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This paper describes an improved global harmony search (IGHS) algorithm for identifying the nonlinear discrete-time systems
based on second-order Volterra model. The IGHS is an improved version of the novel global harmony search (NGHS) algorithm,
and it makes two significant improvements on the NGHS. First, the genetic mutation operation is modified by combining normal
distribution andCauchy distribution, which enables the IGHS to fully explore and exploit the solution space. Second, an opposition-
based learning (OBL) is introduced and modified to improve the quality of harmony vectors. The IGHS algorithm is implemented
on two numerical examples, and they are nonlinear discrete-time rational system and the real heat exchanger, respectively. The
results of the IGHS are compared with those of the other three methods, and it has been verified to be more effective than the other
three methods on solving the above two problems with different input signals and system memory sizes.

1. Introduction

TheVolterra model is a kind of nonlinear filter model, which
is usually employed to track and identify plenty of complex
nonlinear systems. In order to enhance the quality of the
system identification, it is very crucial issue to select optimum
model coefficient called the kernel. Therefore, the Volterra
model is essentially an extension of linear filter model to
nonlinear case. During the past decade, there have been
many research works on the Volterra model. Campello et
al. [1] tackled the problem of expanding Volterra models
using Laguerre functions. The global optimal solution is
obtained when each multidimensional kernel of the model
is decomposed into a number of independent orthonormal
bases. Furthermore, the solution obtained is able tominimize
the upper bound of the squared norm of the error resulting
from the practical truncation of the Laguerre series expansion
into a finite number of functions. Masugi and Takuma [2]
described a Volterra system-based nonlinear study of video-
packet transmission over IP networks. Based on the Volterra

system, the authors performed a time-series analysis of
measured data for network response evaluation. The novel
method can reproduce the time-series responses observed in
video-packet transmission over the Internet, characterizing
nonlinear dynamic behaviors such that the obtained results
gave an appropriate depiction of network conditions at
different times. Gruber et al. [3] presented a nonlinear model
predictive control (NMPC) method based on a second-
order Volterra series model for greenhouse temperature
control using natural ventilation. These models, denoting
the simple and logical extension of convolution models,
are capable of describing the nonlinear dynamic feature of
the ventilation and other environmental conditions on the
greenhouse temperature.Many applications of Volterra series
modeling were executed in the frequency-domain based on
the Generalized Frequency Response Functions (GFRF) [4,
5]. In the light of the wide applications of Volterra series,
Li and Billings [6] presented an approach to estimate the
GFRF in a piecewise manner for duffing type oscillators for
the underrepresented weakly nonlinear region. Additionally,
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they devised a newmethod to obtain the energy contributions
of each order kernel.The new nonparametricmethod can not
only construct the amplitude-invariant GFRF over a certain
excitation range, but also avoid building large sets of time-
domain models. In addition, the Volterra filter model can be
found in some other application areas [7–14].

Chang [7] devised an improved particle swarm optimiza-
tion (IPSO) to implement system identification based on
Volterra filter model. In this paper, we develop an improved
global harmony search (IGHS) algorithm and try the IGHS
as an efficient candidate for system identification based on
Volterra filter model. The harmony search (HS) algorithm
was firstly proposed by [15]. The HS is a simple but efficient
algorithm, and its many improved versions have been applied
into many problems including reliability problems [16],
reactor core fuel management optimization [17], and sizing
optimization of truss structures [18].

Thepaper is organized as follows. In Section 2, the pruned
second-order Volterra filter model is simply presented. In
Section 3, a novel global harmony search algorithm is intro-
duced. In Section 4, an improved global harmony search
algorithm is proposed, and its procedure is fully explained.
In Section 5, four harmony search algorithms are used for two
examples with different signal inputs and memory sizes. We
end this paper with some conclusions in Section 6.

2. Volterra Filter Model and Its Pruned
Second-Order Form

The Volterra filter model is an efficient method for the
identification of nonlinear discrete systems, and it has come
into researchers’ notice in recent decades. The discrete form
of Volterra filter model of the 𝑞th order [7] is given by
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where 𝑁 denotes the system memory size. Equation (1)
denotes the Volterra filter model with the infinite series.
However, this model is hard to compute andmaster due to its
complex and expatiatory formula. In this paper, we only study
its simplified and approximate form called the truncated

second-order Volterra model [7, 19], which is stated as
follows:
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In order to facilitate expression, (2) can also be expressed
as the following vector form:

𝑦 [𝑛] = 𝐻𝑋
𝑇
. (3)

Here, the superscript 𝑇 represents the transpose of a
vector and 𝐻 stands for the Volterra kernel vector given by
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0
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In addition,𝑋 denotes the Volterra input vector given by
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In the light of (3), the vector lengths of both𝐻 and𝑋 are
the same and are calculated as follows [19]:
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To achieve the nearest approximation of the actual system
output, appropriate kernel vector 𝐻 should be determined
under the input vector 𝑋. In this paper, an improved global
harmony search (IGHS) algorithm is proposed to determine
kernel vector 𝐻. The IGHS is an improved version of novel
global harmony search (NGHS) algorithm [20]; thus, both
the NGHS and the IGHS will be presented in the following
sections.

3. Novel Global Harmony
Search (NGHS) Algorithm

Novel global harmony search (NGHS) algorithm [20] is a
variant of harmony search (HS) algorithm [15], and it is
superior to the HS for solving unconstrained optimization
problems. The NGHS improvises new harmony vectors by
combining position updating and mutation. Concretely, the
steps of NGHS are explained as follows.

Step 1 (initialize the NGHS parameters and the problem
parameters). The NGHS parameters consist of harmony
memory size HMS, the number of improvisations NI, and
mutation rate 𝑝

𝑚
. In addition, the problem parameters

include the number of problem variables 𝐿, the lower bound
𝑥
𝑗
, and upper bound 𝑥

𝑗
of the 𝑗th (𝑗 = 1, 2, . . . , 𝐿) problem
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variable. Furthermore, the number of improvisations (NI)
is actually the total number of generations for adjusting the
parameters related to the identification problem. In each
generation, only one new candidate solution including 𝐿

parameters is generated, and this solution is accepted if and
only if it is better than the worst one of the previous solutions.

Step 2 (initialize harmony memory (HM)). The initial har-
mony memory (HM) can be expressed in the following
matrix form:
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where 𝑥
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𝑗
stands for the 𝑗th (𝑗 = 1, . . . , 𝐿) variable of

the 𝑖th (𝑖 = 1, . . . ,HMS) harmony vector. Moreover, it is
randomly produced from a uniform distribution in the
ranges [𝑥

𝑗
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] (𝑗 = 1, 2, . . . , 𝐿). In HM, any vector 𝑥
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) (𝑖 = 1, . . . ,HMS) represents a candidate solu-

tion of the parameters (as in (4)) needed for solving the
identification problem. Furthermore, the length of 𝑥𝑖 is equal
to 𝐿, which is exactly the number of the parameters in the
Volterra kernel vector𝐻 (as in (6)).

Step 3 (improvise a new harmony). Improvisation is actually
the operation of producing a new harmony vector. For the
NGHS, its improvisation mainly includes two steps, and
they are position updating and geneticmutation, respectively.
More specifically, the improvisation can be presented in
Table 1.

Here, “best” and “worst” stand for the indexes of the best
harmony and the worst harmony in HM, respectively. 𝑟

1
, 𝑟
2
,

and 𝑟
3
denote three uniformly generated random numbers

in [0, 1]. With respect to position updating, a new harmony
vector is improvised near the best harmony vector, which can
facilitate the convergence rate of the NGHS. On the other
hand, it is worth noticing that genetic mutation is an event
of small probability, and it is utilized to avoid the premature
convergence of the NGHS.

Step 4 (update harmony memory). Replace the worst har-
mony vector 𝑥worst of HMwith the new improvised harmony
vector 𝑥 no matter whether 𝑥 is better or worse than 𝑥

worst.

Step 5 (check the stopping criterion). Steps 3 and 4 are
repeated until the number of improvisations (NI) is reached.

4. An Improved Global Harmony Search
(IGHS) Algorithm

In this paper, an improved global harmony search (IGHS)
algorithm is proposed to implement the system identification
based on Volterra filter model. The IGHS is an improved

Table 1: The computational procedure of the NGHS improvisation.

Line The improvisation of the NGHS
(1) For 𝑗 = 1 to 𝐿

(2) 𝑥
𝑅
= 2 × 𝑥
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𝑗

− 𝑥
worst
𝑗

(3) If 𝑥
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)% Genetic mutation

(11) EndIf
(12) EndFor

version of the NGHS, and it is different from the NGHS in
the following two aspects.

(1) The Modification of Genetic Mutation. The genetic muta-
tion of the NGHS is conducted according to uniform distri-
bution. To further explore and exploit the solution space, the
uniform distribution is replaced with the other two proba-
bility distributions, and they are normal distribution [21–23]
and Cauchy distribution [22, 23], respectively. Therefore, the
new geneticmutation are implemented by using the following
two equations:
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Here, 𝑗 denotes the index of the 𝑗th component of the
improvised harmony vector, and 𝑥
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𝑗

denotes the 𝑗th com-
ponent of the best harmony vector in HM. rand 𝑛
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Cauchy distribution with location parameter 𝑥
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parameter 0.1. If overflow happens to 𝑥



𝑗
generated using

either normal distribution or Cauchy distribution, it will be
truncated to [𝑥

𝑗
, 𝑥
𝑗
]. On the other hand, if the condition

𝑟
2
< 𝑝
𝑚
(as in Table 1) is satisfied, either normal distribution

or Cauchy distribution will be utilized to carry out genetic
mutation, and the probability of using any one of the two
distributions is equal to 0.5. By adopting normal distribution
and Cauchy distribution, the capacity of escaping from the
local optimums is enhanced for the IGHS. In the meantime,
the solution space can be fully explored and exploited, which
is beneficial for improving the quality of the improvised
harmony vector 𝑥.

In addition to the equation of genetic mutation, we also
modify the mutation rate (𝑝

𝑚
) of the NGHS. The parameter

𝑝
𝑚
is used to determine whether or not a variable of 𝑥 adopts

genetic mutation. A large 𝑝
𝑚
value is beneficial for searching

in a large scope, while a small 𝑝
𝑚
value is helpful to search
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in a small scope. To well balance the global search and local
search of the IGHS, the 𝑝

𝑚
value decreases dynamically with

increasing generations (NI) as follows:
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where 𝑝
𝑚

and 𝑝
𝑚

represent the minimal and maximal
mutation rates. 𝑡 (1 ≤ 𝑡 ≤ NI) denotes the current
generation number, and the IGHS is stopped when the
current generation number 𝑡 reaches the maximal generation
number NI. In addition, NI

0
denotes a fixed generation

number, and it is set to 3NI/4 here.

(2) Introduce and Modify an Opposition-Based Learning
(OBL) [24]. In order to improve the convergence of the IGHS,
a method called opposition-based learning (OBL) [24] is
firstly introduced. In short, this technique can be stated as
follows:
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In this paper, we enhance the IGHS improvisation by
modifying the OBL technique. More specifically, the 𝑜𝑥
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where rand() denotes a randomnumber uniformly generated
in [0, 1]. By using (12), the IGHS can yield numerous possible
values in the range of [𝑥
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𝑈
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]. Compared to the OBL

technique, its modified version has wider searching space,
which is in favor of fine-tuning of the best harmony vectors.

Based on (10)-(11), a new harmony memory HM can be
generated, and it is given by
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Table 2: The computational procedure of the IGHS improvisation.

Line The improvisation of the IGHS
(1) For 𝑗 = 1 to 𝐿

(2) 𝑥
𝑅
= 2 × 𝑥
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(19) EndIf
(20) EndIf
(21) EndFor
(22) If 𝑟

4
< 0.1% Modified OBL operation with a probability of 0.1

(23) For 𝑖 = 1 to HMS
(24) For 𝑗 = 1 to 𝐿
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𝑗
= 𝑥
𝐿
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+ rand() × (𝑥
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𝐿
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(26) EndFor
(27) If 𝑓(𝑜𝑥

𝑖
) < 𝑓(𝑥

𝑖
)

(28) 𝑥
𝑖
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(29) Endif
(30) EndFor
(31) EndIf

Here, 𝑜𝑥𝑖 = (𝑜𝑥
𝑖

1
, 𝑜𝑥
𝑖

2
, . . . , 𝑜𝑥

𝑖

𝐿
) stands for the 𝑖th (𝑖 =

1, . . . ,HMS) harmony vector in HM, and 𝑜𝑥
𝑖

𝑗
denotes its

𝑗th (𝑗 = 1, . . . , 𝐿) variable. After performing the modified
OBL operation, each 𝑜𝑥

𝑖 is compared with the corresponding
harmony vector 𝑥

𝑖. More precisely, if 𝑜𝑥
𝑖 is better than 𝑥

𝑖,
𝑥
𝑖 should be replaced with 𝑜𝑥

𝑖. It is worth noticing that the
modifiedOBL is an event of small probability. In other words,
this technique is an auxiliary step of the IGHS improvisation,
and it is mainly used to improve the quality of the improvised
harmony vector.

Based on the above detailed illustrations about the two
modifications of the NGHS improvisation, the IGHS impro-
visation can be summarized in Table 2.

By utilizing the IGHS, the identification diagram of
nonlinear discrete-time systems based on the pruned second-
order Volterra model is shown in Figure 1. Besides, the
nomenclatures appearing in this diagram are explained in
Table 3.
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The IGHS algorithm
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Figure 1: Volterra filter modeling of nonlinear discrete-time system using the IGHS algorithm.

Table 3: Nomenclatures used in Volterra filter modeling of nonlin-
ear discrete-time system.

𝑥[𝑛] The digital input signal

𝑦[𝑛]
The output signal of the second-order Volterra filter model
(as (2))

𝑑[𝑛]
The output of the unknown nonlinear discrete-time
system

𝑟[𝑛] Themeasurement noise
�̂�[𝑛] The sum of 𝑑[𝑛] and 𝑟[𝑛]

𝑒[𝑛] The error signal between �̂�[𝑛] and 𝑦[𝑛]

The goal of the IGHS is to find the optimal kernel vector
𝐻 for Volterra filter model so that the difference between the
estimated output 𝑦[𝑛] and the actual system output �̂�[𝑛] is
minimized. Thus, it is advisable to find an objective function
to satisfy the design requirement.Herewe adopt the following
objective function [7]:

𝐸 [𝑒
2
[𝑛]] =

1

𝑇

𝑇−1

∑

𝑛=0

𝑒
2
[𝑛] =

1

𝑇

𝑇−1

∑

𝑛=0

[�̂� [𝑛] − 𝑦 [𝑛]]
2
. (14)

Here,𝐸[𝑒
2
[𝑛]] stands for themean square error (MSE), and𝑇

denotes the sampling number. By using the IGHS to optimize
MSE,we can obtain themost appropriate kernel vector for the
second-order Volterra model.

5. Experimental Results and Analysis

To verify the validity of the IGHS on identifying nonlinear
system based on second-order Volterra filter model, two
examples including the highly nonlinear discrete-time ratio-
nal system and the real heat exchanger are considered. More
specifically, these two examples are explained as follows.

5.1. Example 1. The first example is the highly nonlinear
discrete-time rational system [7], and itsmathematicalmodel
is stated as follows:

𝑑 [𝑛] =
0.3𝑑
2
[𝑛 − 1] + 0.8𝑥 [𝑛 − 1] + 0.6𝑑 [𝑛 − 2]

1 + 𝑥2 [𝑛 − 1] + 𝑑2 [𝑛 − 1]
. (15)

Here, two types of input signals [7] are considered. The
first is defined as Example 1a whose input is a random
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Figure 2: Comparison of actual system output and Volterra model
output for Example 1a (𝑁 = 5).

signal uniformly produced in [−1, 1]. The second is defined
as Example 1b whose input is a cosine signal 𝑥[𝑛] =

0.8cos((𝜋/9)𝑛). For both Examples 1a and 1b, the measure-
ment noise 𝑟[𝑛] is always supposed to be a Gaussian noise of
𝑁(0, 0.001).

In this experiment, the IGHS is used for Example 1a with
𝑁 = 5. Moreover, the IGHS parameters are set as follows: the
maximal mutation rate 𝑝

𝑚
= 0.1, the minimal mutation rate

𝑝
𝑚

= 0.1, harmony memory size HMS = 5, the number of
improvisations NI = 2000, and sampling number 𝑇 = 100.
Moreover, 𝑇 is actually the total number of output samples
(actual systemoutput or estimated output). According to (14),
there are 𝑇 sampling values for actual system output �̂�[𝑛]

(1 ≤ 𝑛 ≤ 𝑇). After implementing the IGHS, we can obtain
the comparison between the estimated output 𝑦[𝑛] and the
actual output �̂�[𝑛] in Figure 2.

From Figure 2, it can be seen that the estimated output
𝑦[𝑛] approximates the actual output �̂�[𝑛] well. In addition,
the minimal mean square error (MSE) obtained by the IGHS
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Figure 3: Comparison of actual system output and Volterra model
output for Example 1a (𝑁 = 8).

is equal to 5.4594𝑒−003, which is a satisfactory result. Besides,
we use Example 1a with𝑁 = 8 to investigate the performance
of the IGHS for second-order Volterra filter model with large
memory size. The parameters of the IGHS are the same as
those used for Example 1a (𝑁 = 5) except NI, and it is set
to 5000 in this experiment. By performing the IGHS, we can
obtain the comparison between the estimated output 𝑦[𝑛]

and the actual output �̂�[𝑛] in Figure 3.
It is clear from Figure 3 that a satisfactory approximation

can be attained by utilizing the IGHS. Additionally, the
minimal MSE yielded by the IGHS is equal to 3.7074𝑒 − 003

for Example 1a with 𝑁 = 8, which provides better modeling
capacity.

In addition to random signal, another testing input signal
𝑥[𝑛] = 0.8cos((𝜋/9)𝑛) is used to investigate the performance
of second-order Volterra filter model using the IGHS. For
Example 1b with 𝑁 = 5 and 𝑁 = 8, the IGHS parameters
are the same as those for Example 1a, and Figures 4 and
5 display the comparisons of results for Example 1b with
𝑁 = 5 and 𝑁 = 8. As expected, the difference between the
estimated output 𝑦[𝑛] and the actual output �̂�[𝑛] is small in
each case. Additionally, two satisfyingMSEs can be obtained,
respectively, for 𝑁 = 5 and 𝑁 = 8 by carrying out the IGHS,
and they are equal to 1.71809876𝑒 − 003 and 1.7119𝑒 − 003,
respectively.

5.2. Example 2. The second example is the real heat ex-
changer and its mathematical model [7, 25] is given by

𝑤 [𝑛] = 𝑥 [𝑛] − 1.3228𝑥
2
[𝑛] + 0.7671𝑥

3
[𝑛]

− 2.1755𝑥
4
[𝑛] ,

(16)

𝑑 [𝑛] =
−6.5306𝑧

−1
+ 5.5652𝑧

−2

1 − 1.608𝑧−1 + 0.6385𝑧−2
𝑤 [𝑛] , (17)
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Figure 4: Comparison of actual system output and Volterra model
output for Example 1b (𝑁 = 5).
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Figure 5: Comparison of actual system output and Volterra model
output for Example 1b (𝑁 = 8).

where 𝑥[𝑛] is the process input denoting the flow rate and is
constrained by the range of [0, 1], 𝑤[𝑛] stands for the static
nonlinearity, and 𝑑[𝑛] stands for the process output tempera-
ture. By combining (16) and (17), the simplifiedmathematical
model can be expressed as the following difference equation:

𝑑 [𝑛] = 1.608𝑑 [𝑛 − 1] − 0.6385𝑑 [𝑛 − 2]

− 6.5306𝑤 [𝑛 − 1] + 5.5652𝑤 [𝑛 − 2] .

(18)

Here, two types of input signals [7, 25] are considered.The
first is defined as Example 2a whose input is randomly gener-
ated in the range [0.1, 0.9]. The second is defined as Example
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Figure 6: Comparison of actual system output and Volterra model
output for Example 2a (𝑁 = 8).
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Figure 7: Comparison of actual system output and Volterra model
output for Example 2b (𝑁 = 8).

2b whose input is a sine signal 𝑥[𝑛] = 0.4sin((𝜋/6)𝑛) + 0.5.
According to [7, 25], themeasurement noise is excluded from
the problem model; thus, we have 𝑟[𝑛] = 0.

In this experiment, the memory size 𝑁 is set to 8 for
second-order Volterra filter model. To fulfill the physical
input requirement, the modeling input 𝑥[𝑛] is randomly
generated in the range [0.1, 0.9] and the testing input is
then set to 𝑥[𝑛] = 0.4sin((𝜋/6)𝑛) + 0.5. Moreover, the
IGHS parameters used for Example 2 are the same as those
of Example 1. By implementing the IGHS, the outputs of
second-order Volterra model are shown in Figures 6 and 7,
respectively, for the modeling input and testing input. Based

on the careful observations on experimental results, we can
confirm that the satisfactory approximation is attained in
each case.

5.3. Comparison of the IGHS with the Other Three HSs. In
this paper, four methods consisting of the HS [15], IHS [26],
NGHS [20], and IGHS are used to solve the above problems
with different input signals and system memory sizes. The
parameters of these four methods are set as follows. For the
HS, harmony memory considering rate HMCR = 0.95, pitch
adjusting rate PAR = 0.3, and bandwidth bw = 0.01. For
the IHS, HMCR = 0.95, the minimal pitch adjusting rate
PARmin = 0.35, the maximal pitch adjusting rate PARmax =

0.99, the minimal bandwidth bwmin = 10
−5, and the maximal

bandwidth bwmax = 0.1. For the NGHS, mutation rate 𝑝
𝑚

=

5×10
−2. For the IGHS, the minimal mutation rate 𝑝

𝑚
= 0.01,

the maximal mutation rate 𝑝
𝑚

= 0.1, and NI
0
= 3NI/4. Note

that all the methods are executed under identical conditions
(harmony memory size and the number of improvisations).
More specifically, the harmony memory size (HMS) of each
method is set to 5, and the NI (Number of improvisations)
value of eachmethod is set to 2000 and 5000, respectively, for
the system memory sizes 𝑁 = 5 and 𝑁 = 8. With respect
to second-order Volterra filter model, sampling number is
set to 𝑇 = 100, and the range of each variable of the kernel
vector is set as [−1, 1]. Matlab 7.0 is used to execute the above
procedure under the environment of Intel(R) Core(TM) i5-
2410MCPU@ 2.30GHz. 20 independent runs are performed
in each case, and the optimization results are presented in
Table 4.

Table 4 gives the comparison of the results obtained
by the IGHS, against the other three methods including
the HS [15], the IHS [26], and the NGHS [20], and the
best performance is reported in boldface. The terms “ACT”
and “Std” stand for average computation time and standard
deviation, respectively. According to the results, we can see
that the IGHS performs bettermost of the time. To be precise,
the values of Worst, Mean, and Std obtained by the IGHS are
smaller than those obtained by the other threemethods for all
problems. Moreover, the IGHS can obtain five best objective
function values except Example 1b (𝑁 = 8). Therefore, the
IGHS has exhibited stronger convergence and stability than
the other threeHSs. For Example 1b (𝑁 = 8), the IHS,NGHS,
and IGHS can yield the same best objective function value
which is equal to 1.7119𝑒 − 003, and the remaining results
obtained by the IGHS are better than the other three HSs.

Additionally, Mann-Whitney 𝑈 test [27, 28], also known
as “Mann-Whitney Wilcoxon test,” is used to ensure a
statistical significant difference between the IGHS and any of
the other threeHSs. In otherwords, theMann-Whitney𝑈 test
acts as an efficient nonparametric rank-based test to identify
a difference between populations. Moreover, the test statistic
𝑈 is expressed as follows:

𝑈
1
= 𝑅
1
−

𝑛
1
(𝑛
1
+ 1)

2
, (19)

𝑈
2
= 𝑅
2
−

𝑛
2
(𝑛
2
+ 1)

2
, (20)
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Table 4: Comparison of HS, IHS, NGHS, and IGHS on six problems.

Problem NI Algorithm ACT Best Worst Mean Std

Example 1a (𝑁 = 5) 2000

HS 1.659 1.1722𝑒 − 002 3.5945𝑒 − 002 1.9427𝑒 − 002 8.0506𝑒 − 003

IHS 1.7011 8.4989𝑒 − 003 2.6525𝑒 − 002 1.6498𝑒 − 002 5.9693𝑒 − 003

NGHS 1.781 5.9558𝑒 − 003 3.0649𝑒 − 002 1.2990𝑒 − 002 7.8612𝑒 − 003

IGHS 2.6365 5.4594e − 003 7.9210e − 003 5.9763e − 003 6.6092e − 004

Example 1a (𝑁 = 8) 5000

HS 4.3975 2.9721𝑒 − 002 9.3845𝑒 − 002 5.4468𝑒 − 002 1.5500𝑒 − 002

IHS 4.4121 3.1554𝑒 − 002 8.1672𝑒 − 002 5.1982𝑒 − 002 1.4302𝑒 − 002

NGHS 4.4334 5.9619𝑒 − 003 4.9489𝑒 − 002 1.5350𝑒 − 002 9.0064𝑒 − 003

IGHS 6.6589 3.7074e − 003 1.0237e − 002 5.6536e − 003 1.7608e − 003

Example 1b (𝑁 = 5) 2000

HS 0.57743 1.72096501𝑒 − 003 4.06941185𝑒 − 003 2.15386021𝑒 − 003 5.99250994𝑒 − 004

IHS 0.56219 1.71809880𝑒 − 003 1.82397928𝑒 − 003 1.72847844𝑒 − 003 2.71096253𝑒 − 005

NGHS 0.56886 1.71809919𝑒 − 003 1.83200101𝑒 − 003 1.72490455𝑒 − 003 2.54479841𝑒 − 005

IGHS 0.84918 1.71809876e − 003 1.71833108e − 003 1.71811926e − 003 5.18365165e − 008

Example 1b (𝑁 = 8) 5000

HS 2.6544 1.7202𝑒 − 003 2.3210𝑒 − 003 1.8309𝑒 − 003 1.5559𝑒 − 004

IHS 2.651 1.7119𝑒 − 003 1.7721𝑒 − 003 1.7194𝑒 − 003 1.8286𝑒 − 005

NGHS 2.6787 1.7119𝑒 − 003 1.8486𝑒 − 003 1.7188𝑒 − 003 3.0568𝑒 − 005

IGHS 4.0572 1.7119𝑒 − 003 1.7119e − 003 1.7119e − 003 1.4972e − 009

Example 2a (𝑁 = 8) 5000

HS 5.3252 3.8006𝑒 + 000 4.0102𝑒 + 000 3.8879𝑒 + 000 5.2382𝑒 − 002

IHS 5.2646 3.7901𝑒 + 000 3.9328𝑒 + 000 3.8548𝑒 + 000 4.3294𝑒 − 002

NGHS 5.3327 3.6604𝑒 + 000 3.7327𝑒 + 000 3.6760𝑒 + 000 1.6444𝑒 − 002

IGHS 7.9408 3.6560e + 000 3.6628e + 000 3.6581e + 000 1.9936e − 003

Example 2b (𝑁 = 8) 5000

HS 3.1802 1.1975𝑒 + 000 1.4046𝑒 + 000 1.2670𝑒 + 000 5.0691𝑒 − 002

IHS 3.1454 1.1667𝑒 + 000 1.3149𝑒 + 000 1.2283𝑒 + 000 3.8183𝑒 − 002

NGHS 3.1735 1.0260𝑒 + 000 1.1026𝑒 + 000 1.0445𝑒 + 000 1.8699𝑒 − 002

IGHS 4.7435 1.0200e + 000 1.0392e + 000 1.0277e + 000 5.3827e − 003

where 𝑛
1
and 𝑛

2
denote the sizes of sample 1 and sample 2,

respectively.𝑅
1
and𝑅

2
denote the sums of the ranks in sample

1 and sample 2, respectively, 𝑈
1
represents the number of

sample 1 observations beaten by sample 2 observations, and
𝑈
2
represents the number of sample 2 observations beaten by

sample 1 observations. By combining (19) and (20), the sum
of 𝑈
1
and 𝑈

2
is calculated as follows:

𝑈
1
+ 𝑈
2
= 𝑅
1
−

𝑛
1
(𝑛
1
+ 1)

2
+ 𝑅
2
−

𝑛
2
(𝑛
2
+ 1)

2
. (21)

Based on the known conditions 𝑅
1
+ 𝑅
2
= 𝑛(𝑛 + 1)/2 and

𝑛 = 𝑛
1
+ 𝑛
2
, we can easily obtain the simplified form of (21)

as follows:

𝑈
1
+ 𝑈
2
= 𝑛
1
𝑛
2
. (22)

To make the parameters 𝑅
1
and 𝑅

2
easy to understand,

one simple and interesting example is provided as follows: a
sample of 6 tortoises (sample 1) and 6 hares (sample 2) are
collected and made run in a race. The order in which they
reach the finishing post (their rank order, from first to last) is
as follows: T H H H H H T T T T T H, where T represents a
tortoise and H represents a hare.

A direct way: we take each tortoise in turn and count the
number of hares it is beaten by (lower rank), getting 0, 5, 5, 5,
5, and 5, which means 𝑈

1
= 0 + 5 + 5 + 5 + 5 + 5 = 25. In

the meantime, we could take each hare in turn and count the
number of tortoises it is beaten by. In this situation, we get 1,
1, 1, 1, 1, and 6. So 𝑈

2
= 6 + 1 + 1 + 1 + 1 + 1 = 11. It is clear

that the sum of these two values for 𝑈 is 36, which is 6 × 6.

Table 5: Mann-Whitney 𝑈 test result obtained using four methods.

Problem/algorithm 𝑈HS 𝑈IHS 𝑈NGHS

Example 1a (𝑁 = 5) 400 400 380
Example 1a (𝑁 = 8) 400 400 390
Example 1b (𝑁 = 5) 400 177 298
Example 1b (𝑁 = 8) 400 355 257
Example 2a (𝑁 = 8) 400 400 395
Example 2b (𝑁 = 8) 400 400 347

An indirect way: the sum of the ranks achieved by the
tortoises is 𝑅

1
= 1 + 7 + 8 + 9 + 10 + 11 = 46, and thus

𝑈
1
= 46−(6×7)/2 = 46−21 = 25 (as in (19)).The sum of the

ranks achieved by the hares is 𝑅
2
= 2+3+4+5+6+12 = 32,

and thus 𝑈
2
= 32 − 21 = 11 (as in (20)).

In order to compare the IGHS with the other three HSs
in a statistical way, three groups of Mann-Whitney 𝑈 tests
are executed, and they are (𝑈HS, 𝑈IGHS), (𝑈IHS, 𝑈IGHS), and
(𝑈NGHS, 𝑈IGHS), respectively. For each problem, 20 indepen-
dent experiments are carried out; therefore, 𝑛other = 𝑛IGHS =

20 and 𝑈other + 𝑈IGHS = 𝑛other × 𝑛IGHS = 400, where the
subscript other denotes any of the other three HSs including
the HS, IHS, and NGHS. The parameters of the four HSs are
exactly the same as those of the aforementioned section, and
Table 5 lists the results of Mann-Whitney 𝑈 tests.

From Table 5, it is evident that the IGHS completely
dominates the HS for solving all problems, because the values
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(a) Example 1a (𝑁 = 5)
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(b) Example 1a (𝑁 = 8)
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(c) Example 1b (𝑁 = 5)
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(d) Example 1b (𝑁 = 8)
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(e) Example 2a (𝑁 = 8)

HS
IHS

NGHS
IGHS

10
0

10
1

10
2

Av
er

ag
e o

bj
ec

tiv
e f

un
ct

io
n 

va
lu

e

1000 2000 3000 4000 50000
Generation

(f) Example 2b (𝑁 = 8)

Figure 8: Average convergence curves of four methods on solving six problems.
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Table 6: The SNR values (in dB form) corresponding to various standard deviations.

Problem/algorithm 𝜎 = 0.001 𝜎 = 0.002 𝜎 = 0.005 𝜎 = 0.01 𝜎 = 0.02 𝜎 = 0.05 𝜎 = 0.1 𝜎 = 0.2

Example 1a (𝑁 = 5) 49.88 44.812 36.005 28.965 23.873 16.266 10.286 3.8217
Example 1a (𝑁 = 8) 49.567 43.463 35.865 29.496 24.641 15.688 10.307 3.911
Example 1b (𝑁 = 5) 51.415 46.475 37.818 31.1 25.635 17.753 12.19 5.296
Example 1b (𝑁 = 8) 51.448 44.949 37.822 31.875 25.634 19.216 11.73 5.2978
Example 2a (𝑁 = 8) 89.077 65.084 58.361 51.488 48.062 38.586 32.856 23.167
Example 2b (𝑁 = 8) 77.16 70.793 63.382 56.586 51.653 43.103 36.481 31.221

Table 7: Effects of various standard deviations on the average MSEs of HS, IHS, NGHS, and IGHS.

Problem NI Algorithm 𝜎 = 0.002 𝜎 = 0.005 𝜎 = 0.01 𝜎 = 0.02 𝜎 = 0.05 𝜎 = 0.1 𝜎 = 0.2

Example 1a (𝑁 = 5) 2000

HS 0.031915 0.026339 0.021641 0.020161 0.031606 0.030344 0.073344
IHS 0.023133 0.01932 0.018847 0.017164 0.025531 0.02863 0.06602

NGHS 0.012373 0.01317 0.0080251 0.0087471 0.017701 0.015685 0.05541
IGHS 0.0090595 0.0081459 0.0063491 0.0060281 0.0082031 0.012456 0.05064

Example 1a (𝑁 = 8) 5000

HS 0.04305 0.053554 0.044272 0.061806 0.052752 0.056594 0.072702
IHS 0.040038 0.05833 0.039185 0.050786 0.059166 0.044153 0.065037

NGHS 0.01394 0.017639 0.011319 0.016349 0.017154 0.022171 0.034087
IGHS 0.0042096 0.0054617 0.0032124 0.004798 0.0065079 0.01026 0.021561

Example 1b (𝑁 = 5) 2000

HS 0.0020816 0.002023 0.0021274 0.0023366 0.0048039 0.011212 0.044087
IHS 0.0016932 0.0016984 0.001846 0.0020514 0.0042728 0.010803 0.043885

NGHS 0.0016883 0.0016907 0.0018335 0.0019744 0.004277 0.010804 0.043811
IGHS 0.0016881 0.0016894 0.0018321 0.0019734 0.0042728 0.010799 0.043809

Example 1b (𝑁 = 8) 5000

HS 0.0021598 0.002027 0.0018595 0.0023973 0.0035314 0.011308 0.042578
IHS 0.0017257 0.0017276 0.0017401 0.0022161 0.0034728 0.011198 0.042543

NGHS 0.0017311 0.0017232 0.0017334 0.0022162 0.0034424 0.011172 0.0425
IGHS 0.0017063 0.0017185 0.0017295 0.0022099 0.0034249 0.011163 0.042491

Example 2a (𝑁 = 8) 5000

HS 2.8627 3.9382 3.7033 3.2856 3.5386 5.1986 3.1728
IHS 2.8343 3.9123 3.6921 3.2648 3.5163 5.1678 3.1443

NGHS 2.6651 3.7442 3.5112 3.0952 3.3575 4.9886 2.9954
IGHS 2.6546 3.7404 3.4886 3.0747 3.3407 4.9715 2.9847

Example 2b (𝑁 = 8) 5000

HS 1.2711 1.2759 1.2776 1.2868 1.292 1.2358 1.3175
IHS 1.2339 1.236 1.2508 1.2473 1.242 1.2165 1.2836

NGHS 1.0437 1.0418 1.0432 1.0411 1.0456 1.0064 1.0917
IGHS 1.0276 1.0264 1.0294 1.029 1.0219 0.99213 1.0689

of𝑈HS are all equal to 400. In other words, the IGHShas never
been beaten by the HS. Furthermore, the values of 𝑈NGHS
are significantly greater than 200, which indicates that the
IGHS is also superior to the NGHS. In addition, the values of
𝑈IHS are significantly greater than 200 for all problems except
Example 1b (𝑁 = 5).Thus, the IGHSperforms better than the
IHS on solving five of the six problems. Regarding Example
1b (𝑁 = 5), the 𝑈IHS value is equal to 177, which is smaller
than but close to 200. Thus, the IHS is a little better than the
IGHS for Example 1b (𝑁 = 5).

Figure 8 shows the average convergence curves of four
methods over 20 runs for six problems. It is clear that the HS
has the poorest performance, and its convergence rate is the
slowest. In addition, both the IHS and the NGHS converge
faster than the HS but slower than the IGHS. Obviously,
the IGHS has the fastest convergence rate in each case. For
Example 1a (𝑁 = 5) and (𝑁 = 8), it can achieve lower
levels than the other three HSs. With respect to Example

2b (𝑁 = 8), the NGHS and the IGHS can converge to
comparable levels, which are lower than those of the HS and
the IHS. Moreover, the IHS, the NGHS, and the IGHS can
reach comparable levels for the remaining cases. Strictly, the
IGHS still outperforms the other three HSs for these cases
according to Table 4.

In Example 1, the standard deviation of the Gaussian
noise is so small (𝜎 = 0.001) as it is equivalent to considering
a negligible noise, while in Example 2 the simulations are
carried out without noise. To investigate the robustness of
the proposed algorithm with respect to the additive noise,
different standard deviations (𝜎) of the Gaussian noise are
considered when solving a problem of system identifica-
tion. On the other hand, signal to noise ratio (SNR) is
a measure used in science and engineering that compares
the level of a desired signal to the level of background
noise. In this paper, the amplitudes of signal and noise are
measured, and thus the SNR value can be calculated by
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(a) Example 1a (𝑁 = 5)
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(b) Example 1a (𝑁 = 8)
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(c) Example 1b (𝑁 = 5)
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(d) Example 1b (𝑁 = 8)
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(e) Example 2a (𝑁 = 8)
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(f) Example 2b (𝑁 = 8)

Figure 9: The mean square error (MSE) versus the signal to noise ratio (SNR).
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SNRdB = 20 log
10
(𝐴signal/𝐴noise), where 𝐴 represents root

mean square (RMS) amplitude. Given a standard deviation
for a problem, a corresponding SNR value can be determined.
Therefore, the SNR values related to various standard devia-
tions are reported in Table 6.

From Table 6, it is clear that the SNR value decreases
as the standard deviation of the Gaussian noise increases.
Therefore, aGaussian noisewith larger𝜎 valuewill exertmore
serious effects on signal than the one with smaller 𝜎 value,
which is harmful to the extraction of signal. In addition, a
plot of MSE versus SNR is given in Figure 9.

In Figures 9(a), 9(b), 9(c), and 9(d), the fluctua-
tions of MSE are minor in the range 20 ≤ SNRdB ≤ 55. In
Figure 9(f), the fluctuations of MSE are minor in the range
40 ≤ SNRdB ≤ 80. In Figure 9(e), the fluctuations of MSE
are slightly larger than those of the above five examples.
Moreover, the MSE values tend to get larger when SNR
decreases in most cases. In this experiment, the standard
deviation 𝜎 varies in a wide range [0.001, 0.2], theMSE values
remain low levels formost 𝜎 values, and the large fluctuations
of MSE do not happen until 𝜎 increases to very high levels
(such as 𝜎 = 0.1, 0.2).Therefore, the robustness of IGHS with
respect to the additive noise is acceptable to some extent.

Various standard deviations of the Gaussian noise will
have different effects on the convergence of HS, IHS, NGHS,
and IGHS for six problems. To testify and compare the
convergence of the proposed algorithm and the other three
HSs, the averageMSEs associatedwith the standard deviation
are listed in Table 7.

The best results are marked in bold in Table 7. For any
problem with various standard deviations, IGHS can always
obtain the smallest MSEs among four algorithms, indicating
that IGHS has stronger convergence and stability than the
other three HSs. Overall, IGHS has exhibited more desirable
robustness to the Gaussian noise than the other three HSs for
all six problems.

6. Conclusions

In the present paper, we propose an improved NGHS algo-
rithm, called IGHS, for identifying nonlinear discrete-time
systems based on second-order Volterra model. The prime
objective of the IGHS is to attain themost appropriate kernels
of Volterra model so that the estimated output can track
and characterize the actual output as much as possible. Fur-
thermore, we use two examples with different input signals
and system memory sizes to test the performance of the
IGHS. Experimental results suggest that the IGHS performs
well and is superior to the other three methods in most
cases according to four criteria (“Best,” “Worst,” “Mean,” and
“Std”) associatedwith themean square error (MSE).Thus, the
IGHS is a strong candidate for the identification of nonlinear
system based on second-order Volterra model.
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[9] E. E. Kuruoğlu, “Nonlinear least 𝑙
𝑝
-norm filters for nonlinear

autoregressive 𝛼-stable processes,”Digital Signal Processing, vol.
12, no. 1, pp. 119–142, 2002.

[10] S.-W. Nam and E. J. Powers, “Volterra series representation
of time-frequency distributions,” IEEE Transactions on Signal
Processing, vol. 51, no. 6, pp. 1532–1537, 2003.

[11] G. Liniin and S. Puthusserypady, “Performance analysis of
volterra-based nonlinear adaptive blind multiuser detectors for
DS-CDMA systems,” Signal Processing, vol. 84, no. 10, pp. 1941–
1956, 2004.

[12] A. Y. Kibangou, G. Favier, and M. M. Hassani, “Selection
of generalized orthonormal bases for second-order Volterra
filters,” Signal Processing, vol. 85, no. 12, pp. 2371–2385, 2005.

[13] C. Krall, K.Witrisal, G. Leus, andH. Koeppl, “Minimummean-
square error equalization for second-order Volterra systems,”
IEEE Transactions on Signal Processing, vol. 56, no. 10, pp. 4729–
4737, 2008.

[14] H. Tang, Y. H. Liao, J. Y. Cao, and H. Xie, “Fault diagnosis
approach based on Volterra models,” Mechanical Systems and
Signal Processing, vol. 24, no. 4, pp. 1099–1113, 2010.

[15] Z. W. Geem, J. H. Kim, and G. V. Loganathan, “A new heuristic
optimization algorithm: harmony search,” Simulation, vol. 76,
no. 2, pp. 60–68, 2001.

[16] D. X. Zou, L. Q. Gao, J. H. Wu, S. Li, and Y. Li, “A novel global
harmony search algorithm for reliability problems,” Computers
& Industrial Engineering, vol. 58, no. 2, pp. 307–316, 2010.



Mathematical Problems in Engineering 13

[17] N. Poursalehi, A. Zolfaghari, A. Minuchehr, and K. Valavi,
“Self-adaptive global best harmony search algorithm applied to
reactor core fuel management optimization,” Annals of Nuclear
Energy, vol. 62, pp. 86–102, 2013.

[18] S. O. Degertekin, “Improved harmony search algorithms for
sizing optimization of truss structures,”Computers& Structures,
vol. 92-93, pp. 229–241, 2012.

[19] J. S. Zhang andH.Q.Zhao, “Anovel adaptive bilinear filter based
on pipelined architecture,” Digital Signal Processing, vol. 20, no.
1, pp. 23–38, 2010.

[20] D. X. Zou, L. Q. Gao, J. H.Wu, and S. Li, “Novel global harmony
search algorithm for unconstrained problems,” Neurocomput-
ing, vol. 73, no. 16–18, pp. 3308–3318, 2010.

[21] J. Kennedy, “Bare bones particle swarms,” in Proceedings of
the IEEE Swarm Intelligence Symposium (SIS ’03), pp. 80–87,
Indianapolis, Ind, USA, April 2003.

[22] J. Q. Zhang and A. C. Sanderson, “JADE: Adaptive differential
evolution with optional external archive,” IEEE Transactions on
Evolutionary Computation, vol. 13, no. 5, pp. 945–958, 2009.

[23] R. A. Krohling and E. Mendel, “Bare bones particle swarm
optimization with Gaussian or Cauchy jumps,” in Proceedings
of the IEEE Congress on Evolutionary Computation (CEC ’09),
pp. 3285–3291, IEEE, Trondheim, Norway, May 2009.

[24] H. R. Tizhoosh, “Opposition-based learning: a new scheme
for machine intelligence,” in Proceedings of the International
Conference on Computational Intelligence for Modelling, Control
and Automation, and International Conference on Intelligent
Agents, Web Technologies and Internet Commerce, vol. 1, pp.
695–701, IEEE, Vienna, Austria, November 2005.

[25] R. R. Sumar, A. A. R. Coelho, and L. Dos Santos Coelho,
“Computational intelligence approach to PID controller design
using the universal model,” Information Sciences, vol. 180, no.
20, pp. 3980–3991, 2010.

[26] M. Mahdavi, M. Fesanghary, and E. Damangir, “An improved
harmony search algorithm for solving optimization problems,”
AppliedMathematics and Computation, vol. 188, no. 2, pp. 1567–
1579, 2007.

[27] F. Wilcoxon, “Individual comparisons by ranking methods,”
Biometrics Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[28] H. B.Mann andD. R.Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” Annals
of Mathematical Statistics, vol. 18, pp. 50–60, 1947.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


