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Graphs are used to model chemical compounds and drugs. In the graphs, each vertex represents an atom of molecule and edges
between the corresponding vertices are used to represent covalent bounds between atoms. The Wiener polarity index 𝑊𝑝(𝐺) of a
graph 𝐺 is the number of unordered pairs of vertices 𝑢, V of 𝐺 such that the distance between 𝑢 and V is equal to 3. The trees and
unicyclic graphs with perfect matching, of which all vertices have degrees not greater than three, are referred to as theHückel trees
and unicyclic Hückel graphs, respectively. In this paper, we first consider the smallest and the largest Wiener polarity index among
all Hückel trees on 2𝑛 vertices and characterize the corresponding extremal graphs. Then we obtain an upper and lower bound for
the Wiener polarity index of unicyclic Hückel graphs on 2𝑛 vertices.

1. Introduction

Nearly half a century ago, the development of quantumchem-
istry is largely due to the wide application of the concept of
graph. One of the major topics in this field is molecular topo-
logical index. The molecular topological index can describe
the structure of the molecule quantitatively, as an invariant
of the graph can be used to demonstrate the relationship
between the molecules structure and performance. Quanti-
tative structure activity relationships are a popular computa-
tional biology paradigm in modern drug design.

One of the most widely known topological descriptors
is Wiener polarity index. The Wiener polarity index of an
organicmolecule graph of which𝐺 = (𝑉(𝐺), 𝐸(𝐺)) is defined
by

𝑊𝑝 (𝐺) =
{(𝑢, V) | 𝑑𝐺 (𝑢, V) = 3, 𝑢, V ∈ 𝑉 (𝐺)}

 , (1)

which is the number of unordered pairs of vertices 𝑢, V of 𝐺
such that 𝑑𝐺(𝑢, V) = 3, where 𝑑𝐺(𝑢, V) denotes the distance
between two vertices 𝑢 and V in 𝐺.

The Wiener polarity index for the quantity defined in
the equation above is introduced by Wiener [1] for acyclic
molecules in a slightly different yet equivalentmanner.More-
over, Wiener [1] used a linear formula for the Wiener index

𝑊 fl ∑𝑢,V⊆𝑉 𝑑𝐺(𝑢, V) and the Wiener polarity index 𝑊𝑝 to
calculate the boiling points 𝑡𝐵 of the paraffins; that is,

𝑡𝐵 = 𝑎𝑊 + 𝑏𝑊𝑝 + 𝑐, (2)

where 𝑎, 𝑏, and 𝑐 are constants for a given isomeric graph.
In 1998, by using theWiener polarity index, Lukovits and

Linert [2] demonstrated quantitative structure-property rela-
tionships in a series of acyclic and cycle-containing hydrocar-
bons. Besides, a physical-chemical interpretation of 𝑊𝑝(𝐺)

was found by Hosoya [3]. Recently, Du et al. [4] obtained the
smallest and largestWiener polarity indices together with the
corresponding graphs among all trees on 𝑛 vertices, respec-
tively. Deng et al. [5] characterized the extremal Wiener
polarity index of trees with a given diameter. The authors
in [6] found the maximum Wiener polarity index among all
chemical trees with 𝑛 vertices and 𝑘 pendents. Hou et al.
[7] found the maximum Wiener polarity index of unicyclic
graphs together with the corresponding extremal graphs.

As is well known, conjugated hydrocarbon molecules
considered in the Hückel molecule orbit theory are usually
represented by the carbon-atom skeleton graphs, of which all
vertices have degrees less than four. We call such molecular
graphs Hückel molecular graphs. In graph theory, the Hückel
molecular graphs with Kekulé structures are graphs with per-
fectmatchings of which the largest degree of vertices does not
exceed three.
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Let 𝑁𝐺(𝑢) be the neighbor vertex set of 𝑢 in 𝐺. Then
𝑑𝐺(𝑢) = |𝑁𝐺(𝑢)| is called the degree of 𝑢. If 𝑑𝐺(V) = 1, then
we call V a pendent vertex of𝐺. LetΔ(𝐺)denote themaximum
vertices degree in 𝐺. As usual, let 𝐶𝑛 and 𝑃𝑛 be the cycle and
path of order 𝑛, respectively. A path 𝑃 in 𝐺 is called 𝑖-degree
pendent chain if all its internal vertices are of degree 2 and its
ends of degrees 1 and 𝑖, respectively, where 𝑖 ≥ 3. A matching
𝑀 of the graph 𝐺 is a subset of 𝐸(𝐺) such that no two edges
in 𝑀 share a common vertex. If 𝑀 is a matching of a graph
𝐺 and vertex V is incident with an edge of 𝑀, then V is said
to be 𝑀-saturated, and if every vertex of 𝐺 is 𝑀-saturated,
then 𝑀 is a perfect matching. Suppose 𝑢V ∈ 𝐸(𝐺); the notion
𝐺− 𝑢V denotes the new graph yielded from 𝐺 by deleting the
edge 𝑢V. Similarly, if 𝑢V ∉ 𝐸(𝐺), then 𝐺 + 𝑢V denotes the new
graph obtained from 𝐺 by adding the edge 𝑢V. The set of the
Hückel trees and Hückel unicyclic graphs with 2𝑛 vertices is
denoted byT2𝑛 andH2𝑛, respectively.

In the paper, we consider the Wiener polarity index for
Hückel trees and Hückel unicyclic graphs. In Section 2, we
discuss some properties of the Wiener polarity index of
Hückel trees. In Section 3, we determine the smallest and
largest Wiener polarity index together with the correspond-
ing graphs among all Hückel trees. In Section 4, the smallest
and the largest Wiener polarity indices among all Hückel
unicyclic graphs on 2𝑛 vertices are identified, respectively.

2. Some Properties of the Wiener Polarity
Index of Hückel Trees

In this section, first, we give some formulas for computing the
Wiener polarity index of trees.

Lemma 1 (see [4]). Let 𝑇 = (𝑉, 𝐸) be a tree. Then

𝑊𝑝 (𝑇) = ∑

𝑢V∈𝐸(𝑇)
(𝑑𝑇 (𝑢) − 1) (𝑑𝑇 (V) − 1) . (3)

Lemma 2 (see [8]). Let 𝑇 be a 2𝑛-vertex tree (𝑛 ≥ 2) with a
perfect matching.Then 𝑇 has at least two pendent vertices such
that each is adjacent to vertices of degree two.

For any 𝑇 ∈ T2𝑛, the following several lemmas will give
necessary conditions on which 𝑊𝑝(𝑇) attains the maximum
values.

Lemma3. Let𝑇 be a graph inT2𝑛 such that𝑊𝑝(𝑇) is as larger
as possible. Then the lengths of all pendent chains in 𝑇 are no
more than 2.

Proof. By contradiction. Assume that there exists a pendent
chain 𝑃 = 𝑢0𝑢1𝑢2 ⋅ ⋅ ⋅ 𝑢𝑘−1𝑢𝑘 with length 𝑘 such that 𝑘 ≥ 3; we
distinguish the following two cases.

Case 1 (𝑘 = 3). This implies that there exists a pendent chain
𝑃 = 𝑢0𝑢1𝑢2𝑢3 such that 𝑑𝑇(𝑢0) = 3, 𝑑𝑇(𝑢1) = 𝑑𝑇(𝑢2) = 2, and
𝑑𝑇(𝑢3) = 1. We claim that the vertex adjacent to 𝑢0 cannot
be a pendent vertex; suppose, on the contrary, that V0 is a
pendent vertex adjacent to 𝑢0. Assuming that𝑀 is the perfect
matching of 𝑇, we know that 𝑀 is unique in trees and each
pendent edge of 𝑇 belongs to 𝑀; therefore, 𝑢0V0 ∈ 𝑀 and

𝑢2𝑢3 ∈ 𝑀. Then 𝑢1 is not saturated by 𝑀, a contradiction.
Let V be a vertex of degree 2 nearest to 𝑢0 except for 𝑢1. Let
𝑇

= 𝑇 − 𝑢1𝑢2 + V𝑢2, then obviously, 𝑇 ∈ T2𝑛. The following

two subcases should be considered.

Subcase 1.1 (𝑢0V ∈ 𝐸(𝑇)). In this case, we assume that 𝑎 is
another neighbor of V; by Lemma 1, we have

𝑊𝑝 (𝑇

) − 𝑊𝑝 (𝑇) = (2 (𝑑𝑇 (𝑎) − 1) + 4 + 2)

− (2 + 2 + 1 + (𝑑𝑇 (𝑎) − 1))

= 𝑑𝑇 (𝑎) ≥ 1 > 0.

(4)

It contradicts the maximality of𝑊𝑝(𝑇).

Subcase 1.2 (𝑢0V ∉ 𝐸(𝐺)). In this case, Let 𝑎 and 𝑏 be the
neighbors of V; by Lemma 1, we have

𝑊𝑝 (𝑇

) − 𝑊𝑝 (𝑇) = 2 (𝑑𝑇 (𝑎) + 𝑑𝑇 (𝑏) − 2) + 2

− (𝑑𝑇 (𝑎) + 𝑑𝑇 (𝑏) + 1)

= 𝑑𝑇 (𝑎) + 𝑑𝑇 (𝑏) − 3.

(5)

If 𝑑𝑇(𝑎) = 1, then 𝑑𝑇(𝑏) ≥ 2; otherwise, if 𝑑𝑇(𝑏) = 1,
there are two pendent edges which are adjacent to vertex
V, a contradiction to the fact there exists perfect matching.
Furthermore, by the choice of V, we deduce that 𝑑𝑇(𝑏) ̸= 2; if
not, V is not the vertex of degree 2 nearest to 𝑢0. If 𝑑𝑇(𝑏) = 3,
we also have𝑊𝑝(𝑇


) > 𝑊𝑝(𝑇), a contradiction once again.

Case 2 (𝑘 ≥ 4). Let 𝑃 = 𝑢0𝑢1𝑢2 ⋅ ⋅ ⋅ 𝑢𝑘−1𝑢𝑘 be the pendent path
with length 𝑘. Let 𝑇 = 𝑇 − 𝑢𝑘−2𝑢𝑘−1 + 𝑢𝑘−3𝑢𝑘−1, and then
𝑇

∈ T2𝑛; by Lemma 1, we have

𝑊𝑝 (𝑇

) − 𝑊𝑝 (𝑇) = (2 + 2) − (1 + 1 + 1) = 1 > 0. (6)

Thus, 𝑊𝑝(𝑇

) > 𝑊𝑝(𝑇), a contradiction. This completes the

proof.

By Lemma 3, we can show that if𝑇 ∈ T2𝑛 withmaximum
𝑊𝑝(𝑇), the length of any pendent chain is either 2 or 1.
Therefore, we have reduced the problem to the Hückel trees
having a path with both ends of degree 3.Then, we introduce
a graph transformation which will be used in the following
proof.

Let 𝑇 be a tree in T2𝑛 with 𝑛 ≥ 2. Let 𝑒 = 𝑢V be a
nonpendent edge of𝑇.𝑇1 and𝑇2 are two components of𝑇−𝑒,
𝑢 ∈ 𝑇1, and V ∈ 𝑇2. 𝑇0 is the graph obtained from 𝑇 in the
following way:

(1) Contract the edge 𝑒 = 𝑢V (i.e., identify 𝑢 of 𝑇1 with V
of 𝑇2).

(2) Add a pendent edge to the vertex 𝑢(= V).

We call procedures (1) and (2) the edge-growth transfor-
mation of 𝑇 or e.g.t of 𝑇 for short (see Figure 1).

Lemma4. Let𝑇 be a graph inT2𝑛 such that𝑊𝑝(𝑇) is as larger
as possible. If 𝑃 is a path in 𝑇 with two end-vertices of degree 3,
then all internal vertices of 𝑃 are of degree 3.
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Figure 1: The edge-growth transformation.

Proof. Suppose, on the contrary, that there is a path𝑥V1 ⋅ ⋅ ⋅ V𝑡𝑦
in 𝑇 such that 𝑑𝑇(𝑥) = 3, 𝑑𝑇(𝑦) = 3, 𝑑𝑇(V1) = ⋅ ⋅ ⋅ = 𝑑𝑇(V𝑡) =
2, and 𝑡 ≥ 1. Let𝑀 be the perfect matching of 𝑇; we consider
the following two cases.

Case 1 (𝑡 is even). In this case, it is easy to see that either
𝑥V1, V𝑡𝑦 ∉ 𝑀 or 𝑥V1, V𝑡𝑦 ∈ 𝑀. If not, there must exist a
vertex of path V1 ⋅ ⋅ ⋅ V𝑡 not saturated by𝑀. We distinguish the
following subcases.

Subcase 1.1 (𝑥V1 ∉ 𝑀 and V𝑡𝑦 ∉ 𝑀). Since 𝑡 is even, the
vertices V1, V2, . . . , V𝑡 of path 𝑥V1 ⋅ ⋅ ⋅ V𝑡𝑦 arematchedmutually.
That is to say, V1V2 ∈ 𝑀, V3V4 ∈ 𝑀, . . . , V𝑡−1V𝑡 ∈ 𝑀. One can
transform𝑇 into𝑇 by using exactly 𝑡/2 steps of e.g.t for above
edges continuously; we note that the resulting graph 𝑇

 is a
tree obtained by attaching one pendent edge to each vertex of
V1, V3, . . . , V𝑡−1. Then 𝑇


∈ T2𝑛. Then by Lemma 1, we have

𝑊𝑝 (𝑇

) − 𝑊𝑝 (𝑇) = (4 (

𝑡 − 2

2
+ 2))

− ((𝑡 − 1) + 2 + 2) = 𝑡 + 1 > 0,

(7)

which contradicts the maximality of𝑊𝑝(𝑇).

Subcase 1.2 (𝑥V1 ∈ 𝑀 and V𝑡𝑦 ∈ 𝑀). In this subcase,
we can easily see that the vertices V2, V3, V4, . . . , V𝑡−2, V𝑡−1 of
𝑃 are mutually matched. That is to say, V2V3 ∈ 𝑀, V4V5 ∈

𝑀, . . . , V𝑡−2V𝑡−1 ∈ 𝑀; then one can transform 𝑇 into 𝑇


by using exactly (𝑡 − 2)/2 steps of e.g.t continuously. We
notice that the resulting graph𝑇

 is a Hückel tree obtained by
attaching one pendent edge to each vertex of V2, V4, . . . , V𝑡−2.
Then 𝑇

 is one of class (I) of trees, as shown in Figure 2.
Let 𝑎 and 𝑏 be two neighbors of vertex 𝑥 and 𝑐 and 𝑑 be

two neighbors of 𝑦, respectively. Let𝐺1,𝐺2,𝐺3, and𝐺4 be the
connected components containing 𝑎, 𝑏, 𝑐, and 𝑑 of the graph
𝑇 − 𝑥 − 𝑦, respectively. Also, by Lemma 1, we have

𝑊𝑝 (𝑇

) − 𝑊𝑝 (𝑇) = (

𝑡 − 4

2
× 4 + 2 + 2) − (𝑡 − 1)

= 𝑡 − 3.

(8)

If 𝑡 > 3,𝑊𝑝(𝑇

) > 𝑊𝑝(𝑇). If 𝑡 = 2, 𝑇 is also one of class (I) of

trees.
In the following, we have reduced the problem to the

Hückel trees of class (I). For 𝑥V1 ∈ 𝑀, then 𝑎𝑥 and 𝑏𝑥 cannot
be pendent edges of 𝑇, since 𝑇 ∈ T2𝑛. There are at least two
vertices in 𝐺1 and 𝐺2; without loss of generality, we consider
𝐺1. Let 𝑛𝑖(𝐺𝑖) be the number of vertices of𝐺𝑖. We distinguish
the following subcases.

Subcase 1.2.1 (𝑛1(𝐺1) = 2). Let 𝑤𝑎 be pendent edge of 𝐺1,
where 𝑤 is pendent vertex. Let 𝑇 = 𝑇


− 𝑎𝑤 + V1𝑤. Denote
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Figure 2: The trees in class (I).

𝑀
 to be the perfect matching of 𝑇; then 𝑀


= 𝑀

− 𝑥V1 −

𝑤𝑎 + 𝑎𝑥 + V1𝑤 is the perfect matching of 𝑇; we notice that
𝑇

∈ T2𝑛, and by Lemma 1, there is

𝑊𝑝 (𝑇

) − 𝑊𝑝 (𝑇


) = (4 + 4) − (2 + 2 + 2) = 2 > 0. (9)

Therefore,𝑊𝑝(𝑇

) > 𝑊𝑝(𝑇


) > 𝑊𝑝(𝑇), a contradiction.

Subcase 1.2.2 (𝑛1(𝐺1) ≥ 3). Obviously, 𝐺1 is a subgraph of 𝑇
with a perfect matching, since 𝑥V1 ∈ 𝑀. Then by Lemma 2,
there exists a pendent vertex Vwhich is adjacent to 𝑢 of degree
2; let𝑤 be another neighbor of 𝑢 in𝑇

. Let𝑇 = 𝑇

−𝑤𝑢+V1𝑢;

it is easy to see that𝑀 is still the perfect matching of 𝑇, and
then 𝑇


∈ T2𝑛; by Lemma 1, we have

𝑊𝑝 (𝑇

) − 𝑊𝑝 (𝑇)

= (10 + ∑

𝑥𝑖∈𝑁𝑇 (𝑤)\𝑢

(𝑑𝑇 (𝑤) − 2) (𝑑𝑇 (𝑥𝑖) − 1))

− (5 + ∑

𝑥𝑖∈𝑁𝑇 (𝑤)\𝑢

(𝑑𝑇 (𝑤) − 1) (𝑑𝑇 (𝑥𝑖) − 1))

= 5 − ∑

𝑥𝑖∈𝑁𝑇 (𝑤)\𝑢

(𝑑𝑇 (𝑥𝑖) − 1) .

(10)

From Lemma 3, it is noted that 𝑑𝑇(𝑤) = 3; otherwise,
if 𝑑𝑇(𝑤) = 2, then there exists a pendent chain with length
of at least 3, a contradiction. Let 𝑥1 and 𝑥2 denote the two
neighbors of 𝑤 in 𝐺1; it should be noted that 1 ≤ 𝑑𝑇(𝑥1) ≤ 3

and 1 ≤ 𝑑𝑇(𝑥2) ≤ 3. Then by Lemma 1, we have

𝑊𝑝 (𝑇

) − 𝑊𝑝 (𝑇


) = 5 − ∑

𝑥𝑖∈𝑁𝑇 (𝑤)\𝑢

(𝑑𝑇 (𝑥𝑖) − 1)

≥ 7 − 𝑑𝑇 (𝑥1) − 𝑑𝑇 (𝑥2) ≥ 1.

(11)

Therefore,𝑊𝑝(𝑇

) > 𝑊𝑝(𝑇


) > 𝑊𝑝(𝑇), a contradiction.

The analysis on V𝑡 of degree 2 is the same as that for V1.

Case 2 (𝑡 is odd). In this case, there are odd vertices of degree
2 in the path 𝑥V1 ⋅ ⋅ ⋅ V𝑡𝑦; then there exits exactly one of two
edges 𝑥V1 and V𝑡𝑦which belongs to𝑀; without loss of gener-
ality, we assume that 𝑥V1 ∈ 𝑀. It should be noted that V2V3 ∈
𝑀 and V4V5 ∈ 𝑀, . . . , V𝑡−1V𝑡 ∈ 𝑀; then one can transform 𝑇

into𝑇 by using exactly (𝑡−1)/2 steps of e.g.t continuously.We
notice that the resulting graph𝑇

 is a Hückel tree obtained by
attaching one pendent edge to each vertex of V2, V4, . . . , V𝑡−1;
then 𝑇

 is one of class (II), as shown in Figure 3.
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Figure 3: The trees in class (II).

We also notice that

𝑊𝑝 (𝑇

) − 𝑊𝑝 (𝑇) = (4 ×

𝑡 − 3

2
+ 2 + 4)

− ((𝑡 − 2) + 1 + 2) = 𝑡 − 1.

(12)

If 𝑡 > 2, there is 𝑊𝑝(𝑇

) > 𝑊𝑝(𝑇). If 𝑡 = 1, 𝑇 is also in class

(II) of trees. The proof is similar to that of Subcase 1.2.
In any case, the resulting graph belongs toT2𝑛 such that

all the internal vertices of the path 𝑥V1 ⋅ ⋅ ⋅ V𝑡𝑦 are of degree
3. Furthermore, the resulting graph has the value of Wiener
polarity no less than that of 𝑇, which contradicts the maxi-
mality of𝑊𝑝(𝑇).

This completes the proof.

The next result follows obviously from the proof of
Lemmas 3 and 4.

Corollary 5. Let 𝑇∗ have maximal Wiener polarity index in
T2𝑛 (𝑛 ≥ 3). Then there exist the following properties of 𝑇∗:

(i) All the lengths of pendent chains are no more than 2.

(ii) If 𝑃 is a path in 𝑇
∗ with both ends of degree 3, then all

internal vertices of 𝑃 are of degree 3.

(iii) All the vertices of degree 2 in 𝑇
∗ are on the pendent

chains.

3. The Extremal Wiener Polarity Index of
Hückel Trees

In this section, we will discuss the maximum and minimum
Wiener polarity index ofHückel trees with 2𝑛 vertices. Firstly,
we consider the Hückel trees with the largest Wiener polarity
index.

Let 𝑚𝑖𝑗 be the number of edges in 𝑇 between vertices of
degrees 𝑖 and 𝑗. By Lemma 1, we have

𝑊𝑝 (𝑇) = ∑

𝑢V∈𝐸(𝑇)
(𝑑𝑇 (𝑢) − 1) (𝑑𝑇 (V) − 1)

= ∑

1≤𝑖≤𝑗≤𝑛−1

(𝑖 − 1) (𝑗 − 1)𝑚𝑖𝑗.

(13)

In particular, if 𝑇 is a Hückel tree, then

𝑊𝑝 (𝑇) = 𝑚22 + 2𝑚23 + 4𝑚33. (14)

Let 𝑇∗ ∈ T2𝑛 with a vertices sequence (𝑛1, 𝑛2, 𝑛3), where 𝑛𝑖

denotes the number of vertices of 𝑇∗ with degree 𝑖. Recall the
following relations:

𝑛1 + 𝑛2 + 𝑛3 = 2𝑛,

𝑛1 + 2𝑛2 + 3𝑛3 = 4𝑛 − 2.

(15)

From above two equalities it follows that

𝑛1 = 𝑛3 + 2,

𝑛2 = 2𝑛 − 2𝑛3 − 2.

(16)

By Corollary 5, it should be noted that the subgraph 𝑇


induced by the vertices of degree 3 in 𝑇
∗ is also a tree. Then

we deduce that

𝑚22 = 0,

𝑚23 = 𝑛2,

𝑚33 = 𝑛3 − 1.

(17)

Then, by Corollary 5, we have

𝑊𝑝 (𝑇
∗
) = 𝑚22 + 2𝑚23 + 4𝑚33 = 2𝑛2 + 4 (𝑛3 − 1) . (18)

By above equations, we have that𝑊𝑝(𝑇
∗
) = 2(2𝑛 − 2𝑛3 − 2) +

4(𝑛3−1) = 4𝑛−8. FromCorollary 5 and the arguments above,
the following result is obvious.

Theorem 6. Suppose 𝑇 is a graph in T2𝑛 with 𝑛 ≥ 3. Then
𝑊𝑝(𝑇) ≤ 4𝑛 − 8, and equality holds if and only if 𝑇 ≅ 𝑇

∗.

Next, we consider the minimum Wiener polarity index
amongT2𝑛, and we first consider some special cases.

If 𝑛 = 1, 𝑇2𝑛 ≅ 𝑃2 and 𝑊𝑝(𝑃2) = 0; If 𝑛 = 2, 𝑇2𝑛 ≅ 𝑃4 and
𝑊𝑝(𝑃4) = 1.

In the following, we assume that 𝑛 ≥ 3.
For all Hückel trees 𝑇 in T2𝑛, sharp lower bounds for

𝑊𝑝(𝑇) are obtained in the following theorem.

Theorem 7. Suppose 𝑇 is a graph in T2𝑛 with 𝑛 ≥ 3, then
𝑊𝑝(𝑇) ≥ 2𝑛 − 3, and equality holds if and only if 𝑇 ≅ 𝑃2𝑛.

Proof. We prove the assertion by induction on 𝑛. If 𝑛 = 3,
then 𝑇 ≅ 𝑃6 or 𝑇 ≅ 𝑇1 (see Figure 4). It can be easily checked
that𝑊𝑝(𝑃6) = 3 < 𝑊𝑝(𝑇1) = 4. The result holds for 𝑛 = 3.

Now assume the assertion holds for all Hückel trees with
less than 𝑛 ≥ 4 vertices. Suppose 𝑇 is a Hückel tree with 2𝑛

vertices; by Lemma 2, then there exists a pendent vertex V
which is adjacent to 𝑢 of degree 2. Let𝑇 = 𝑇−𝑢−V; it should
be noted that 𝑇 ∈ T2𝑛−2. Let 𝑢

 be adjacent to 𝑢 of 𝑇; that is,
𝑢𝑢

∈ 𝐸(𝑇). We distinguish the following cases.

Case 1 (𝑑𝑇(𝑢) = 2). Let 𝑎 be another neighbor of 𝑢; then
by Lemma 1, we have 𝑊𝑝(𝑇) − 𝑊𝑝(𝑇


) = (𝑑𝑇(𝑎) − 1) + 1 =

𝑑𝑇(𝑎) ≥ 2, since 2𝑛 ≥ 6, by induction hypothesis, so𝑊𝑝(𝑇) ≥

𝑊𝑝(𝑇

)+2 ≥ 2(𝑛−1)−3+2 = 2𝑛−3, with equality if and only

if 𝑇 ≅ 𝑃2𝑛−2 and 𝑑𝑇(𝑎) = 2. Now we reconstruct the tree 𝑇

from𝑇

≅ 𝑃2𝑛−2 by attaching a pendent chain with length 2 to
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Figure 4: Hückel trees with 2𝑛 = 6.

the vertex 𝑢. It follows that 𝑇 ∈ T2𝑛. Hence,𝑊𝑝(𝑇) ≥ 2𝑛−3,
and the equality holds if and only if 𝑇 ≅ 𝑃2𝑛.

Case 2 (𝑑𝑇(𝑢) = 3). Let 𝑢
1
and 𝑢


2
be the other two neighbors

of 𝑢; then by Lemma 1, we have

𝑊𝑝 (𝑇) − 𝑊𝑝 (𝑇

) = 𝑑𝑇 (𝑢



1
) − 1 + 𝑑𝑇 (𝑢



2
) − 1 + 2

= 𝑑𝑇 (𝑢


1
) + 𝑑𝑇 (𝑢



2
) .

(19)

That is to say, 𝑊𝑝(𝑇) = 𝑊𝑝(𝑇

) + 𝑑𝑇(𝑢



1
) + 𝑑𝑇(𝑢



2
). If

𝑑𝑇(𝑢


1
) = 1, then 𝑑𝑇(𝑢



2
) ≥ 2; if not, there is no perfect

matching inT2𝑛, and by induction hypothesis, we have

𝑊𝑝 (𝑇) ≥ 2 (𝑛 − 1) − 3 + 1 + 2 = 2𝑛 − 3 + 1 > 2𝑛 − 3. (20)

The result holds.

4. The Wiener Polarity Index of
Unicyclic Hückel Graphs

In this section, we will give sharp lower and upper bounds for
Wiener polarity index of unicyclic Hückel graphs. The girth
𝑔(𝐺) of a connected graph 𝐺 is the length of shortest cycle in
𝐺.

First, we will establish some lemmas which will be useful
to the proofs of our main results.

Lemma 8 (see [9]). Let 𝑈 = (𝑉, 𝐸) be a unicyclic graph. If
𝑔(𝑈) = 3 with 𝑉(𝐶3) = {V1, V2, V3}, then

𝑊𝑝 (𝑈) = ∑

𝑢V∈𝐸(𝑈)
(𝑑𝑈 (𝑢) − 1) (𝑑𝑈 (V) − 1) + 9

− 2𝑑𝑈 (V1) − 2𝑑𝑈 (V2) − 2𝑑𝑈 (V3) ;
(21)

if 𝑔(𝑈) = 4 with 𝑉(𝐶4) = {V1, V2, V3, V4}, then

𝑊𝑝 (𝑈) = ∑

𝑢V∈𝐸(𝑈)
(𝑑𝑈 (𝑢) − 1) (𝑑𝑈 (V) − 1) + 4

− 𝑑𝑈 (V1) − 𝑑𝑈 (V2) − 𝑑𝑈 (V3) − 𝑑𝑈 (V4) .
(22)

Moreover, if 𝑔(𝑈) = 5, 𝑊𝑝(𝑈) = ∑𝑢V∈𝐸(𝑈)(𝑑𝑈(𝑢) −

1)(𝑑𝑈(V) − 1) − 5;
if 𝑔(𝑈) = 6,𝑊𝑝(𝑈) = ∑𝑢V∈𝐸(𝑈)(𝑑𝑈(𝑢)−1)(𝑑𝑈(V)−1)−

3;
if 𝑔(𝑈) ≥ 7,𝑊𝑝(𝑈) = ∑𝑢V∈𝐸(𝑈)(𝑑𝑈(𝑢) − 1)(𝑑𝑈(V) − 1).

Lemma 9. Let𝑈 be a unicyclic Hückel graph with 2𝑛 vertices.
Then

(1) if 𝑔(𝑈) = 3, then 2𝑛 − 4 ≤ 𝑊𝑝(𝑈) ≤ 4𝑛 − 5;
(2) if 𝑔(𝑈) = 4, then 2𝑛 − 4 ≤ 𝑊𝑝(𝑈) ≤ 4𝑛 − 4.

Proof. We only prove the first assertion, and the second
assertion can be proved analogously. Let 𝑈 be a unicyclic
Hückel graph with 𝑔(𝑈) = 3 and V, 𝑤, and 𝑢 be the three
vertices on the unique cycle of 𝑈, and let 𝑑𝑈(V) = 𝑘1 + 2,
𝑑𝑈(𝑢) = 𝑘2 + 2, and 𝑑𝑈(𝑤) = 𝑘3 + 2. 𝑁𝑈(V) = {𝑤, 𝑢, V1,
V2, . . . , V𝑘1}, 𝑁𝑈(𝑢) = {𝑤, V, 𝑢1, 𝑢2, . . . , 𝑢𝑘2}, and 𝑁𝑈(𝑤) =

{V, 𝑢, 𝑤1, 𝑤2, . . . , 𝑤𝑘3}, where 0 ≤ 𝑘1, 𝑘2, 𝑘3 ≤ 1.
Let𝑀 be the perfect matching of𝑈; there exists one edge

on the unique cycle of𝑈 that does not belong to𝑀; otherwise,
there is a contradiction to the fact that 𝑈 has perfect match-
ing; without loss of generality, suppose that𝑤𝑢 ∉ 𝑀, and then
deleting the edge𝑤𝑢, we get a Hückel tree𝑇 and𝑀 still is the
perfect matching of 𝑇. By Lemmas 1 and 8, we have

𝑊𝑝 (𝑈) − 𝑊𝑝 (𝑇)

= ∑

𝑢V∈𝐸(𝑈)
(𝑑𝑈 (𝑢) − 1) (𝑑𝑈 (V) − 1) + 9 − 2𝑑𝑈 (𝑢)

− 2𝑑𝑈 (V) − 2𝑑𝑈 (𝑤)

− ∑

𝑢V∈𝐸(𝑇)
(𝑑𝑇 (𝑢) − 1) (𝑑𝑇 (V) − 1)

= 𝑑𝑈 (𝑢1) − 1 + 𝑑𝑈 (𝑢2) − 1 + ⋅ ⋅ ⋅ + 𝑑𝑈 (𝑢𝑘2
) − 1

+ 𝑑𝑈 (𝑤1) − 1 + ⋅ ⋅ ⋅ + 𝑑𝑈 (𝑤𝑘3
) − 1

+ (𝑘1 + 1) (𝑘3 + 1 − 𝑘3)

+ (𝑘1 + 1) (𝑘2 + 1 − 𝑘2) + (𝑘2 + 1) (𝑘3 + 1) + 9

− 2 (𝑘1 + 2) − 2 (𝑘2 + 2) − 2 (𝑘3 + 2)

= 𝑑𝑈 (𝑢1) + 𝑑𝑈 (𝑢2) + ⋅ ⋅ ⋅ + 𝑑𝑈 (𝑢𝑘2
) + 𝑑𝑈 (𝑤1)

+ ⋅ ⋅ ⋅ + 𝑑𝑈 (𝑤𝑘3
) + 𝑘2𝑘3 − 2𝑘2 − 2𝑘3.

(23)

Since 𝑈 is a unicyclic Hückel graph, without loss of
generality, we may assume that 0 ≤ 𝑘2 ≤ 𝑘3 ≤ 1. Then

𝑊𝑝 (𝑈) − 𝑊𝑝 (𝑇) = 0; 𝑘2 = 𝑘3 = 0,

𝑊𝑝 (𝑈) − 𝑊𝑝 (𝑇) = 𝑑𝑈 (𝑤1) − 2 ≤ 1;

𝑘2 = 0, 𝑘3 = 1,

𝑊𝑝 (𝑈) − 𝑊𝑝 (𝑇) ≤ 3, 𝑘2 = 𝑘3 = 1.

(24)

Hence, by Theorem 6, we obtain that

𝑊𝑝 (𝑈) ≤ 𝑊𝑝 (𝑇) + 3 ≤ 4𝑛 − 5. (25)

Similarly, by Theorem 7, we obtain that

𝑊𝑝 (𝑈) ≥ 𝑊𝑝 (𝑇) − 1 ≥ 2𝑛 − 3 − 1 = 2𝑛 − 4. (26)

This completes the proof.

Lemma 10. Let𝑈 be a unicyclic Hückel graph with 2𝑛 vertices.
Then

(1) if 𝑔(𝑈) ≥ 7, then 2𝑛 − 2 ≤ 𝑊𝑝(𝑈) ≤ 4𝑛 + 4;
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(2) if 𝑔(𝑈) = 6, then 2𝑛 − 5 ≤ 𝑊𝑝(𝑈) ≤ 4𝑛 + 1;

(3) if 𝑔(𝑈) = 5, then 2𝑛 − 7 ≤ 𝑊𝑝(𝑈) ≤ 4𝑛 − 1.

Proof. We only prove the first assertion and other assertions
can be proved similarly. Let 𝑈 be a unicyclic Hückel graph
with 𝑔(𝑈) ≥ 7. Let 𝑀 be the perfect matching of 𝑈; then
there exists edge 𝑢V ∈ 𝐸(𝐶𝑘) such that 𝑢V ∉ 𝑀. We can get a
Hückel tree 𝑇 by deleting 𝑢V. By Lemma 8, we have

𝑊𝑝 (𝑈) = 𝑊𝑝 (𝑇) + 𝑘𝑙 +

𝑘

∑

𝑖=1

𝑑𝑈 (𝑢𝑖) +

𝑙

∑

𝑗=1

𝑑𝑈 (V𝑗) − 𝑘

− 𝑙,

(27)

where 𝑑𝑈(𝑢) = 𝑘 + 1, 𝑑𝑈(V) = 𝑙 + 1, 𝑁𝑈(𝑢) = {V, 𝑢1, . . . , 𝑢𝑘},
and𝑁𝑈(V) = {𝑢, V1, . . . , V𝑙}; without loss of generality, assume
that 1 ≤ 𝑘 ≤ 𝑙 ≤ 2; then

𝑊𝑝 (𝑈) − 𝑊𝑝 (𝑇) = 𝑑𝑈 (𝑢1) + 𝑑𝑈 (V1) − 1 ≤ 5;

𝑘 = 𝑙 = 1,

𝑊𝑝 (𝑈) − 𝑊𝑝 (𝑇) = 𝑑𝑈 (𝑢1) +

2

∑

𝑖=1

𝑑𝑈 (V𝑖) − 1 ≤ 8;

𝑘 = 1, 𝑙 = 2,

𝑊𝑝 (𝑈) − 𝑊𝑝 (𝑇) =

2

∑

𝑖=1

𝑑𝑈 (𝑢𝑖) +

2

∑

𝑖=1

𝑑𝑈 (V𝑖) ≤ 12,

𝑘 = 𝑙 = 2.

(28)

This completes the proof.

Combining Lemmas 9 and 10, we have the following
result.

Theorem 11. Let 𝑈 be a unicyclic Hückel graph in H2𝑛 with
𝑛 ≥ 4. Then

2𝑛 − 7 ≤ 𝑊𝑝 (𝑈) ≤ 4𝑛 + 4. (29)

5. Conclusion

This paper determined the smallest and the largest Wiener
polarity index among all Hückel trees and unicyclic Hückel
graphs on 2𝑛 vertices and characterized the corresponding
extremal graphs. Thus, the promising prospects of the appli-
cation for the chemical and pharmacy engineering will be
illustrated in the theoretical conclusion that is obtained in this
paper.
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