-1 multidimensional
knapsack problem can be found in [10]. The 0-1 multidimen-
sional knapsack problem can be formulated as follows:

Maximize 𝑓 (𝑋) = 𝑛∑
𝑗=1

𝑝𝑗𝑥𝑗

s.t. 𝑛∑
𝑗=1

𝑤𝑘,𝑗𝑥𝑗 ≤ 𝐶𝑘, 𝑘 = 1, 2, . . . , 𝑚
𝑥𝑗 ∈ {0, 1} , 𝑗 = 1, 2, . . . , 𝑛,

(2)

where 𝑚 is the number of knapsack constraints with maxi-
mum capacities.

3. DE Algorithm

Since the emergence of DE algorithm, much effort has been
made to improve the performance and these works can be
classified into three categories. The first is hybridization with
other techniques [23–25], the second is modification of the
mutation strategy [26–28], and the third is adaptation of
mutation strategy and parameter settings (i.e., NP,𝐹, and CR)
[29–31]. Additionally, some comparative study has shown
that the performance of DE and its variants is better than
the PSO variants over a wide variety of problems [16, 32]. As
a very competitive form of evolutionary algorithm, DE has
been successfully applied to diverse fields such as electrical
power systems [33, 34], bioinformatics [35, 36], pattern and
recognition, and image processing [37, 38]. Recently, Das et
al. [16, 17] presented a comprehensive survey on the state-of-
the-art of DE variants, so more information can be referred
to it.

DE is a population-based heuristic search algorithm
which maintains a population with NP floating-point
encoded individuals 𝑋1,𝐺, 𝑋2,𝐺, . . . , 𝑋NP,𝐺, where NP is the



Mathematical Problems in Engineering 3

population size, 𝐺 is the generation number, and each
member represents a candidate solution, randomly sampled
from the search space. It starts with an initial population𝑋1,0, 𝑋2,0, . . . , 𝑋NP,0 and then conducts mutation, crossover,
and selection operators to improve its population generation
by generation until the preset stopping criterion, that is, target
error accuracy level (𝜀) or maximum number of function
evaluates (MaxFEs), is satisfied.

At each generation 𝐺, DE executes mutation operation
firstly. The mutant vector 𝑉𝑖,𝐺 for each individual 𝑋𝑖,𝐺 (or,
namely, target vector)will be created by themutation strategy.
The well-known and widely used DE mutation strategies
“DE/rand/1” are shown as follows:

𝑉𝑖,𝐺 = 𝑋𝑟1,𝐺 + 𝐹 ⋅ (𝑋𝑟2,𝐺 − 𝑋𝑟3,𝐺) , (3)

where 𝑖 = 1, 2, . . . ,NP, 𝑟1, 𝑟2, and 𝑟3 are different indices
randomly chosen from the set {1, 2, . . . ,NP} and all are
different from 𝑖. The control parameter 𝐹 is a scale factor that
amplifies the vector difference.

Then, DE commonly conducts binomial crossover oper-
ator to recombine the target vector 𝑋𝑖,𝐺 and mutant vector𝑉𝑖,𝐺. The trial vector 𝑈𝑖,𝐺 is generated as follows:

𝑢𝑖,𝑗,𝐺 = {{{
V𝑖,𝑗,𝐺, if rand𝑗 ≤ CR or 𝑗 = 𝑗rand
𝑥𝑖,𝑗,𝐺, otherwise, (4)

where 𝑗 = 1, 2, . . . , 𝐷, 𝑗rand ∈ {1, 2, . . . , 𝐷} is a randomly
selected integer, rand𝑗 ∈ [0, 1] is a uniformly distributed
random number for the 𝑗th dimension, and the control
parameter CR ∈ [0, 1] is the crossover probability.

Finally, the selection operator is used to choose the better
one among the target vector 𝑋𝑖,𝐺 and the trial vector 𝑈𝑖,𝐺 in
terms of their fitness value to enter the next generation:

𝑋𝑖,𝐺+1 = {{{
𝑈𝑖,𝐺, if 𝑓 (𝑈𝑖,𝐺) > 𝑓 (𝑋𝑖,𝐺)
𝑋𝑖,𝐺, otherwise.

(5)

To alleviate the classical DE cannot be directly applied
to binary-valued optimization problem, many versions of
BDE were put forward around the world; especially logical
operations were first introduced by He and Han [19] to
replace the original operations of the mutation mechanism
in DE and the binary mutation equation as follows:

𝑉𝑖,𝐺 = 𝑋𝑟1,𝐺 ⊙ 𝐹 ⊗ (𝑋𝑟2,𝐺 ⊕ 𝑋𝑟3,𝐺) , (6)

where ⊗ denotes the AND operator, ⊙ denotes the OR
operator, and ⊕ denotes the XOR operator.

4. Dichotomous Binary Differential Evolution

Dichotomous binary differential evolution (DBDE) as pro-
posed in this paper is based on both binary string represen-
tation and the dichotomous mechanism. The details are as
follows.

4.1. Dichotomous Mutation. The idea of using logical oper-
ations to replace the original operations of the mutation,
such as subtraction, multiplication, and addition, was first
introduced by He and Han [19].This approach can evolve the
bit string individual directly. However, by using the binary
strings, there are only two different codes “0” and “1” in the
population; the differential of two individuals on the same
location is too negligible to operate the complicatedmutation
like the real coding individuals. The novel binary mutation
mechanism developed in this paper is based on XOR logical
operation mainly. As we all know, the bit coded as “0”
after the XOR operation represents the common between
the two selected bits; otherwise the “1” represents difference.
According to the common and difference feature patterns of
two randomly selected individuals, dichotomous mutation
executes difference operations and the new mutation equa-
tion is as follows:

V𝑖,𝑗,𝐺 = ((𝑥𝑟1,𝑗,𝐺 ⊕ 𝑥𝑟2,𝑗,𝐺) ⊗ rand)
⊙ (! (𝑥𝑟1,𝑗,𝐺 ⊕ 𝑥𝑟2,𝑗,𝐺) ⊗ 𝑥𝑟1,𝑗,𝐺) , (7)

where ! denotes theNOToperator. In dichotomousmutation,
the scale factor 𝐹 disappeared and we no longer have to
worry about its value. If the bits between 𝑥𝑟1,𝑗,𝐺 and 𝑥𝑟2,𝑗,𝐺 are
difference, then the mutation value is randomly chosen from
“0” or “1”; otherwise, if the bits between 𝑥𝑟1,𝑗,𝐺 and 𝑥𝑟2,𝑗,𝐺 are
common, then the mutation value is determined by the value
of 𝑥𝑟1,𝑗,𝐺.

As a simple example, as depicted in Figure 1, two individ-
uals 𝑋𝑟1,𝐺 and 𝑋𝑟2,𝐺 are randomly selected at generation 𝐺
for 𝑖th individual 𝑋𝑖,𝐺 to execute the dichotomous mutation.
Then a binary string (𝑋𝑟1,𝐺 ⊕ 𝑋𝑟2,𝐺) is produced after the
XORoperation of𝑋𝑟1,𝐺 and𝑋𝑟2,𝐺. On this basis, themutation
binary string 𝑉𝑖,𝐺 is obtained by the dichotomous mutation
mechanism. In Figure 1,𝑉𝑖,𝐺 composes rand, 𝑥𝑟1,1,𝐺, rand, and𝑥𝑟1,𝑛,𝐺 on the 1st, 2nd, 3rd, and 𝑛th location, respectively, in
which “rand” represents that the value is randomly chosen
from “0” or “1” with equal probability.

4.2. Dichotomous Crossover. The new binary crossover oper-
ator, that is, dichotomous crossover, is used to produce the
trial individual 𝑈𝑖,𝐺 by mixing the target individual 𝑋𝑖,𝐺
and mutant individual 𝑉𝑖,𝐺. The trial individual 𝑈𝑖,𝐺 can be
obtained according to the following equation:

𝑢𝑖,𝑗,𝐺 = {{{
V𝑖,𝑗,𝐺, if rand𝑗 ≤ CR𝑗
𝑥𝑖,𝑗,𝐺, otherwise,

CR𝑗 = {{{
CR1, if (𝑥𝑟1,𝑗,𝐺 ⊕ 𝑥𝑟2,𝑗,𝐺) == 0
CR2, if (𝑥𝑟1,𝑗,𝐺 ⊕ 𝑥𝑟2,𝑗,𝐺) == 1,

(8)

where 𝑗 = 1, 2, . . . , 𝐷. The mechanism of dichotomous
crossover is similar to the crossover of the original DE,
but there exists a main difference between them. That is,
dichotomous crossover uses two crossover probabilities, that
is, CR1 and CR2, rather than only one CR in classical DE. For𝑗th bit of the trial individual, if the bits between 𝑥𝑟1,𝑗,𝐺 and



4 Mathematical Problems in Engineering

Input: Infeasible individual𝑋; Weights 𝑤𝑖 of each item 𝑖; Capacity 𝐶 of a knapsack
(1) while 𝑋 is infeasible do
(2) 𝑖 = ratio-greedily select an item from the knapsack;
(3) 𝑥𝑖 = 0;
(4) if ∑𝑛𝑖=1 𝑥𝑖 ⋅ 𝑤𝑖 ≤ 𝐶 then
(5) Return𝑋;
(6) end if
(7) end while
Output: Feasible individual𝑋

Algorithm 1: Ratio-greedy repair.

1001

XOR

1100

0101

randrand

· · · · · ·

· · ·

· · ·

Xr1,G Xr2,G

xr1,2,G xr1,n,GVi,G

Xr1,G ⊕ Xr2,G

Figure 1: Illustration of the dichotomous mutation.

randrand

rand10

1100

Vi,G xr1,1,G

xr1,1,G

xr1,3,G

rand1 ≤ CR1 randj ≤ CR2

Ui,G

Xi,G

rand2 > CR2

rand3 > CR1

· · ·

· · ·

· · ·

Figure 2: Illustration of the dichotomous crossover.

𝑥𝑟2,𝑗,𝐺 are common, then CR𝑗 is equal to CR1; otherwise, if
the bits between 𝑥𝑟1,𝑗,𝐺 and 𝑥𝑟2,𝑗,𝐺 are difference, then CR𝑗 is
equal to CR2.

As demonstrated in Figure 2, the elements of trial
individual 𝑈𝑖,𝐺 come from mutate individual V𝑖,𝐺 and target
individual 𝑥𝑖,𝐺 with difference crossover probabilities. From
Figure 2, we can find that the decisions of the crossover
operation for the 1st, 2nd, 3rd, and 𝑛th bit of 𝑈𝑖,𝐺 are based
on CR1, CR2, CR1, and CR2, respectively.

4.3. DBDE for Knapsack Problems. Handling the constraint
in the knapsack problems and considering some empirical
results indicate that repair method is the most efficient for
the knapsack problems [3, 4]. Thus, only repair method
with ratio-greedy manner is used in this paper to tackle
the knapsack problem. The steps of the ratio-greedy repair
are described in Algorithm 1, in which if the solution 𝑋
is infeasible, we sort the items according to the descending
order of the corresponding profit-to-weight ratios firstly and

Table 1: Truth table of dichotomous mutation.

𝑥𝑟1,𝑗 𝑥𝑟2,𝑗 rand 𝑥𝑟1,𝑗 ⊕ 𝑥𝑟2,𝑗 V𝑖,𝑗
0 0 0 0 0
0 0 1 0 0
0 1 0 1 0
0 1 1 1 1
1 0 0 1 0
1 0 1 1 1
1 1 0 0 1
1 1 1 0 1

then choose an item with the smallest ratio and remove it
from the knapsack, and the program will loop continuously
until a feasible one is generated.

The framework of DBDE for knapsack problem is
described inAlgorithm 2. Compared to the original DE, there
ismerely twomajor differences in theDBDE.One is the using
of ratio-greedy repair for the infeasible solution after the new
individual generated. Another is that the new dichotomous
mutation and dichotomous crossover replace the old one.

5. Analysis of Solution Quality of DBDE

In this section, we analyze the solution quality of DBDE on
the 0-1 knapsack problem in terms of the approximation ratio
[39, 41]. In DBDE, the dichotomous mutation, dichotomous
crossover, and selection are performed one by one at each
generation to guide the population to the global optimum.
From the demonstration of truth table in Table 1, we can
observe that the probabilities of bit “1” and bit “0” generated
by dichotomous mutation are equal to 0.5. Meanwhile, based
on dichotomous crossover probabilities CR1 and CR2 the
mutant bit will be accepted as a trial bit in the trial vector
and the probabilities of using CR1 and CR2 are equal to 0.5.
Thus, dichotomous mutation and crossover flip bit from “0”
to “1” with a probability 0.5 ∗ 0.5 ∗ (CR1 + CR2) and the
same as from “1” to “0”. For the purposes of simplification,
let 𝑞 = 0.5 ∗ 0.5 ∗ (CR1 + CR2).
Theorem 1. For any constant 𝛼 ∈ (0, 1), the DBDE needsΩ(𝑞−𝛼𝑛) running time to find 𝛼-approximation solution in the
worst case.



Mathematical Problems in Engineering 5

Input: Population size, NP; Crossover probability, CR1 and CR2; Maximum number of objective function evaluations, MaxFEs
(1) Randomly initialize population 𝑃0 with NP individuals
(2) for 𝑖 = 1 : NP do
(3) if 𝑋𝑖,0 is an infeasible individual then
(4) Execute Algorithm 1 for ratio-greedy repair
(5) end if
(6) Evaluate the objective function value 𝑓(𝑋𝑖,0)
(7) end for
(8) FEs = NP
(9) while FEs <MaxFEs do
(10) for 𝑖 = 1 : NP do
(11) Randomly select two individuals 𝑥𝑟1,𝐺 and 𝑥𝑟2,𝐺 from population 𝑃𝐺
(12) Execute the dichotomous mutation to generate a mutate individual 𝑉𝑖,𝐺
(13) Execute the dichotomous crossover to generate a trial individual 𝑈𝑖,𝐺
(14) if 𝑈𝑖,𝐺 is an infeasible individual then
(15) Execute Algorithm 1 for ratio-greedy repair
(16) end if
(17) Evaluate the objective function value 𝑓(𝑈𝑖,𝐺)
(18) if 𝑓(𝑈𝑖,𝐺) > 𝑓(𝑋𝑖,𝐺) then
(19) 𝑋𝑖,𝐺 = 𝑈𝑖,𝐺
(20) end if
(21) end for
(22) FEs = FEs + NP
(23) end while
Output: Optimal individual with the maximum profit value

Algorithm 2: DBDE for knapsack problem.

Table 2: Instance 1 for analysis [39].

Item 𝑖 1 2, . . . , 𝛼𝑛 𝛼𝑛 + 1, . . . , 𝑛
Profit 𝑝𝑖 𝑛 1 1/𝑛
Weight 𝑤𝑖 𝑛 1/𝛼𝑛 𝑛
Capacity 𝑛

Proof. According to the definition of an evolutionary approx-
imation algorithm (see [41] for a detailed exposition), it
suffices to consider the instance of the 0-1 knapsack problem,
which is described in Table 2. In Table 2, 𝛼𝑛 is a large positive
integer for a sufficiently large 𝑛. As seen, the global optimum
for the instance is (10 ⋅ ⋅ ⋅ 0), 𝑓(10 ⋅ ⋅ ⋅ 0) = 𝑛 and the global
optimum is unique. A local optimum is

0 𝛼𝑛−1⏞⏞⏞⏞⏞⏞⏞⏞⏞1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ 0, 𝑓(0 𝛼𝑛−1⏞⏞⏞⏞⏞⏞⏞⏞⏞1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ 0) = 𝛼𝑛 − 1. (9)

Notice that the local optimum is the second largest objective
function value among feasible solution. The ratio of fitness
between the local optimum and the global optimum is

𝛼𝑛 − 1𝑛 < 𝛼. (10)

Suppose that the DBDE starts at the local optimum(01 ⋅ ⋅ ⋅ 10 ⋅ ⋅ ⋅ 0). For the individual𝑋𝑖, the dichotomousmuta-
tion and crossover operators are conducted and a trial vector𝑈𝑖,𝐺 is generated. At the same time, the greedy selection
operator with the ratio-greedy repair will prevent 𝑈𝑖,𝐺 from

entering into the next generation unless the trial vector is the
global optimum itself.Thus, the event happens only if the first
bit of𝑋𝑖 is flipped from𝑥1 = 0 to𝑥1 = 1 and𝛼𝑛−1 one-valued
bits are flipped into zero-valued ones while other zero-valued
bits remain unchanged. The probability of this event is

𝑞 × (𝑞)𝛼𝑛−1 × (1 − 𝑞)𝑛−𝛼𝑛 = 𝑂 (𝑞𝛼𝑛) . (11)

From the above analysis, we nowdeduce that the expected
runtime to reach the global

6. Experimental Study

6.1. Experimental Setting. Two types of knapsack problems,
that is, 0-1 knapsack and multidimensional knapsack prob-
lems, are used in the following experimental studies to exten-
sively investigate the performance of the proposed DBDE
algorithm.Meanwhile, DBDE compares with five other state-
of-the-art binary evolutionary algorithms, including three
binary DE variants, that is, BLDE [22], BinDE [20], and
AQDE [7], and two binary PSO variants, that is, BPSO [40]
andMBPSO [6]. For all the contestant algorithms, the control
parameter settings are the same as their original literature,
but the MaxFEs is set to 100 ∗ 𝐷 and NP = 100 for fairness
consideration. The parameters are used in DBDE, that is,
CR1 = 0.2 and CR2 = 0.5. The details of the control
parameters of these contestant algorithms are summarized in
Table 3.

All the experiments are done on a computer with 2.8GHz
Dual-core Processor and 4GB RAM under Windows 7
platformand all algorithms are implemented inMatlab 2010b.



6 Mathematical Problems in Engineering

Table 3: Parameter settings for the contestant algorithms.

Algorithm Parameter settings
BLDE [22] 𝑝 = max(0.05,min(0.15, 10/𝑛))
BinDE [20] 𝐹 = 0.8,CR = 0.5,DE/res/bin
AQDE [7] 𝐹 = 0.1 ∗ 𝑟1 ∗ 𝑟2,

CR = 0.5 + 0.0375 ∗ 𝑟3, 𝑟1, 𝑟2 ∼ 𝑈(0, 1), 𝑟3 ∼ 𝑁(0, 1)
BPSO [40] 𝐶 = 2, 𝑉max = 6
MBPSO [6] 𝐶 = 2, 𝑉max = 4
DBDE CR1 = 0.2, CR2 = 0.5
Table 4: The detailed information of the 0-1 knapsack instances.

Number Problem Type 𝐷
1 kp uc 100 Uncorrelated 100
2 kp uc 200 Uncorrelated 200
3 kp uc 300 Uncorrelated 300
4 kp uc 500 Uncorrelated 500
5 kp uc 1000 Uncorrelated 1000

6 kp wc 100 Weakly
correlated 100

7 kp wc 200 Weakly
correlated 200

8 kp wc 300 Weakly
correlated 300

9 kp wc 500 Weakly
correlated 500

10 kp wc 1000 Weakly
correlated 1000

11 kp sc 100 Strongly
correlated 100

12 kp sc 200 Strongly
correlated 200

13 kp sc 300 Strongly
correlated 300

14 kp sc 500 Strongly
correlated 500

15 kp sc 1000 Strongly
correlated 1000

16 kp ss 100 Subset sum 100
17 kp ss 200 Subset sum 200
18 kp ss 300 Subset sum 300
19 kp ss 500 Subset sum 500
20 kp ss 1000 Subset sum 1000

Thirty independent runs are carried out for each algorithm
on each instance. The best results are shown in boldface.
In order to have statistically sound conclusions, Wilcoxon’s
rank sum test at a 0.05 significance level is conducted on the
experimental results.

6.2. 0-1 Knapsack Problem. A suite of twenty randomly gen-
erated 0-1 knapsack problems is used to verify the efficacy of
DBDE. An algorithm for generating the instances is available
fromhttp://www.diku.dk/∼pisinger/generator.c.Thedetailed
descriptions of these instances are summarized in Table 4.

Table 5: Experimental results of DBDE and other five competitors
on twenty 0-1 knapsack instances.

Problem BPSO MBPSO BLDE BinDE AQDE DBDE
kp uc 100 1807 1807 1807 1732 1807 1807
kp uc 200 3402 3378 3401 3146 3390 3403
kp uc 300 5443 5344 5441 4836 5401 5444
kp uc 500 9492 9145 9484 8058 9381 9495
kp uc 1000 18829 17600 18492 15380 18467 18843
kp wc 100 659 659 658 656 659 659
kp wc 200 1332 1331 1329 1304 1328 1332
kp wc 300 1961 1957 1961 1922 1958 1963
kp wc 500 3246 3230 3247 3163 3236 3247
kp wc 1000 6478 6401 6458 6252 6446 6463
kp sc 100 813 813 812 786 812 813
kp sc 200 1629 1617 1626 1552 1624 1631
kp sc 300 2433 2402 2426 2307 2422 2433
kp sc 500 4069 3982 4051 3807 4045 4070
kp sc 1000 8212 7936 8073 7590 8137 8109
kp ss 100 493 493 493 493 493 493
kp ss 200 1001 1001 1001 1001 1001 1001
kp ss 300 1523 1523 1523 1523 1523 1523
kp ss 500 2518 2518 2518 2518 2518 2518
kp ss 1000 5068 5068 5068 5068 5068 5068
𝑤/𝑡/𝑙 7/2/11 13/0/7 13/0/7 15/0/5 12/1/7 —

The optimum solutions of these instances are not known.
These instances can be divided into four groups, including
uncorrelated, weakly correlated, strongly correlated, and
subset-sum data instances. In all instances, the weights𝑤𝑗 are
randomly distributed in [1, 𝑅].Theprofits𝑝𝑗 are expressed as
a function of theweights𝑤𝑗, yielding the specific properties of
each group and as follows: (1) uncorrelated data instances—
the profits 𝑝𝑗 are randomly chosen in [1, 𝑅], there is no
correlation between the profit and the weight of an item; (2)
weakly correlated data instances—𝑝𝑗 randomly distributed in
[𝑤𝑗 − 𝑅/10, 𝑤𝑗 + 𝑅/10] such that 𝑝𝑗 ≥ 1. Despite their name,
weakly correlated instances have a very high correlation
between the profit and weight of an item. Typically, the profit
differs from the weight by only a few percent; (3) strongly
correlated data instances—profits are set to 𝑝𝑗 = 𝑤𝑗 + 10;
and (4) subset-sum data instances—the profit of each item is
equal to the weight, that is, 𝑝𝑗 = 𝑤𝑗. The number of items𝑁 is set to 100, 200, 300, 500, and 1000, respectively, to test
the algorithms with different problem scales. Moreover, the
used 0-1 knapsack instances in this paper are available at
https://github.com/whuph/KP data, so that readers are able
to test these instances in their algorithms.

Table 5 presents the mean maximum profit achieved by
DBDE and other five competitive algorithms over 30 runs
on each 0-1 knapsack instance. At the bottom of the table,
Wilcoxon’s rank sum test results between DBDE and others
are summarized as “𝑤/𝑡/𝑙”, which means that DBDE wins
in 𝑤 functions, ties in 𝑡 functions, and loses in 𝑙 functions.
Based on the results, our algorithm achieves better results
than others on the majority of test instances. However, on



Mathematical Problems in Engineering 7

0 0.5 1 1.5 2
FEs

M
ea

n 
pr

ofi
t

DBDE
AQDE
BLDE

BinDE
BPSO
MBPSO

×104

103.52

103.5

103.48

(a) kp uc 200

0 1 2 3
FEs

M
ea

n 
pr

ofi
t

DBDE
AQDE
BLDE

BinDE
BPSO
MBPSO

×104

103.72

103.7

103.68

103.66

103.64

(b) kp uc 300

0 1 2 3 4 5
FEs

M
ea

n 
pr

ofi
t

DBDE
AQDE
BLDE

BinDE
BPSO
MBPSO

×104

103.96

103.93

103.9

103.87

(c) kp uc 500

0 0.5 1 1.5 2
FEs

M
ea

n 
pr

ofi
t

DBDE
AQDE
BLDE

BinDE
BPSO
MBPSO

×104

103.12

103.11

(d) kp wc 200

0 1 2 3
FEs

M
ea

n 
pr

ofi
t

DBDE
AQDE
BLDE

BinDE
BPSO
MBPSO

×104

103.29

103.28

(e) kp wc 300

0 1 2 3 4 5
FEs

M
ea

n 
pr

ofi
t

DBDE
AQDE
BLDE

BinDE
BPSO
MBPSO

×104

103.51

103.5

(f) kp wc 500

M
ea

n 
pr

ofi
t

0 0.5 1 1.5 2
FEs

DBDE
AQDE
BLDE

BinDE
BPSO
MBPSO

×104

103.21

103.2

103.19

103.18

(g) kp sc 200

M
ea

n 
pr

ofi
t

0 1 2 3
FEs

DBDE
AQDE
BLDE

BinDE
BPSO
MBPSO

×104

103.38

103.37

103.36

(h) kp sc 300

0 1 2 3 4 5
FEs

M
ea

n 
pr

ofi
t

DBDE
AQDE
BLDE

BinDE
BPSO
MBPSO

×104

103.61

103.6

103.59

103.58

103.57

(i) kp sc 500

Figure 3: Convergence curves of the six contestant algorithms on nine representative 0-1 knapsack instances.

the subset-sum data instances all of the competitors get the
same results. Because subset-sum instances are generally easy
to solve, the maximum sum of weight indicates the optimal
solution. A statistical view in terms of Wilcoxon’s rank sum
test in the last line of Table 5 is more appropriate to see the
superiority of DBDE over other five competitors. We observe
from that DBDE is significantly better than BPSO, MBPSO,
BLDE, BinDE, andAQDE on 7, 13, 15, 15, and 12 test instances,
respectively, but only worse than BPSO and AQDE on 2 and
1 test instances, respectively. Figure 3 shows the convergence
curves of the six contestant algorithms on nine representative
0-1 knapsack instances.

Apart from the above analysis, one may come up with
a question: what are the differences of computational cost
between DBDE and other competitive algorithms on 0-1
knapsack problems? In order to respond to this, beside the
maximum profit results, the runtime was also recorded to
compare the computational cost of six algorithms on the test
suite. Each algorithm is run 30 times per test instance and
the mean runtime is recorded. Table 6 presents the statistical
results of runtime. At the bottom of the table, the total
runtime on all test instances is summarized.

From Table 6, we can see that the runtime of DBDE is
higher than BinDE, but this difference is slight. In addition to



8 Mathematical Problems in Engineering

Table 6: Runtime (in seconds) of DBDE and other five competitors
on twenty knapsack instances.

Problem BPSO MBPSO BLDE BinDE AQDE DBDE
kp uc 100 1.65 1.52 1.25 0.53 1.71 0.48
kp uc 200 6.53 6.07 4.81 1.81 6.74 2.32
kp uc 300 15.32 14.11 11.72 3.43 15.53 5.18
kp uc 500 45.39 43.34 37.05 8.65 47.47 13.99
kp uc 1000 225.82 218.68 192.97 30.98 239.39 67.52
kp wc 100 1.82 1.90 1.42 0.82 1.87 0.89
kp wc 200 7.24 7.22 5.36 2.86 7.24 3.26
kp wc 300 17.17 17.33 13.69 5.98 17.17 7.10
kp wc 500 52.88 51.06 44.16 14.39 53.39 18.87
kp wc 1000 264.33 255.35 227.96 53.96 268.16 68.24
kp sc 100 1.51 1.42 1.18 0.68 1.56 0.74
kp sc 200 6.04 5.63 4.47 2.06 6.17 2.47
kp sc 300 14.22 13.39 11.22 4.15 14.68 5.19
kp sc 500 42.67 40.39 34.85 9.79 44.80 12.13
kp sc 1000 210.27 197.74 175.21 34.82 223.75 34.55
kp ss 100 1.83 1.81 1.53 1.05 1.94 1.02
kp ss 200 7.52 7.44 5.87 4.46 7.78 4.09
kp ss 300 17.48 17.40 14.31 9.33 17.91 9.05
kp ss 500 52.77 52.75 45.63 28.43 54.75 26.94
kp ss 1000 267.82 271.25 242.57 145.57 280.47 135.37
Total 1260.29 1225.82 1077.23 363.73 1312.48 419.40

this, DBDE is significant faster than BPSO, MBPSO, BLDE,
and AQDE. The possible reasons are as follows. First, as
pointed out in Algorithm 2, the DBDE almost have any
difference with classical DE and no additional module or
computation has been introduced. Second, to benefit from
dichotomous mutation and crossover, the rate of producing
feasible individuals is much higher than other competitors.
So the computation cost of repairing infeasible individual is
less than others. Taking into account these experiments and
analyses, we can conclude that DBDE is effective and efficient
for 0-1 knapsack problems.

6.3. Multidimensional Knapsack Problem. Three groups of
well-known multidimensional knapsack instances selected
from OR-library [42] are used in the experimental studies to
verify the performance of DBDE.The detailed descriptions of
these multidimensional knapsack instances are summarized
in Table 7. The optimum solutions of these instances are
known. The first group with 2 multidimensional knapsack
instances corresponds to “sento” [43], which is characterized
by large constraints and the number of constraints is 30. In
contrast to the first group, the second group with 8 multidi-
mensional knapsack instances corresponds to “weing” [44],
which is characterized by small constraints. The last group
with 30 multidimensional knapsack instances corresponds
to “weish” [45], which is a moderate test suit. Among the
“weish”multidimensional knapsack instances, the number of
constraints is 5 and the number of items ranges between 20
and 90. The used parameters are the same as in Section 6.1.
The results of the mean maximum profit achieved by the

Table 7: The detailed information of the multidimensional knap-
sack problems.

Number Problem 𝐷 Constraints Optimal value
1 Sento1 60 30 7772
2 Sento2 60 30 8722
3 Weing1 28 2 141278
4 Weing2 28 2 130883
5 Weing3 28 2 95677
6 Weing4 28 2 119337
7 Weing5 28 2 98796
8 Weing6 28 2 130623
9 Weing7 105 2 1095445
10 Weing8 105 2 624319
11 Weish1 30 5 4554
12 Weish2 30 5 4536
13 Weish3 30 5 4115
14 Weish4 30 5 4561
15 Weish5 30 5 4514
16 Weish6 40 5 5557
17 Weish7 40 5 5567
18 Weish8 40 5 5605
19 Weish9 40 5 5246
20 Weish10 50 5 6339
21 Weish11 50 5 5643
22 Weish12 50 5 6339
23 Weish13 50 5 6159
24 Weish14 60 5 6954
25 Weish15 60 5 7486
26 Weish16 60 5 7289
27 Weish17 60 5 8633
28 Weish18 70 5 9580
29 Weish19 70 5 7698
30 Weish20 70 5 9450
31 Weish21 70 5 9074
32 Weish22 80 5 8947
33 Weish23 80 5 8344
34 Weish24 80 5 10220
35 Weish25 80 5 9939
36 Weish26 90 5 9584
37 Weish27 90 5 9819
38 Weish28 90 5 9492
39 Weish29 90 5 9410
40 Weish30 90 5 11191

DBDE and other competitors are presented in Table 8, where
“𝑤/𝑡/𝑙” summarizes the competition results between DBDE
and others algorithms.

FromTable 9, it can be seen from the boldface that DBDE
achieves best results among the six contestants on 34 out
of 40 test instances. Meanwhile, based on Wilcoxon’s rank
sum test results, DBDE is significantly better than BPSO,
MBPSO, BLDE, BinDE, and AQDE on 22, 32, 23, 38, and
38 test instances, respectively, but BPSO, MBPSO, BLDE,



Mathematical Problems in Engineering 9

Table 8: Results ofmeanmaximumprofits on themultidimensional
knapsack problems.

Problem BPSO MBPSO BLDE BinDE AQDE DBDE
Mean Mean Mean Mean Mean Mean

Sento1 7744 7715 7750 7661 7670 7753
Sento2 8700 8630 8693 8476 8584 8696
Weing1 141224 141251 141129 140724 140948 141278
Weing2 130883 130874 130883 130593 130434 130878
Weing3 95600 95641 95677 95658 95192 95617
Weing4 119337 119337 119204 118364 119163 119337
Weing5 98774 98725 98785 98607 98440 98626
Weing6 130480 130519 130493 130305 130419 130610
Weing7 1092872 1043323 1084627 935904 1056826 1093085
Weing8 623630 622248 622121 610320 619660 623945
Weish1 4554 4554 4554 4542 4554 4554
Weish2 4534 4532 4527 4496 4528 4536
Weish3 4095 4097 4115 4095 4065 4115
Weish4 4560 4554 4559 4532 4538 4561
Weish5 4514 4514 4514 4494 4514 4514
Weish6 5543 5537 5533 5467 5527 5547
Weish7 5566 5552 5557 5475 5542 5556
Weish8 5600 5598 5599 5488 5590 5604
Weish9 5246 5246 5246 5211 5225 5246
Weish10 6332 6319 6336 6209 6281 6339
Weish11 5641 5638 5629 5550 5614 5637
Weish12 6339 6324 6339 6187 6270 6339
Weish13 6148 6118 6157 6031 6086 6159
Weish14 6903 6894 6925 6745 6875 6954
Weish15 7481 7446 7484 7167 7400 7486
Weish16 7285 7271 7287 7076 7242 7289
Weish17 8626 8535 8617 8035 8522 8630
Weish18 9574 9507 9561 9002 9479 9580
Weish19 7693 7686 7693 7439 7655 7698
Weish20 9446 9368 9442 8809 9308 9450
Weish21 9069 9029 9068 8547 8996 9074
Weish22 8918 8882 8938 8496 8866 8947
Weish23 8338 8298 8329 7997 8240 8342
Weish24 10219 10087 10208 9484 10096 10220
Weish25 9916 9830 9916 9246 9792 9939
Weish26 9584 9538 9570 9048 9513 9584
Weish27 9819 9769 9813 9143 9738 9819
Weish28 9481 9403 9481 8939 9372 9492
Weish29 9410 9373 9408 8864 9343 9410
Weish30 11186 11021 11177 10221 11053 11190
𝑤/𝑡/𝑙 22/4/14 32/2/6 23/2/15 38/0/2 38/0/2 —

BinDE, and AQDE beat DBDE on 4, 2, 2, 0, and 0 test
instances, respectively. Overall, the performance of DBDE on
the multidimensional knapsack instances is better than that
of the five competitors.

In order to compare the convergence rate of different
algorithms, the mean number of FEs required to converge
to the optimum solution (MFEs) and the successful rate

100

90

80

70

60

50

40

30

20

10

0

SR
 (%

)

BPSO MBPSO BLDE BinDE AQDE DBDE
Algorithm

Figure 4:The successful rates of six algorithms on the multidimen-
sional knapsack problems.

(SR) are recorded in Table 9. The stopping criterion is that
each algorithm is terminated when the optimum solution is
found or the number of FEs reaches to its maximum value
(100 ∗ 𝐷). As seen, it is clear that DBDE is more reliable
than other competitors as successful rate (SR) for DBDE
reaches 100 on 22 multidimensional knapsack instances out
of 40. Figure 4 shows the average successful rates of the
six contestant algorithms on the multidimensional knapsack
problems.

Moreover, DBDE shows faster convergence speed on the
majority of multidimensional knapsack instances. Although,
from Table 9, the MFEs of Weing1, Weing4, Weish1, Weish3,
Weish4, Weish5, Weish6, Weish8, Weish9, Weish17, Weish18,
Weish23, Weish24, Weish26, Weish27, andWeish29 achieved
by DBDE are not the best, but DBDE exhibits the best SR
on this test multidimensional knapsack instances among the
six algorithms. From the last row of Table 9, DBDE costs
the lowest average MFEs to reach the threshold and gets the
highest average SR.Therefore, the above experimental results
and analysis verify the superior performance of DBDE on
multidimensional knapsack problem.

6.4. Validity of Population Size and Crossover Probability
Settings. In order to investigate the validity of population
size (NP) and crossover probability (CR1 and CR2) settings
on the performance of DBDE, three scalable tests of DBDE
have been carried out on the multidimensional knapsack
problems with different NP, CR1, and CR2 values. The test
suit of multidimensional knapsack problem is the same as
Section 6.3 used. The experimental results of DBDE with
different NP, CR1, and CR2 values are summarized in Tables
10, 11, and 12, respectively.

In the case of different NP values, experiments have been
done onNP = 50, 100, 150, and𝐷. It is clear fromTable 10 that
the performance of NP = 100 is significantly better than that
of others. When NP = 100, DBDE achieved best SR results
(boldface). These observations demonstrate that NP = 100 is
efficient and suitable.

As shown in Table 11, for the CR1 test, CR1 is set to 0.1, 0.2,
0.3, 0.4, and 0.5. By carefully examining the results, we find
that value 0.2 gets best results. Therefore, on the whole, CR1



10 Mathematical Problems in Engineering

Table 9: Results of mean number of FEs and successful rate on the multidimensional knapsack problems.

Problem BPSO MBPSO BLDE BinDE AQDE DBDE
MFEs SR (%) MFEs SR (%) MFEs SR (%) MFEs SR (%) MFEs SR (%) MFEs SR (%)

Sento1 6000 0 6000 0 5536 13 6000 0 6000 0 5234 43
Sento2 6000 0 6000 0 6000 0 6000 0 6000 0 6000 0
Weing1 1471 87 1951 73 1401 70 2789 3 2724 10 1642 100
Weing2 1047 100 1819 93 617 100 2623 17 2733 13 1507 97
Weing3 1133 90 1406 90 340 100 1588 73 2428 27 1719 60
Weing4 888 100 1396 100 982 93 2576 23 2316 63 1390 100
Weing5 1578 87 2347 60 818 93 2704 23 2800 0 2478 30
Weing6 1818 63 1942 73 1490 67 2500 23 2309 53 1346 97
Weing7 10432 3 10500 0 10500 0 10500 0 10500 0 10500 0
Weing8 10500 0 10500 0 7401 47 10500 0 10500 0 10500 0
Weish1 625 100 801 100 579 100 2077 53 1269 100 828 100
Weish2 1836 60 2264 53 1821 53 2966 13 2677 33 1708 100
Weish3 2518 43 2540 47 960 100 2687 40 3000 0 1200 100
Weish4 1653 97 2131 77 874 97 2651 50 2728 23 997 100
Weish5 483 100 610 100 465 100 1961 63 742 100 714 100
Weish6 3455 23 3915 7 3650 17 4000 0 4000 0 3649 30
Weish7 2202 93 3703 30 2555 67 4000 0 3943 10 3629 33
Weish8 2677 57 3457 30 2755 43 4000 0 3808 13 2928 87
Weish9 891 100 1658 100 710 100 3299 47 3279 50 1120 100
Weish10 3093 77 4751 20 2353 87 5000 0 5000 0 2092 100
Weish11 2136 90 3905 70 4143 27 4981 3 4726 20 3538 63
Weish12 2882 90 4455 47 1872 97 5000 0 5000 0 2100 100
Weish13 3345 83 4961 10 2104 97 5000 0 5000 0 2227 100
Weish14 5977 3 6000 0 4601 40 6000 0 6000 0 3362 100
Weish15 3667 83 5908 7 2997 93 6000 0 6000 0 2683 100
Weish16 4392 57 6000 0 4215 57 6000 0 6000 0 3980 87
Weish17 4937 37 5986 3 5806 10 6000 0 5902 3 5384 67
Weish18 4347 67 7000 0 6519 20 7000 0 7000 0 4848 100
Weish19 4322 67 6230 37 4191 63 7000 0 7000 0 3084 100
Weish20 5187 63 7000 0 5811 47 7000 0 7000 0 3678 100
Weish21 4772 80 6863 7 4470 80 7000 0 7000 0 3431 100
Weish22 6784 27 8000 0 5148 60 8000 0 8000 0 3651 100
Weish23 7172 20 8000 0 7641 10 8000 0 8000 0 7354 23
Weish24 3953 97 8000 0 7200 47 8000 0 8000 0 5278 100
Weish25 7981 7 8000 0 7572 23 8000 0 8000 0 5703 97
Weish26 3987 97 8721 10 6333 67 9000 0 9000 0 4800 100
Weish27 3579 97 8946 7 6881 43 9000 0 9000 0 5084 97
Weish28 4481 83 8992 3 3951 87 9000 0 9000 0 3892 100
Weish29 3514 100 8709 23 4604 97 9000 0 9000 0 4340 100
Weish30 8107 33 9000 0 8449 17 9000 0 9000 0 7253 83
Average 3896 64 5259 32 3908 61 5610 11 5560 13 3671 80

= 0.2 is the best choice for DBDE. In similar circumstances,
observed from Table 12, CR2 = 0.5 also is the best option for
DBDE.

7. Conclusion

DE is a powerful population-based random optimization
algorithm. However, its operators are based on floating-point

representation only and are not suitable for the combinational
optimization problems. In order to solve these problems, a
novel binary DE with dichotomous mechanism (DBDE) is
proposed, in which dichotomous mutation and dichotomous
crossover are employed to enhance the exploration ability
of DE in the binary search space. Dichotomous mechanism
is learned from the dichotomous thinking of psychology.
The primary idea of dichotomous mechanism is that each



Mathematical Problems in Engineering 11

Table 10: Experimental results of DBDE with different NP values.

NP 50 100 150 𝑛
Mean SR (%) 73.17 79.83 70.00 73.42

Table 11: Experimental results of DBDE with different CR1 values.

CR1(CR2 =0.5) 0.1 0.2 0.3 0.4 0.5

Mean SR
(%) 67.25 79.83 76.83 73.75 66.92

Table 12: Experimental results of DBDE with different CR2 values.

CR2 (CR1
= 0.2) 0.3 0.4 0.5 0.6 0.7

Mean SR
(%) 77.92 78.75 79.83 76.58 76.83

of the two features (i.e., 0 and 1) after the XOR operation
corresponds to two different strategies. Compared with
the classical DE, DBDE almost has any difference and no
additional computation. Moreover, we analyze the solution
quality of DBDE on the 0-1 knapsack problem in terms of the
approximation ratio and conclude that the expected runtime
of DBDE to reach the global optimum isΩ(𝑞−𝛼𝑛).

The experimental studies in this paper are performed
on a suite of 0-1 knapsack problems and multidimensional
knapsack problems. The quality of DBDE is verified by
comparingwith three start-of-the-art binaryDE variants (i.e.,
BLDE, BinDE, and AQDE) and two binary PSO variants
(i.e., BPSO and MBPSO) and the results show that DHDE
is the best among the six algorithms. On the 0-1 knapsack
problems, DBDE is significantly better than BPSO, MBPSO,
BLDE, BinDE, andAQDE on 7, 13, 15, 15, and 12 test instances,
respectively, but only worse than BPSO and AQDE on 2 and
1 test instances, respectively. On the 0-1 multidimensional
knapsack problems, DBDE achieves best results among the
six contestants on 34 out of 40 test instances. Furthermore,
DBDE costs the lowest average MFEs to reach the threshold
and gets the highest average SR. For the computational cost,
DBDE is significant faster than BPSO, MBPSO, BLDE, and
AQDE but slightly higher than BinDE. In addition, the effect
of the population size (NP) and crossover probability settings
(CR1 and CR2) are experimentally studied.

The DBDE can effectively improve the performance of
DE on knapsack problems, so it may also work well on
other combinatorial optimization problems, such as trav-
eling salesman problem and inventory routing problem.
In the future, how to generalize our work to solve other
combinational optimization problems remains an attractive
topic. Additionally, Local Search (LS) is a technique that
guides the search to the most promising solution area, and
the hybridization of DBDE with other LS methods can be
attempted to further enhancing performance.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

This work is supported by the National Natural Science
Foundation of China (no. 61364025, no. 61662029), the
Foundation of State Key Laboratory of Software Engineering
(no. SKLSE2012-09-39), and the Science and Technology
Foundation of Jiangxi Province, China (no. GJJ13729) as well.

References

[1] S. Martello and P. Toth,Knapsack Problems, JohnWiley & Sons,
Chichester, UK, 1990.

[2] Z.Michalewicz,Genetic algorithms + data structures = evolution
programs, Springer-Verlag, Berlin, Second edition, 1994.

[3] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolu-
tion Programs, Springer Science & Business Media, 1996.

[4] J. He and Y. Zhou, “A comparison of GAs using penaliz-
ing infeasible solutions and repairing infeasible solutions on
average capacity knapsack,” in Advances in Computation and
Intelligence, vol. 4683 of Lecture Notes in Computer Science, pp.
100–109, Springer, Berlin, Germany, 2007.

[5] F. Hembecker, H. S. Lopes, and W. Godoy Jr., “Particle swarm
optimization for the multidimensional knapsack problem,” in
Adaptive and Natural Computing Algorithms: 8th International
Conference, ICANNGA 2007,Warsaw, Poland, April 11–14, 2007,
Proceedings, Part I, vol. 4431 of Lecture Notes in Computer
Science, pp. 358–365, Springer, Berlin, Germany, 2007.

[6] J. C. Bansal and K. Deep, “A modified binary particle swarm
optimization for knapsack problems,” Applied Mathematics and
Computation, vol. 218, no. 22, pp. 11042–11061, 2012.

[7] A. R. Hota and A. Pat, “An adaptive quantum-inspired differen-
tiale volutional gorithm for 0–1 knap sackproble,” in Proceedings
of the IEEE 2nd World Congress on Nature and Biologically
Inspired Computing (NaBIC ’10), pp. 703–708, Kitakyushu,
Japan, December 2010.

[8] L. Wang, X. Fu, Y. Mao, M. I. Menhas, and M. Fei, “A
novel modified binary differential evolution algorithm and its
applications,” Neurocomputing, vol. 98, pp. 55–75, 2012.

[9] A. Fréville, “The multidimensional 0-1 knapsack problem: an
overview,” European Journal of Operational Research, vol. 155,
no. 1, pp. 1–21, 2004.

[10] J. Puchinger, G. R. Raidl, and U. Pferschy, “The multidimen-
sional knapsack problem: structure and algorithms,” INFORMS
Journal on Computing, vol. 22, no. 2, pp. 250–265, 2010.

[11] R. Storn and K. Price, “Differential evolution: a simple and eff-
cient adaptive scheme for global optimization over continuous
spaces,” Tech. Rep. TR-95–012, International Computer Science
Institute, Berkeley, Calif, USA, 1995.

[12] J. Zhang and A. C. Sanderson, “JADE: adaptive differential
evolution with optional external archive,” IEEE Transactions on
Evolutionary Computation, vol. 13, no. 5, pp. 945–958, 2009.

[13] H. Peng and Z. Wu, “Heterozygous differential evolution with
Taguchi local search,” Soft Computing, vol. 19, no. 11, pp. 3273–
3291, 2015.

[14] Q.Ding andG. Zheng, “The cellular differential evolution based
on chaotic local search,”Mathematical Problems in Engineering,
vol. 2015, Article ID 128902, 15 pages, 2015.



12 Mathematical Problems in Engineering

[15] Z. Guo, G. Liu, D. Li, and S. Wang, “Self-adaptive differential
evolution with global neighborhood search,” Soft Computing,
2016.

[16] S. Das and P. N. Suganthan, “Differential evolution: a survey
of the state-of-the-art,” IEEE Transactions on Evolutionary
Computation, vol. 15, no. 1, pp. 4–31, 2011.

[17] S. Das, S. S. Mullick, and P. Suganthan, “Recent advances in
differential evolution—an updated survey,” Swarm and Evolu-
tionary Computation, vol. 27, pp. 1–30, 2016.

[18] G. Pampara, A. P. Engelbrecht, and N. Franken, “Binary
differential evolution,” in Proceedings of the IEEE Congress on
Evolutionary Computation, pp. 1873–1879, Vancouver, Canada,
July 2006.

[19] X. He and L. Han, “A novel binary differential evolution
algorithm based on artificial immune system,” in Proceedings of
the IEEE Congress on Evolutionary Computation (CEC ’07), pp.
2267–2272, IEEE, Singapore, September 2007.

[20] T. Gong and A. L. Tuson, “Differential evolution for binary
encoding,” in Soft Computing in Industrial Applications, pp. 251–
262, Springer, Berlin, Germany, 2007.

[21] C.-Y.Wu andK.-Y. Tseng, “Topology optimization of structures
using modified binary differential evolution,” Structural and
Multidisciplinary Optimization, vol. 42, no. 6, pp. 939–953, 2010.

[22] Y. Chen, W. Xie, and X. Zou, “Abinary differential evolutional
gorithm learning from explored solutions,” Neurocomputing B,
vol. 149, pp. 1038–1047, 2015.

[23] J. Sun, Q. Zhang, and E. P. Tsang, “DE/EDA: a new evolutionary
algorithm for global optimization,” Information Sciences. An
International Journal, vol. 169, no. 3-4, pp. 249–262, 2005.

[24] W. Gong, Z. Cai, and C. X. Ling, “DE/BBO: a hybrid differential
evolution with biogeography-based optimization for global
numerical optimization,” Soft Computing, vol. 15, no. 4, pp. 645–
665, 2011.

[25] A. R. Yildiz, “A new hybrid differential evolution algorithm
for the selection of optimal machining parameters in milling
operations,” Applied Soft Computing Journal, vol. 13, no. 3, pp.
1561–1566, 2013.

[26] H.-Y. Fan and J. Lampinen, “A trigonometric mutation opera-
tion to differential evolution,” Journal of Global Optimization,
vol. 27, no. 1, pp. 105–129, 2003.

[27] S. Das, A. Abraham, U. K. Chakraborty, and A. Konar,
“Differential evolution using a neighborhood-based mutation
operator,” IEEE Transactions on Evolutionary Computation, vol.
13, no. 3, pp. 526–553, 2009.

[28] W. Gong and Z. Cai, “Differential evolution with ranking-based
mutation operators,” IEEE Transactions on Cybernetics, vol. 43,
no. 6, pp. 2066–2081, 2013.

[29] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evo-
lution algorithm with strategy adaptation for global numerical
optimization,” IEEE Transactions on Evolutionary Computation,
vol. 13, no. 2, pp. 398–417, 2009.

[30] R. Mallipeddi, P. N. Suganthan, Q. K. Pan, andM. F. Tasgetiren,
“Differential evolution algorithm with ensemble of parameters
and mutation strategies,” Applied Soft Computing Journal, vol.
11, no. 2, pp. 1679–1696, 2011.

[31] Y. Wang, H.-X. Li, T. Huang, and L. Li, “Differential evolution
based on covariance matrix learning and bimodal distribution
parameter setting,” Applied Soft Computing, vol. 18, no. 5, pp.
232–247, 2014.

[32] J. Vesterstrom and R. Thomsen, “A comparative study of differ-
ential evolution, particle swarm optimization, and evolutionary

algorithms on numerical benchmark problems,” in Proceedings
of the IEEE Congress on Evolutionary Computation (CEC ’04),
vol. 2, pp. 1980–1987, Portland, Ore, USA, June 2004.

[33] Y. Wang, B. Li, and T. Weise, “DE/BBO: a hybrid differential
evolution with biogeography-based optimization for global
numerical optimization,” Information Sciences, vol. 180, no. 12,
pp. 2405–2420, 2010.

[34] J. Zhao, Y. Xu, F. Luo, Z. Dong, and Y. Peng, “Power system
fault diagnosis based on history driven differential evolution
and stochastic time domain simulation,” Information Sciences,
vol. 275, pp. 13–29, 2014.

[35] N. Noman and H. Iba, “Inferring gene regulatory networks
using differential evolution with local search heuristics,”
IEEE/ACM Transactions on Computational Biology and Bioin-
formatics, vol. 4, no. 4, pp. 634–647, 2007.

[36] C. Zhan, W. Situ, L. F. Yeung, P. W.-M. Tsang, and G. Yang,
“A parameter estimation method for biological systems mod-
elled by ODE/DDE models using spline approximation and
differential evolution algorithm,” IEEE/ACM Transactions on
Computational Biology and Bioinformatics, vol. 11, no. 6, pp.
1066–1076, 2014.

[37] I. De Falco, A. Della Cioppa, D. Maisto, and E. Tarantino,
“Differential evolution as a viable tool for satellite image
registration,” Applied Soft Computing, vol. 8, no. 4, pp. 1453–
1462, 2008.

[38] S. Paul and S. Das, “Simultaneous feature selection and
weighting—an evolutionary multi-objective optimization
approach,” Pattern Recognition Letters, vol. 65, pp. 51–59, 2015.

[39] J. He, B. Mitavskiy, and Y. Zhou, “A theoretical assessment of
solution quality in evolutionary algorithms for the knapsack
problem,” in Proceedings of the IEEE Congress on Evolutionary
Computation (CEC ’14), pp. 141–148, Beijing, China, July 2014.

[40] J. Kennedy and R. C. Eberhart, “A discrete binary version
of the particle swarm algorithm,” in Proceedings of the IEEE
International Conference on Systems, Man, and Cybernetics.
Computational Cybernetics and Simulation, vol. 5, pp. 4104–
4108, Orlando, Fla, USA, October 1997.

[41] D. P.Williamson andD. B. Shmoys,Thedesign of approximation
algorithms, Cambridge University Press, Cambridge, 2011.

[42] J. Beasley, “Orlib-operations research library,” 2005, http://
people.brunel.ac.uk/∼mastjjb/jeb/orlib/mknapinfo.html.

[43] S. Senju and Y. Toyoda, “An approach to linear programming
with 0–1 variables,” Management Science, vol. 15, no. 4, pp. B-
196–B-207, 1968.

[44] H. M. Weingartner and D. N. Ness, “Methods for the solution
of the multidimensional 0/1 knapsack problem,” Operations
Research, vol. 15, no. 1, pp. 83–103, 1967.

[45] W. Shih, “A branch and bound method for the multicon-
straint zero-one knapsack problem,” Journal of the Operational
Research Society, vol. 30, no. 4, pp. 369–378, 1979.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


