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With the development of computer science, computational electromagnetics have also been widely used. Electromagnetic
phenomena are closely related to eigenvalue problems. On the other hand, in order to solve the uncertainty of input data, the
stochastic eigenvalue complementarity problem, which is a general formulation for the eigenvalue complementarity problem,
has aroused interest in research. So, in this paper, we propose a new kind of stochastic eigenvalue complementarity problem.
We reformulate the given stochastic eigenvalue complementarity problem as a system of nonsmooth equations with nonnegative
constraints. Then, a projected smoothing Newton method is presented to solve it. The global and local convergence properties
of the given method for solving the proposed stochastic eigenvalue complementarity problem are also given. Finally, the related
numerical results show that the proposed method is efficient.

1. Introduction

Computational electromagnetics is a science, which spans
many subjects. It is an organic combination of mathematical
theory, electromagnetic theory, and computer science. Elec-
tromagnetism is the classical dynamics theory. Electromag-
netic phenomena are also closely related to eigenvalue prob-
lems and essentially can be deduced by Maxwell eigenvalue
equation. The typical eigenvalue problem of the electromag-
netic field is the resonant problem of the cavity and the guide
wave problem of the waveguide. No matter the resonance
problem of closed cavity, or the propagation problem of
uniform guided waves, the wave equation is homogeneous
without considering any source or field excitation process.
For simplification, the conductors that constitute the cavity
are idealized. So the field satisfies the homogeneous boundary
condition on the boundary.There aremanymethods for solv-
ing computational electromagnetics, such as finite difference
method and finite element method; see literatures [1–7] for
details. In recent years, various methods in computational
electromagnetics have been continuously improved. How-
ever, the input data are usually affected by many uncertain
factors, such as the environment, which often results in the
difference between calculation and measurement. So, we

consider establishing a new model to solve some related
electromagnetics problems.This is also the motivation of this
paper.

Among the optimizationmodel, as we all know, the eigen-
value complementarity problem arises from several impor-
tant applications in engineering and physics, such as the
study of the resonance frequency and the stability of dynamic
systems. In the last few years, the eigenvalue complementarity
problem has drawn increasing attention, in many literature
systems, such as [8–13] and the references therein. Among
them, in [8], the authors study an eigenvalue complementar-
ity problem and find its origins in the solution of a contract
problem in mechanics. In [9], the eigenvalue complementar-
ity problems with symmetric real matrices are considered.
The authors transform this problem into a differentiable
optimization program involving the Rayleigh quotient on
a simplex and find its stationary point by the spectral
projected gradient algorithm. In [10–13], many methods are
proposed to solve the eigenvalue complementarity problems,
such as Levenberg-Marquardtmethod and the derivative-free
projection method. In [14], the stability of dynamic system is
studied. The model of eigenvalue complementarity problem
is established and the finite element method is used to solve
the model.
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On the other hand, the stochastic linear complementarity
problems, stochastic nonlinear complementarity problems,
and some related stochastic optimization problems attract
many researchers’ attention. And a lot of related theories and
algorithms are given, such as [15–20] and their references.
The expected value (EV) to reformulate the problems is
usually used. Many methods are effectual for solving the
stochastic complementarity problems. The global and local
convergence of these methods are also given. Besides, the
expected residual minimization (ERM) also can reformulate
the stochastic complementarity problems, such as those in
[21–23]. And the stochastic complementarity problems are
eventually transformed into a certain minimal problem with
constraints.

In order to reduce the difference between calculation
and measurement in computational electromagnetics, we
consider getting the approximate distribution, by statistics,
of a large number of experimental data and establishing a
new stochastic model. So, in this paper, we propose a new
kind of stochastic eigenvalue complementarity problem and
the smoothing Newton method is also proposed to solve the
given problem.

Denote (Ω, 𝐹, 𝑃) as a probability space with Ω ⊆ 𝑅𝑛,
where the probability distribution 𝑃 is known. The new kind
of stochastic eigenvalue complementarity problem is to find
a scalar 𝜆 > 0 and a vector 𝑥 ∈ 𝑅𝑛 \ {0}, such that𝑢 = (𝜆𝐵 (𝜔) − 𝐴 (𝜔)) 𝑥, 𝑥 ≥ 0, 𝑢 ≥ 0, 𝑥𝑇𝑢 = 0, (1)

where 𝐴(𝜔) and 𝐵(𝜔) are 𝑛 × 𝑛 symmetric positive definite
stochastic matrices, Ω ⊆ 𝑅𝑛 is the probability space, and 𝜔 ∈Ω = {𝜔1, 𝜔2, . . . , 𝜔𝑚} is a random vector given in probability
distribution 𝑃.

The rest of this paper is organized as follows. In Section 2,
we reformulate problem (1) as a nonsmooth system firstly and
give the related preliminary results. In Section 3, we present
the projected smoothing Newton method and give the con-
vergence results. In Section 4, some preliminary numerical
results are proposed. The last section is the conclusion.

2. Preliminary Results

In this section, we give the reformulation of problem (1) and
some related preliminaries.

Firstly, we consider using the expected value model to
solve (1) as the following equations.

Denote 𝐵 = 𝑚∑
𝑖=1

𝑝𝑖𝐵 (𝜔𝑖) ,
𝐴 = 𝑚∑
𝑖=1

𝑝𝑖𝐴 (𝜔𝑖) , (2)

where 𝑝𝑖 = 𝑃(𝜔𝑖 ∈ Ω) ≥ 0, 𝑖 = 1, . . . , 𝑚. So (1) is equivalent
to the problem, which is defined as𝑥 ≥ 0,

(𝜆𝐵 − 𝐴) 𝑥 ≥ 0,𝑥𝑇 (𝜆𝐵 − 𝐴) 𝑥 = 0,
(3)(𝜆𝐵 (𝜔𝑖) − 𝐴 (𝜔𝑖)) 𝑥 ≥ 0, 𝑖 = 1, . . . , 𝑚. (4)

As (3) is a linear complementarity problem,we canuse the
complementarity functions to transform it. The complemen-
tarity function has many different forms, such as the func-
tions given in [24–29]. Among them, the Fischer-Burmeister
(FB) function 𝜙 (𝑥) = √𝑎2 + 𝑏2 − (𝑎 + 𝑏) (5)

is used widely. By the FB function transformation, (3) is
equivalent to Φ(𝑥) = 0, where

Φ (𝑥) = (𝜙(𝑥1, (𝜆𝐵 − 𝐴)1 𝑥)...𝜙 (𝑥𝑛, (𝜆𝐵 − 𝐴)𝑛 𝑥)) . (6)

In this paper, we consider using the smoothing Fischer-
Burmeister function, which is differentiable at any point.This
smoothing method, which is an important method to solve
nonsmooth problems, has been widely used in recent years,
such as in [30–33]. The idea of a smoothing method is to
approximate nonsmooth functions by a sequence of smooth
functions. There are many forms of smooth functions. Qi
and Chen proposed a smooth approximation method for
nonsmooth functions in [34]. By introducing the smoothing
approximation function of Φ𝜇 : 𝑅𝑛 → 𝑅𝑛, 𝜇 > 0, smoothing
methods are proposed by Chen et al. So far, a lot of progress
has been made in the study of smoothing methods. In
this paper, similar to [28], we use the smoothing Fischer-
Burmeister function as𝜙𝜇 (𝑎, 𝑏) = √𝑎2 + 𝑏2 + 𝜇 − (𝑎 + 𝑏) , (7)

where 𝜇 > 0.
Therefore, (3) is equivalent to Φ𝜇(𝑥) = 0, where

Φ𝜇 (𝑥) = (𝜙(𝑥1, (𝜆𝐵 − 𝐴)1 𝑥)...𝜙 (𝑥𝑛, (𝜆𝐵 − 𝐴)𝑛 𝑥)) . (8)

Then, (3) and (4) are equivalent to the following problem:𝐻(𝑥, 𝜆, 𝜇, 𝑦) = 0, 𝑦 ≥ 0, 𝜆 > 0, 𝜇 > 0, (9)
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where

𝐻(𝑥, 𝜆, 𝜇, 𝑦) = ((((((
(

Φ𝜇 (𝑥)(𝜆𝐵 (𝜔1) − 𝐴 (𝜔1)) 𝑥 − 𝑦1...(𝜆𝐵 (𝜔𝑚) − 𝐴 (𝜔𝑚)) 𝑥 − 𝑦𝑚𝑥𝑇𝑥 − 12𝜇 − 1
))))))
)= 0

(10)

and 𝑦 = (𝑦𝑇1 , . . . , 𝑦𝑇𝑚)𝑇 ∈ 𝑅𝑚𝑛. Let 𝑧 = (𝑥𝑇, 𝜆, 𝜇, 𝑦𝑇)𝑇 ∈𝑅(𝑚+1)𝑛+2 and define a merit function of (9) as 𝑓(𝑧) =(1/2)‖𝐻(𝑧)‖2.
If (1) has a solution, then solving (9) is equivalent to find-

ing a global solution of the following optimization problem:

min 𝑓 (𝑧)
s.t. 𝑧 ∈ 𝑍, (11)

where 𝑍 = {(𝑥𝑇, 𝜆, 𝜇, 𝑦𝑇)𝑇 | 𝑥 ≥ 0, 𝜆 > 0, 𝜇 > 0, 𝑦 ≥ 0}.
Next, we give some related definitions and propositions.

Definition 1. Assume that 𝐹 : 𝑅𝑚 → 𝑅𝑛 is a locally Lipschit-
zian function. The 𝐵-subdifferential of 𝐹 at 𝑥 is𝜕𝐵𝐹 (𝑥) = {𝑉 ∈ 𝑅𝑚×𝑛 | ∃ {𝑥𝑘} ⊆ 𝐷𝐹 : {𝑥𝑘}→ 𝑥, 𝐹 (𝑥𝑘) → 𝑉} , (12)

where 𝐷𝐹 is the differentiable points set and 𝐹(𝑥𝑘) is the
Jacobian of 𝐹 at a point 𝑥 ∈ 𝑅𝑛.

Here, for any 𝑧 = (𝑥𝑇, 𝜆, 𝜇, 𝑦𝑇)𝑇 ∈ 𝑅(𝑚+1)𝑛+2, we have𝜕𝐵𝐻(𝑧)
= ((((((
(

𝑉Φ𝜇 𝑉Φ𝜇 𝑉Φ𝜇 0 ⋅ ⋅ ⋅ 0𝜆𝐵 (𝜔1) − 𝐴 (𝜔1) 𝐵 (𝜔1) 0 −𝐼 ⋅ ⋅ ⋅ 0... ... ... ... ... ...𝜆𝐵 (𝜔𝑚) − 𝐴 (𝜔𝑚) 𝐵 (𝜔𝑚) 0 0 ⋅ ⋅ ⋅ −𝐼2𝑥 0 0 0 0 00 0 0 2𝜇 ln 2 0 0
))))))
)

, (13)

where𝑉Φ𝜇 is the𝐵-subdifferential ofΦ𝜇 to𝑥,𝑉Φ𝜇 is the𝐵-sub-
differential of Φ𝜇 to 𝜆, and 𝑉Φ𝜇 is the 𝐵-subdifferential of Φ𝜇
to 𝜇. 𝐼 is the 𝑛 × 𝑛 identity matrix and 𝜆 ∈ 𝑅+, 𝜇 ∈ 𝑅+.
Definition 2 (see [18]). 𝐹 is said to be semismooth at 𝑥 if

lim
𝑉∈𝜕𝐵𝐹(𝑥+𝑡ℎ

),ℎ→ℎ,𝑡↓0
𝑉ℎ (14)

exist for any ℎ ∈ 𝑅𝑛.

Definition 3 (see [18]). 𝐹 is said to be strongly semismooth at𝑥 if 𝐹 is semismooth at 𝑥 and for any 𝑉 ∈ 𝜕𝐹(𝑧 + ℎ), ℎ → 0,
lim

ℎ→0,𝑉∈𝜕𝐵𝐹(𝑥+ℎ)

‖𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) − 𝑉ℎ‖‖𝑑‖2 < ∞. (15)

Definition 4 (see [35]). 𝐹 is said to be 𝐵𝐷-regular at a point 𝑥
if all the elements in 𝜕𝐵𝐹(𝑥) are nonsingular.
3. Projected Smoothing Newton Method and
Convergence Analysis

In this section, we present the projected smoothing Newton
method and establish the global and local convergence results
of the given method.

Method 1 (projected smoothing Newton method).

Step 0. Choose 𝜎 ∈ (0, 1), 𝛾 ∈ (0, 1), 𝜇 ∈ 𝑅+ satisfying 𝛾𝜇 <1, 𝛽 ∈ (0, 1).
Step 1. Compute 𝑔𝑘 = ∇𝑓(𝑧𝑘). If ‖𝑔𝑘‖ < 𝜖, stop.
Step 2. Compute 𝑑𝑘 by𝐻(𝑧𝑘) + (𝑉𝑘 + 𝛼𝐼) 𝑑𝑘 = 𝛽𝑧, (16)

where 𝑉𝑘 ∈ 𝜕𝐵𝐻(𝑧𝑘), 𝛼 ≥ 0, 𝑧 = (𝜇, 0) ∈ 𝑅((𝑚+1)𝑛+2).
Step 3. Let𝑚 be the least nonnegative integer satisfying𝑓 (𝑃𝑍 (𝑧𝑘 + 𝛽𝑚𝑑𝑘)) ≤ (1 − 2𝜎 (1 − 𝛾𝜇) 𝛽𝑚) 𝑓 (𝑧𝑘) . (17)

Let 𝑧𝑘+1 = 𝑃𝑍(𝑧𝑘 + 𝛽𝑚𝑑𝑘).
Step 4. Set 𝑘 fl 𝑘 + 1; return to Step 1.

In the following, we give the convergence results of
Method 1.

Theorem 5. Let {𝑧𝑘} be an infinite sequence generated by
Method 1, and 𝑧∗ is an accumulation point of {𝑧𝑘}. If 𝑧∗ is a
BD-regular solution of 𝑓(𝑧𝑘), 𝑧∗ is a solution of𝐻(𝑧) = 0.
Proof. From Step 3 of Method 1, we have 𝑓(𝑧𝑘+1) < 𝑓(𝑧𝑘),
for all 𝑘 ≥ 0. Hence, 𝑓(𝑧𝑘) is monotonically decreasing. Since(𝑧𝑘) ≥ 0(𝑘 ≥ 0), there exists 𝑓∗, such that lim𝑘→∞𝑓(𝑧𝑘) =𝑓∗ = 𝑓(𝑧∗).

We suppose 𝑓(𝑧∗) > 0. By (17), we have𝑓 (𝑧𝑘+1) ≤ (1 − 2𝜎 (1 − 𝛾𝜇) 𝛽𝑚) 𝑓 (𝑧𝑘) . (18)

Take the limit of (18) on both sides. We get𝑓 (𝑧∗) ≤ (1 − 2𝜎 (1 − 𝛾𝜇) 𝛽𝑚) 𝑓 (𝑧∗) . (19)

Then, we have (2𝜎(1 − 𝛾𝜇)𝛽𝑚)𝑓(𝑧∗) ≤ 0.
This is in contradiction to 𝜎 ∈ (0, 1), 𝛾𝜇 < 1. Hence,𝐻(𝑧∗) = 0. The proof is completed.

Theorem 6. Let {𝑧𝑘} be an infinite sequence generated by
Method 1 and 𝑧∗ be a BD-regular solution; the rate of conver-
gence is quadratic.
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Proof. By Proposition 2.1.1(b) in [36] and 𝜕𝐵𝐻(𝑧𝑘) being
nonempty compact set at any point, we have that 𝑉𝑘 ∈𝜕𝐵𝐻(𝑧𝑘) is bounded in bounded set of points. So, there is a
constant 𝑐1 > 0 and 𝑐3 > 0, such that, for all 𝑧𝑘 ∈ ⋃(𝑧∗,𝛿1), where 𝛿1 is a sufficiently small positive constant, ‖(𝑉𝑘 +𝛼𝐼)−1‖ ≤ 𝑐1 and ‖𝑉𝑘‖ ≤ 𝑐3 hold. Besides, by Definition 3, there
exists a positive constant 𝑐2, such that𝐻 (𝑧𝑘) − 𝐻 (𝑧∗) − 𝑉𝑘 (𝑧𝑘 − 𝑧∗) ≤ 𝑐2 𝑧𝑘 − 𝑧∗2 , (20)

for all 𝑧𝑘 ∈ ⋃(𝑧∗, 𝛿1), where 𝛿2 is a sufficiently small positive
constant. Moreover, there exists a positive constant 𝑐4, such
that 𝛽𝑧 = 𝑐4‖𝑧𝑘 − 𝑧8‖2 hold.

Denote 𝛿 = min(𝛿1, 𝛿2), for all 𝑧𝑘 ∈ ⋃(𝑧∗, 𝛿). We have(𝑉𝑘 + 𝛼𝐼) (𝑧𝑘+1 − 𝑧∗) = (𝑉𝑘 + 𝛼𝐼)⋅ (𝑃𝑍 (𝑧𝑘 + 𝛽𝑚𝑑𝑘) − 𝑧∗) = (𝑉𝑘 + 𝛼𝐼)⋅ (𝑧𝑘 + 𝑑𝑘 − 𝑧∗ + 𝑃𝑍 (𝑧𝑘 + 𝛽𝑚𝑑𝑘) − (𝑧𝑘 + 𝑑𝑘))= (𝑉𝑘 + 𝛼𝐼) (𝑧𝑘 − 𝑧∗ + 𝑑𝑘) + (𝑉𝑘 + 𝛼𝐼)⋅ (𝑃𝑍 (𝑧𝑘 + 𝛽𝑚𝑑𝑘) − (𝑧𝑘 + 𝑑𝑘)) = (𝑉𝑘 + 𝛼𝐼)⋅ (𝑧𝑘 − 𝑧∗) + (𝑉𝑘 + 𝛼𝐼) 𝑑𝑘 + (𝑉𝑘 + 𝛼𝐼)⋅ (𝑃𝑍 (𝑧𝑘 + 𝛽𝑚𝑑𝑘) − (𝑧𝑘 + 𝑑𝑘)) = 𝑉𝑘 (𝑧𝑘 − 𝑧∗)+ 𝛼 (𝑧𝑘 − 𝑧∗) + 𝛽𝑧 − 𝐻 (𝑧𝑘) + (𝑉𝑘 + 𝛼𝐼)⋅ (𝑃𝑍 (𝑧𝑘 + 𝛽𝑚𝑑𝑘) − (𝑧𝑘 + 𝑑𝑘)) .

(21)

Since𝐻 is a locally Lipschitzian function, we premultiply
this equation by (𝑉𝑘 +𝛼𝐼)−1 and take norms on both sides. So
we get𝑧𝑘+1 − 𝑧∗ ≤ (𝑉𝑘 + 𝛼𝐼)−1 𝑉𝑘 (𝑧𝑘 − 𝑧∗)+ 𝛼 (𝑧𝑘 − 𝑧∗) − 𝐻 (𝑧𝑘)+ (𝑉𝑘 + 𝛼𝐼) (𝑃𝑍 (𝑧𝑘 + 𝛽𝑚𝑑𝑘) − (𝑧𝑘 + 𝑑𝑘)) + 𝛽𝑧≤ 𝑐1 (𝐻 (𝑧∗ − 𝐻 (𝑧𝑘) + 𝑉𝑘 (𝑧𝑘 − 𝑧∗))+ 𝛼 𝑧𝑘 − 𝑧∗) + 𝑃𝑍 (𝑧𝑘 + 𝛽𝑚𝑑𝑘) − (𝑧𝑘 + 𝑑𝑘)+ 𝛽𝑧 ≤ 𝑐1 (𝑐2 + 𝑐3) 𝑧𝑘 − 𝑧∗2 + 𝑧𝑘 + 𝑑𝑘 − 𝑧∗+ 𝑐4 𝑧𝑘 − 𝑧∗2 ≤ 𝑐1 (𝑐2 + 𝑐 − 3 + 𝑐4) 𝑧𝑘 − 𝑧∗2+ 𝑧𝑘 − 𝑧∗ + (𝑉𝑘 + 𝛼𝐼)−1 (𝛽𝑧 − 𝐻 (𝑧𝑘)) ≤ 𝑐1 (𝑐2+ 𝑐 − 3 + 𝑐4) 𝑧𝑘 − 𝑧∗2 + 𝑐1 (𝑐4 𝑧𝑘 − 𝑧∗2+ 𝑐2 𝑧𝑘 − 𝑧∗2 + 𝑐3 𝑧𝑘 − 𝑧∗2) = 2𝑐1 (𝑐2 + 𝑐3 + 𝑐4)⋅ 𝑧𝑘 − 𝑧∗2 = 𝜏 𝑧𝑘 − 𝑧∗2 ,

(22)

where 𝜏 = 2𝑐1(𝑐2 + 𝑐3 + 𝑐4). Therefore, similar to the proof of
Theorem 2.3 in [37], we know that the rate of convergence is𝑄-quadratic. The proof is completed.

4. Numerical Results

In this section, we give some related numerical experiments.
Because problem (1) is proposed for the first time, we give the
following examples combinedwith the examples in literatures
[1–7, 38]. In [7], the authors consider the complex shell inside
the complicated enclosures of the electronic component and
the high frequency radiation. The enclosure is assumed to be
large compared to the wavelength. In this case, wavelengths
have strong dependence on the properties of waves, includ-
ing eigenvalues, eigenfunctions, scattering, and impedance
matrices under small perturbations. The field fluctuations
within the enclosure are described in a statistical sense using
random matrix theory. In [38], in the microwave frequency
band, the resonant circuit is usually realized by a resonant
cavity. The cavity is filled with air or other mediums, and the
electromagnetic oscillation in the cavity can be generated in
the cavity by the way of probe and small hole. The waveguide
cavity is formed by sealing the waveguides along the ends
of the propagation direction with a conductor. Example 10
is converted from a two-dimensional rectangular resonant
cavity problem in random system, which is proposed in [3,
38]. The program is written in Matlab 7.0. The parameters in
Method 1 are taken as 𝛿 = 0.1,𝜎 = 0.1,𝜇0 = 1,𝜇 = 1,𝛾 = 0.1.

(23)

The stopping rules for Method 1 are ‖∇𝑓(𝑧𝑘)‖ ≤ 1𝑒 − 3 or𝑘max = 2 × 104.
The initial points are randomly selected. In these tables of

the numerical results, 𝑥∗ denotes the point of the minimiza-
tion of 𝑓(𝑧), 𝜆 denotes the eigenvalue, and DIM denotes the
dimension of the problem.

Example 7. We consider problem (1), where𝐴 (𝜔) = (3 + 𝜔 11 2 + 𝜔) ,
𝐵 (𝜔) = (2 + 𝜔 11 1 + 𝜔) ,Ω = {0, 1} ,𝑝𝑖 = 𝑃 (𝜔𝑖 ∈ Ω) = 0.5, 𝑖 = 1, 2.

(24)

The numerical results of Example 7 are given in Table 1
and the values of 𝑓(𝑧) at each iteration are shown in Figure 1.



Mathematical Problems in Engineering 5

Table 1: Numerical results of Example 7.𝜆 𝑥∗ 𝑓 (𝑧∗)
1.5343 (0.3447, 0.2414)𝑇 0.4328
1.5280 (0.3827, 0.3481)𝑇 0.4193
1.5159 (0.4038, 0.3369)𝑇 0.3759
1.5472 (0.3267, 0.1698)𝑇 0.4327
1.4130 (0.6240, 0.3500)𝑇 0.1902

×104
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Figure 1: Change curve of numerical value of𝑓(𝑧) at every iteration.
Example 8. We consider problem (1), where𝐴 (𝜔)

= (((((
(

2+ 𝜔 1 1 1 1 11 2 + 𝜔 1 1 1 11 1 2 + 𝜔 1 1 11 1 1 2 + 𝜔 1 11 1 1 1 2 + 𝜔 11 1 1 1 1 2 + 𝜔
)))))
)

,
𝐵 (𝜔)
= (((((
(

3+ 𝜔 1 1 1 1 11 3 + 𝜔 1 1 1 11 1 3 + 𝜔 1 1 11 1 1 3 + 𝜔 1 11 1 1 1 3 + 𝜔 11 1 1 1 1 3 + 𝜔
)))))
)

,
Ω = {0, 1} ,𝑝𝑖 = 𝑃 (𝜔𝑖 ∈ Ω) = 0.5, 𝑖 = 1, 2.

(25)

The numerical results of Example 8 are shown in Table 2
and the values of 𝑓(𝑧) at each iteration are shown in Figure 2.

The 1st numerical experiment
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The 3rd numerical experiment
The 4th numerical experiment
The 5th numerical experiment
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Figure 2: Change curve of numerical value of𝑓(𝑧) at every iteration.
Table 2: Numerical results of Example 8.𝜆 𝑥∗ 𝑓 (𝑧∗)

0.8996 (0.4856, 0.5973, 0.3077, 0.4007, 0.5974, 0.5284)𝑇 0.5782
0.9013 (0.6375, 0.2817, 0.3071, 0.5837, 0.3521, 0.5110)𝑇 0.2802
1.0000 (0.2128, 0.2264, 0.0828, 0.2039, 0.1965, 0.0488)𝑇 0.3125
0.9001 (0.5624, 0.6134, 0.4119, 0.5258, 0.5934, 0.5930)𝑇 0.4441
1.0000 (0.0096, 0.0049, 0.0080, 0.0014, 0.0042, 0.0091)𝑇 0.7799

Example 9. We consider problem (1), where

𝐴 (𝜔) = (2 + 𝜔 1 ⋅ ⋅ ⋅ 11 2 + 𝜔 ⋅ ⋅ ⋅ 1... ... d
...1 1 ⋅ ⋅ ⋅ 2 + 𝜔)

𝑛×𝑛

,

𝐵 (𝜔) = (3 + 𝜔 1 ⋅ ⋅ ⋅ 11 3 + 𝜔 ⋅ ⋅ ⋅ 1... ... d
...1 1 ⋅ ⋅ ⋅ 3 + 𝜔)

𝑛×𝑛

,
Ω = {0, 1} ,𝑝𝑖 = 𝑃 (𝜔𝑖 ∈ Ω) = 0.5, 𝑖 = 1, 2.

(26)

When 𝑛 takes different values, the numerical results of
Example 9 are shown in Table 3 and the values of𝑓(𝑧) at each
iteration are shown in Figure 3.

In the following, we consider the application of problem
(1) in resonant cavity.

The calculation of the resonator can be described by the
field equation and the boundary condition. With passivity
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Figure 3: Change curve of numerical value of 𝑓(𝑧) at every iteration, when DIM takes different values.

Table 3: Numerical results of Example 9.

DIM 𝜆 𝑓(𝑧∗)
50 1.4000 0.7196
50 1.4000 0.7248
50 1.4000 0.6907
50 1.4000 0.6868
50 1.4000 0.6811
100 1.4000 0.9427
100 1.4000 0.8941
100 1.4000 0.8774
100 1.4000 0.8967
100 1.4000 0.8902
200 1.6595 1.7401
200 1.6610 1.6844
200 1.6626 1.5796
200 1.6584 1.8135
200 1.6611 1.7051

in the cavity, the field vector satisfies the homogeneous
Helmholtz equation. The vector potential 𝐴 and the vector

potential𝐴𝑚 are used, and an arbitrary field vector 𝑎 is taken
as a leading vector. We have𝐴 = 𝑎Ψ,𝐴𝑚 = 𝑎Ψ∗, (27)

where Ψ and Ψ∗ satisfy∇2Ψ + 𝑘2Ψ = 0,∇2Ψ∗ + 𝑘2Ψ∗ = 0. (28)

On the inner wall 𝑆 of the cavity, the boundary conditions
can often be converted to Ψ|𝑆 = 0, (29)Ψ∗𝑆 = 0. (30)

Besides, as we all know, generally speaking, microwave
engineering can be divided into two categories: eigenvalue
problems and noneigenvalue problems. The problems of the
propagation of electromagnetic wave in the waveguide and
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Table 4: Numerical results of Example 10.𝜆 𝑥∗ 𝑓(𝑧∗)
1.1038 (0.0027, 0.0073, 0.0074, 0.0034, 0.0050)𝑇 0.5255
1.1097 (0.0010, 0.0004, 0.0055, 0.0072, 0.0075)𝑇 0.5169
1.1004 (0.0013, 0.0057, 0.0047, 0.0001, 0.0033)𝑇 0.5172
1.1718 (0.0065, 0.0319, 0.0129, 0.0190, 0.0034)𝑇 0.6617
1.1417 (0.0321, 0.0181, 0.0307, 0.0310, 0.0236)𝑇 0.9004

the distribution of themidfield in the cavity are all eigenvalue
problems. In [38], the eigenvalue problem here is as follows:𝐴𝑥 = 𝜆𝑥. (31)

The reason for such a conclusion is that if the problem
is abstracted, the Laplace operator ∇2 acts on the function Ψ
and the product of matrix 𝐴 and vector 𝑥 can be regarded as
a linear operator 𝐿 acting on an object 𝑓.

In [3], the author considers the eigenvalue problem as
follows: 𝐾𝜑 − 𝜆𝐵𝜑 = 0, (32)

where 𝐾 and 𝐵 are matrices, 𝜑 is the unknown quantity, and𝜆 is the eigenvalue.
In a random system, different loop lengths can produce

different resonant frequencies, resulting in multiple modes.
So we denote the resonant frequencies as 𝜆𝜔, where 𝜔 is
random.

InExample 10 of this paper, we transform the above eigen-
value problem into the eigenvalue complementarity problem
(1) and consider the form in the stochastic system. Next, we
give Example 10.

Example 10. We consider problem (1), where

𝐵 (𝜔) = ((
(

12𝜔 𝜔 −𝜔 2𝜔 𝜔𝜔 14𝜔 𝜔 −𝜔 𝜔−𝜔 𝜔 16𝜔 −𝜔 𝜔2𝜔 −𝜔 −𝜔 12𝜔 −𝜔𝜔 𝜔 𝜔 −𝜔 11𝜔
))
)

,

𝐾 = ((
(

10 2 3 1 12 12 1 2 13 1 11 1 −11 2 1 9 11 1 −1 1 15
))
)

,
Ω = {0, 1} ,𝑝𝑖 = 𝑃 (𝜔𝑖 ∈ Ω) = 0.5, 𝑖 = 1, 2.

(33)
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Figure 4:Change curve of numerical value of𝑓(𝑧) at every iteration.
The numerical results of Example 10 are shown in Table 4

and the values of 𝑓(𝑧) at each iteration are shown in Figure 4.
5. Conclusion

The numerical experiments show that the projected smooth-
ing Newton method is effective in solving the eigenvalue
complementarity problems, even for high dimensional prob-
lems. After several experiments, we find that the value of 𝜇
in smoothing function has a great influence on the numerical
results. When 𝜇 = 0.01, the numerical results are optimal.
Using the smoothing Newtonmethod, the objective function
is polished. So the objective function is guided everywhere.
Besides, the projected smoothing Newton method is 𝑄-
quadratic. In the application of the projected smoothing
Newton method, we consider the two-dimension resonator
problem. Therefore, using the new technology of optimiza-
tion method to further improve the accuracy and efficiency
of the given method, the applications in more complicated
resonator problems are of great significance and practical
value.
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