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ABSTRACT
Next-generation sequencing of 16S ribosomal RNA is widely used to survey microbial
communities. Sequences are typically assigned to Operational Taxonomic Units
(OTUs). Closed- and open-reference OTU assignment matches reads to a reference
database at 97% identity (closed), then clusters unmatched reads using a de novo
method (open). Implementations of these methods in the QIIME package were
tested on several mock community datasets with 20 strains using different sequencing
technologies and primers. Richness (number of reported OTUs) was often greatly
exaggerated, with hundreds or thousands of OTUs generated on Illumina datasets.
Between-sample diversity was also found to be highly exaggerated in many cases,
with weighted Jaccard distances between identical mock samples often close to one,
indicating very low similarity. Non-overlapping hyper-variable regions in 70% of
species were assigned to different OTUs. On mock communities with Illumina V4
reads, 56% to 88% of predicted genus names were false positives. Biological inferences
obtained using these methods are therefore not reliable.

Subjects Bioinformatics, Computational Biology, Microbiology
Keywords OTU, Alpha diversity, Beta diversity, QIIME, Open-reference, Closed-reference

BACKGROUND
Next-generation sequencing has revolutionized the study of microbial communities in
environments ranging from the human body (Cho & Blaser, 2012; Pflughoeft & Versalovic,
2012) to oceans (Moran, 2015) and soils (Hartmann et al., 2014). Data analysis in such
studies typically assigns sequences to Operational Taxonomic Units (OTUs). OTU
assignment methods that use a pre-defined reference database of known sequences are
called reference-based, while de novomethods construct clusters using only sequences found
in the reads. Representative de novo methods include PyroNoise (Quince et al., 2009),
UPARSE (Edgar, 2013), DADA2 (Callahan et al., 2016) and UNOISE2 (Edgar, 2017d),
which attempt to infer correct biological sequences from noisy reads, and agglomerative
methods implemented by DOTUR (Schloss & Handelsman, 2005), mothur (Schloss et
al., 2009) and ESPRIT-Tree (Cai & Sun, 2011) which assign reads to clusters without
attempting to predict which sequences are correct.

Probably the best-known reference-based method is closed-reference clustering (Rideout
et al., 2014) as implemented by the pick_closed_reference_otus.py script in the QIIME
package (Caporaso et al., 2010) and here called Qclosed, for QIIME closed-reference. By
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default, the reference database used by Qclosed is a subset of the Greengenes 16S rRNA
sequence database (DeSantis et al., 2006) clustered at 97% identity. For brevity, I shall
refer to the full Greengenes database as GG and the subset as GG97. Each sequence
in GG97 defines an OTU. Qclosed processes a query sequence (typically, a read) by
searching GG97 and assigning it to a reference sequence with ≥97% identity. If no
match ≥97% is found, the query sequence is designated a fail. GG97 OTU assignments
by Qclosed are used as the input for downstream analyses such as PICRUSt (Langille
et al., 2013) which predicts a community metagenome and metabolic pathways by
consulting pre-computed attribute tables for all sequences in GG97. Sequences with
<97% identity to GG97 are discarded byQclosed. QIIME open-reference clustering (Rideout
et al., 2014) starts with Qclosed then performs de novo clustering on the fails (i.e., the
queries that failed to match GG97 with ≥97% identity). At the time of writing, using
the pick_open_reference_otus.py script is ’’the preferred strategy for OTU picking among
the QIIME developers’’ (http://qiime.org/tutorials/otu_picking.html, accessed 25th April
2017). I shall refer to the recommended protocol per the QIIME tutorials as QIIME*.

Previously published validations of closed- and open-reference OTUs include (Westcott
& Schloss, 2015; Rideout et al., 2014). In Westcott & Schloss (2015), the authors compared
several OTU methods using the Matthews Correlation Coefficient as a quality metric and
found that the QIIME methods had low quality by this measure. In Rideout et al. (2014),
the authors constructed OTUs using several methods on samples which were obtained in
vivo and therefore have diversities which are unknown a priori. Results from different OTU
assignment methods were compared on the same input data and shown to be consistent
according tomeasured values for the number of observed OTUs, the Phylogenetic Diversity
(Faith, 1992) and weighted UniFrac (Lozupone et al., 2007). However, agreement between
different methods is not sufficient to show that these metrics are biologically realistic
because incorrect results may be reproducible, e.g., due to unfiltered experimental artifacts
in the reads.

The goal of this study was to evaluate estimates of diversity obtained by closed- and
open-reference clustering methods in QIIME v1.9 using synthetic (mock) communities
with known in-sample (alpha) and between-sample (beta) diversities. To investigate the
impact of errors on diversity estimates, I used the following data as input: (1) known
sequences obtained from finished genomes for the strains in the community, testing an
ideal scenario where there are no errors; (2) known sequences to which a low rate of
simulated errors were added; and (3) reads of mock communities generated on Illumina
and 454 platforms.

METHODS
Mock communities
Mock1 is the community with 27 strains used to validate DADA2 (Callahan et al., 2016).
Mock3 is the HMP mock community (Haas, Gevers & Earl, 2011) with 21 strains and
Mock2 is Mock3 plus one additional strain (Candida albicans). Mock3 contains one pair
of strains (S. aureus ATCC BAA-1718 and S. epidermidis ATCC 12228) which have >97%
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Table 1 Mock datasets used in this study. SRA is the NCBI Short Read Archive accession.

Set Primers Sample Strains Species Genera Families SRA Platform # reads

Extreme V4F, V4R Mock1 27 26 11 7 SRR2990088 Illumina 1,256,239
Bok V4F, V4R Mock2 22 22 19 19 – Illumina 7,056,809
KozV34 V3F, V4R Mock3 21 21 18 18 – Illumina 651,731
KozV4 V4F, V4R Mock3 21 21 18 18 – Illumina 4,758,584
KozV45 V4F, V5R Mock3 21 21 18 18 – Illumina 2,175,664
HmpV13A V1F, V3R Mock3 21 21 18 18 SRR053857 454 23,164
HmpV13B V1F, V3R Mock3 21 21 18 18 SRR053821 454 52,712
HmpV31A V3F, V3R Mock3 21 21 18 18 SRR053859 454 2,744
HmpV31B V3F, V1R Mock3 21 21 18 18 SRR053823 454 43,024
HmpV35A V3F, V5R Mock3 21 21 18 18 SRR053858 454 16,223
HmpV53A V5F, V3R Mock3 21 21 18 18 SRR053860 454 56,439
HmpV53B V5F, V3R Mock3 21 21 18 18 SRR053824 454 14,150
HmpV69A V6F, V9R Mock3 21 21 18 18 SRR053861 454 17,494
HmpV69B V6F, V9R Mock3 21 21 18 18 SRR053825 454 48,141
HmpV96A V9F, V6R Mock3 21 21 18 18 SRR053820 454 27,473
HmpV96B V9F, V6R Mock3 21 21 18 18 SRR053856 454 12,619

identity for all primer pairs considered in this work and are therefore expected to fall into
the same OTU when 97% clustering is used. By design, the Mock1 community has several
pairs of strains with >97% identity over the sequenced region (V4) and should therefore
ideally yield fewer than 27 OTUs. Mock3 has Even and Staggered sample types. Even
samples are designed to have abundances to yield equal numbers of 16S rRNA genes for
each strain while Staggered samples have uneven abundances ranging over three orders of
magnitude. The Mock2 and Mock3 datasets considered here contain reads for both Even
and Staggered samples which were combined before generating OTUs. The Mock1 sample
has an uneven abundance distribution.

Sequencing reads
Reads used in this study are summarized in Table 1. Bok is mock reads from Bokulich
et al. (2013) and Koz is mock reads from Kozich et al. (2013). Set names starting with
Hmp are from the Human Microbiome Project (HMP) (HMP Consortium, 2012). The
set name indicates the hyper-variable regions sequenced and the direction of sequencing,
e.g., HmpV13A sequenced the V1–V3 region in the forward direction and HmpV96A
sequenced the V6–V9 region on the reverse strand. An A or B is appended to distinguish
different runs. The Mock2/3 community has been sequenced in several different studies
using different primer sets, enabling comparison of reads of different tags and different
sequencing technologies (Illumina and 454 pyrosequencing). Reads in the Koz dataset that
were assigned to mock samples include thousands of species from gut and soil samples due
to cross-talk Edgar (2017c), i.e., assignment of reads to the wrong sample. Koz reads enable
testing of a scenario where low- and high-diversity samples are multiplexed into the same
sequencing run.
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Known tag sequences
I use the term tag to refer to the segment of the 16S rRNA gene between a given pair of
primers. A tag is conventionally named by the hyper-variable region(s) it contains. For
example, V4 is currently a popular tag for Illumina sequencing and V35 (i.e., V3–V5)
was a popular tag for pyrosequencing. All strains in the Mock1, Mock2 and Mock3
communities have high-quality finished genomes, and the 16S rRNA sequences for these
strains are therefore known. A given strain may have multiple small-subunit ribosomal
RNA operons (paralogs) containing distinct 16S rRNA sequences. I constructed a reference
database of known tags as follows. I used the SEARCH_16S algorithm (Edgar, 2017a) to
search the genome of each strain and identify its full-length 16S rRNA sequence(s), as
described in (Edgar, 2017b). For each pair of primers, I extracted the segment between the
primer-matching loci. Up to two primer mismatches were allowed, ensuring that a tag
was extracted for every strain from all full-length 16S rRNA sequences for every primer
pair. For a given mock community and primer pair, the known tags are the sequences that
would be obtained from the reads if there were no errors due to PCR and sequencing, or
from noisy reads by a perfect denoiser. Using known tags as input to an OTU assignment
method thus gives a lower bound on the number of spurious OTUs that could be achieved
by minimizing or eliminating sequence errors. Each sequence was provided in two copies
to avoid discarded singletons by QIIME*.

Quality filtering
Per the QIIME tutorials for Illumina and 454 (http://nbviewer.jupyter.org/github/biocore/
qiime/blob/1.9.1/examples/ipynb/illumina_overview_tutorial.ipynb and http://qiime.org/
tutorials/tutorial.html respectively, accessed 25th April 2017), the recommended method
for quality filtering is to use the split_libraries_fastq.py script with default parameters.
QIIME v1.9 does not support stand-alone quality filtering to the best of my knowledge,
and I therefore implemented the Bokulich et al. Phred (Q) score filtering method in my
own Python script (provided in Supplemental Information 2).

Simulated sequencing error
To investigate the effects of sequencing error, I generated every possible sequence variant
with a single substitution (1-sub.) of the known tag sequences. With the popular V4
tag (∼250 nt), one substitution per sequence models a base call error rate of ∼1/250 =
0.004 (equivalent to a Phred score of Q24), which is a low error rate (high quality) by
current standards; on the longer V35 and V69 tags it is ∼1/500 = 0.002 (Q27). There
are 250×3= 750 possible 1-sub. variants of a given V4 tag sequence, and with the deep
sequencing achieved by Illumina, most or all possible 1-sub. variants of more abundant
strains may be found in the reads due to sequencing errors, polymerase substitution errors
and chimeras (Edgar, 2016a). A V4 sequence with one substitution is 249/250= 99.6%
identical to the correct sequence; two such sequences are 248/250= 99.2% identical to
each other. This variation is comparable to typical intra-strain variation due to paralogs,
and is small compared to typical intra-species variation due to differences between strains.
All 1-sub. variants for a given strain would therefore ideally be assigned to the same OTU.
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Beta diversity
I calculated beta diversity using weighted UniFrac (Lozupone et al., 2007) and the weighted
Jaccard distance (Jaccard, 1912). UniFrac considers OTUs to be similar if they are close
to each other in a tree. Weighting uses OTU frequencies rather than presence-absence so
that low-abundance OTUs contribute less to the measure and the metric is less sensitive
to sampling effects. For a pair of samples X and Y, the weighted Jaccard distance (J ) is
calculated as:

J = 1−
{∑

i
min(xi,yi)

}/{∑
i
max(xi,yi)

}
.

Here, xi is the frequency of OTU i in sample X and yi is the frequency of OTU i in sample
Y. The frequency is ni/N where ni is the number of reads assigned to OTU i in the sample
and N is the total number of reads for the sample. If J is 1, then no OTU is present in both
samples (equivalently, every OTU is found in only one of the samples), indicating that
the samples are maximally different. If the frequencies are identical in both samples then
J = 0, so when comparing two replicate samples, J would ideally be zero. To correct for
differing numbers of reads per sample, a random subset of 5,000 reads was extracted from
each sample before calculating distances.

Beta diversities from closed-reference OTU tables
OTU tables were generated byQclosed for allmock samples containing theMock2 orMock3
community. These were considered to contain the same community for this analysis (in fact
they contain 21 identical strains while Mock2 has one additional species). I calculated the
weighted Jaccard and weighted UniFrac metrics for every pair of samples using the Qclosed
OTU tables. Histograms were created to show the distribution of these beta diversities by
binning metric values into intervals of 0.05.

Non-overlapping tags
It has been claimed (Rideout et al., 2014; Caporaso et al., 2010) that closed-reference
clustering enables comparison of non-overlapping tags, and the QIIME documentation
states ‘‘You must use closed-reference OTU picking if you are comparing non-
overlapping amplicons, such as the V2 and the V4 regions of the 16S rRNA’’ (http:
//qiime.org/tutorials/otu_picking.html accessed 25 April 2017, emphasis in original).
Presumably, this claim is based on the assumption that non-overlapping tags for a given
strain will usually be assigned to the same OTU by closed-reference. To investigate this, I
identified the subset (GG-tagsX) of GG-tags which has binding loci for all primer pairs. The
GG-tagsX subset comprises only 60,470 sequences (4.8% of the full GG database) because
most Greengenes sequences are truncated such that they lack binding sequences for the
V1 forward primer and V9 reverse primer (Edgar, 2017b). I assigned all tags in GG-tagsX
to OTUs by Qclosed and calculated the probability that a given pair of tags in the same
sequence would be assigned to the same OTU.

Taxonomy prediction accuracy
I measured the accuracy ofQIIME* taxonomy predictions on the mock samples as follows.
Predictions were assessed by considering the set of genus names in the designed community
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to be complete and correct for each sample. In fact, it is possible that some strains might
be missing from the reads, and unexpected strains might be present due to contaminants
and cross-talk; results should be interpreted accordingly. For each sample, I calculated
the following values: N, the number of distinct correct names; M, the number of distinct
predicted names; TP, the number of true positives (distinct predicted names which are
correct); FP, the number of false positives (distinct predicted names which are not correct),
and FN, the number of false negatives (correct names which were not predicted). Typical
classification accuracy metrics such as sensitivity, specificity, precision and recall apply to
binary classifiers for which true negatives should be considered. Here, the classification
is not binary, and true negatives cannot occur under the operational assumption that
all genera in the sample are known. I therefore used the following metrics: discovery
rate (DR), the fraction of correct genus names which are predicted, i.e., DR=TP/N ; true
prediction rate (TPR), the fraction of predicted genera which are correct, i.e., TPR=TP/M ;
and false prediction rate (FPR), the fraction of predicted genera which are incorrect, i.e.,
FPR= FP/M .

Alpha diversity and rarefaction analysis by QIIME
To validate alpha diversity analysis using the recommended QIIME scripts, I used the
Bok reads. These contain two Even and two Staggered samples of the Mock2 community,
which has 22 strains. Rarefaction curves were generated by QIIME using the procedure
described in the Illumina tutorial: split_libraries_fastq.py with forward reads only,
pick_open_reference_otus.py and core_diversity_analyses.py. Default parameters were used
for all these scripts, as in the tutorial, except for sampling depth which is left for the user
to decide. I tried a range of depths from one thousand to one million.

Chimera identification
I used the UCHIME2 algorithm (Edgar, 2016a) to identify chimeric sequences. To obtain
a conservative estimate I used high-confidence mode, which sets parameters designed to
minimize false positives at the expense of allowing more false negatives. The number of
chimeras found by this method is therefore likely to be an underestimate.

Sensitivity of database search
Qclosed uses the USEARCH algorithm as implemented by uclustq v1.2.22 (Edgar, 2010) to
search GG97. USEARCH is a heuristic algorithm designed to optimize speed at the possible
expense of sensitivity. To investigate the cause of failures to match GG97, I used GG-tags
as input to Qclosed. All GG-tags sequences are present in GG, and a failure to match GG97
could therefore be due to a false negative by uclustq, or because a tag is <97% even though
its full-length sequence is ≥97%. These cases were distinguished by measuring the identity
of all sequences in GG-tags with GG97 according to uclustq.

RESULTS
Numbers of OTUs on mock reads
Table 2 summarizes the total number of OTUs reported by each method on the mock
reads (Table 1). On the Illumina datasets, QIIME* reported 4,482 OTUs on Bok, 298 on
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Table 2 Mock OTUs reported byQclosed andQIIME*. The first two columns give the numbers of
OTUs reported by QIIME closed-reference (Qclosed) and the recommended QIIME protocol (QIIME*).
The second two columns show the numbers of chimeras in the OTU sequences for Qclosed and QIIME*
respectively as predicted by the high-confidence mode of UCHIME2.

Set Strains Qclosed
OTUs

QIIME*
OTUs

Qclosed
chimeras

QIIME*
chimeras

Bok 22 955 4,482 41 703
Extreme 27 343 298 0 0
KozV34 21 531 1,607 39 899
KozV4 21 2,263 2,857 47 816
KozV45 21 1,312 5,824 61 2,983
HmpV13A 21 30 565 13 220
HmpV13B 21 36 1,414 11 456
HmpV31A 21 56 536 14 284
HmpV31B 21 60 1,171 20 584
HmpV35A 21 127 679 20 128
HmpV53A 21 218 2,143 37 575
HmpV53B 21 138 739 23 223
HmpV69A 21 61 973 33 387
HmpV69B 21 75 2,562 56 728
HmpV96A 21 68 1,606 11 539
HmpV96B 21 59 792 9 304

Extreme and 1,607, 2,857 and 5,824 respectively on KozV34, KozV4 and KozV45. Richness
as measured by the number of OTUs is thus greatly inflated compared to the number of
strains or species in the mock samples. On all datasets except Extreme, many of the OTUs
were predicted to be chimeric. The absence of detectable chimeras in the Extreme reads is
expected because the strains were amplified separately (some intra-strain chimeras may be
present, but these would have very low divergences and would therefore not be detected
by UCHIME2 in high-confidence mode).

OTUs assigned to known tags
Generating OTUs from the known sequences in the mock communities is an idealized
scenario where there is no sequence error in the input data. Results are shown in Table 3
(first two columns). The richness values reported by Qclosed are close to the number of
mock strains, though this is somewhat misleading because some strains are absent due
to fails and in other cases a strain is split, i.e., it has distinct paralog sequences which are
assigned to two ormore different OTUs (Table 4). Failed strains are reflected in the increase
in richness byQIIME* overQclosed. Fails would naively not be expected in this test because
all mock strains are present in GG. An order of magnitude or more increase in richness is
seen when substitutions are added to simulate a low rate of errors (0.004 base call error
rate, or Q24) due to PCR and sequencing (Table 3, last two columns).

Table 4 shows which OTUs were assigned to the known tags in each Mock3 strain by
Qclosed (correct sequences only, without substitutions). This is an idealized test in two
respects: there is no sequence error, and all full-length sequences in the sample are present
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Table 3 Richness of OTUs assigned to known tag sequences inMock3.Here, richness is the number
of OTUs reported by closed-reference (Qclosed) and the recommended QIIME protocol (QIIME*), re-
spectively. In the first two columns, input is the known tag sequences for the strains in the Mock3 com-
munity, modeling an idealized case where all biological sequences in the sample are correctly identified,
e.g., by a perfect denoiser. QIIME* richness is given as the number of additional OTUs found compared
to Qclosed. Naively, we would expect Qclosed to assign all tags to OTUs because they all belong to strains
found in GG. In the last two columns, the 1-sub. variants of each tag sequence are included, i.e., all possi-
ble sequences that differ by a single substitution, modeling a very low rate (0.2 to 0.4%) of incorrect bases
due to PCR and sequencing.

Tags Qclosed QIIME* Qclosed + 1 sub. QIIME*+ 1 sub.

Mock3-V13 24 +2 217 +4
Mock3-V34 16 +4 327 +14
Mock3-V35 17 +4 306 +14
Mock3-V4 21 +0 450 +11
Mock3-V45 22 +1 442 +16
Mock3-V69 21 +0 190 +8

in the original reference database (GG). Despite this, at least one strain fails to be assigned
to an OTU for all tags except V69. With V35, four strains are lost, representing 20% of the
community: A. odontolyticus, L. monocytogenes, N. meningitidis and P. aeruginosa. With
the currently popular V4 tag, S. aureus is lost. Some strains are split over two or three
OTUs, with E. coli split over three OTUs in the case of V13. Splitting is promiscuous when
simulated sequence error is introduced (Table 3).

Non-overlapping tags
Table 4 shows OTU assignments byQclosed for known tags in the mock strains. This shows
that different tags from a given strain are usually assigned to different OTUs. Most OTU
assignments are singletons; i.e., different from all other tags for the strain. The same OTU
is assigned to all tags for only one species, D. radiodurans.

Results for GG-tagsX are shown in Table 5. Overlapping pairs were assigned to the same
OTU with probabilities ranging from 35.5% (V13 and V35) to 61.6% (V35 and V34).
Probabilities tend to increase with increasing overlap, as might be expected. Pairs with no
overlap are assigned to the same OTU with low probabilities ranging from 26.8% (V13
and V69) to 32.9% (V34 and V69). All five tags were assigned to the same OTU for only
10,954/60,470 (18.1%) of the full-length sequences used to construct GG-tagsX.

Quality filtering
The QIIME quality filtering algorithm has previously been shown to allowmany reads with
>3% errors which can cause large numbers of spurious OTUs (Edgar & Flyvbjerg, 2014).
I found that this filter rejected only 0.3% of the reads in the Koz dataset. This is because
only Q scores ≤3 (error probability > 0.5) are considered as potentially unacceptable, and
such scores are rare in the Koz FASTQ files. The filter has more effect on the Bok reads,
rejecting 7.1% of the reads. This is because it rejects runs of bases with Q= 2 which are
commonly found at the 3′ ends of these reads. All reads in the Extreme dataset were passed
by the filter, suggesting that the original reads may have been quality-filtered before they
were deposited in the SRA.

Edgar (2017), PeerJ, DOI 10.7717/peerj.3889 8/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.3889


Table 4 Qclosed OTU assignments for known tags inMock3. The table shows OTU identifiers assigned
by Qclosed for tags in the known 16S rRNA genes in the HMP mock community. Ideally, a given species
would always be assigned to the same OTU regardless of which tag or which paralog is being classified, but
this is true only of D. radiodurans. Shading indicates cases where two or more tags were assigned to the
same OTU; singletons are underlined.

V34 V4 V5 V35 V13 V69

D.radiodurans 128604 128604 128604 128604 128604 128604

H.pylori 132837 132837 132837 132837 10952 10952

S.agalactiae 1076969 1076969 302880 1076969 1076969 627071

E.faecalis 1111582 1111582 1111582 1111582 777667 305561

L.gasseri 581474 592160 592160 549756 133341 133065

A.odontolyticus 12574 787709 12574 1089121 565136

S.pneumoniae 1082539 1027587 1083194 1082539 967427 92535

B.cereus 816470 818603 854050 746246 252995 816470

E.coli 797229 1111294 797229 1111294
1109844

1109362

1109247

588216

254662

S.epidermidis 1076316 1084865 1084906 1084865
995155

1059772
412145

L.monocytogenes 4416988 4416988 851811

S.mutans 4315958 4297222 4297222 4315958 4322712

P.acnes 992354 1099802 1095073 1088265 1088265 403853 2+ agree

P.gingivalis 71638 2613485 1606937 71638 2613485 71638 123 Singleton

N.meningitidis 761024 470724 1060621 517381 123 Split

A.baumannii 988314 1097359 1009894 613414 329997 Fail (unassigned)

S.aureus 1076316 1084865 1101177 412145

C.beijerinckii
555688

238205

523589

2250983
541328

106334

167951
137816

B.vulgatus 577170 589277
589277

4189999

577170

589277
580629 211706

R.sphaeroides 549666 818854 683891 783224 532163 580990

P.aeruginosa 640641 226299
520731

528952
590136 780261

1
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Table 5 Probability that different tags in a given 16S rRNA sequence are assigned to the same OTU by
Qclosed. For each pair of tag sequences in GG-tagsX, the table shows the fraction which were assigned to
the same OTU by the QIIME closed-reference method. Pairs which overlap have darker shading.

1

V34 36.8% Overlapping

V35 35.5% 61.6% No overlap

V4 29.0% 49.6% 44.0%

V45 30.4% 45.5% 50.3% 55.3%

V69 26.8% 32.9% 31.8% 27.9% 29.6%

V13 V34 V35 V4 V45

2

3
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Figure 1 Rarefaction curves for Bok reads generated by QIIME. There are two Even and two Staggered
samples of Mock3 (22 strains). The e parameter is the number of reads per sample.

Alpha diversity analysis and rarefaction analysis by QIIME
Analysis was performed on the Bok reads, which have 22 strains in the mock community.
Results are shown in Fig. 1, which show that richness is inflated from a factor of ∼5×
(∼100 OTUs at a depth of one thousand reads per sample) to ∼200× (∼5,000 OTUs at
a depth of one million). No convergence is observed in the rarefaction curves, reflecting
that almost all OTUs are due to errors which accumulate at a roughly constant rate as the
number of reads increases. Thus, at all tested read depths, the reported diversity mostly
reflects uncorrected experimental artifacts rather than biologically meaningful groups.

Beta diversity of closed-reference OTUs
Results are shown in Fig. 2, which shows a dramatic difference between the Jaccard and
UniFrac distances. Most Jaccard distances are large, incorrectly indicating low similarity
between the samples, especially when different tags are compared. This is readily explained
by the ubiquitous and inconsistent splitting of species into different OTUs by Qclosed. By
contrast, most UniFrac distances are small, correctly suggesting high similarity between
the samples. Thus, UniFrac is more tolerant of species splitting by the closed-reference
approach.
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Figure 2 Distribution of closed-reference beta diversities for all pairs of Mock2/3 samples. The his-
tograms show the distribution of weighted Jaccard (A, C) and weighted UniFrac (B, D) distances on all
pairs of samples containing Mock2 or Mock3. A zero value for the Jaccard or UniFrac distance indicates
maximum similarity between a pair of samples; one indicates maximum difference. Histograms (A) and
(B) show the distribution when the same tag is sequenced (e.g., V4), histograms (C) and (D) when differ-
ent tags are sequenced (e.g., V13 and V69). The y axis is the frequency, calculated as (number of sample
pairs having distances which fall into a given bin) divided by (total number of sample pairs).

Accuracy of taxonomy prediction
Results are shown in Table 6. The genus discovery rate (DR) ranged from 50% (HmpV13A)
to 88% (two Illumina and three 454 datasets). This is consistent with the sensitivity of 77%
for V4 sequences of known genera previously measured for the QIIME default taxonomy
prediction method (Edgar, 2016b). The genus false prediction rate (FPR) was >50% for
all Illumina datasets while FPR was much lower on the 454 reads, ranging from 5%
(HmpV53B) to 11% (HmpV35A and HmpV53A). A high error rate is expected on the Koz
datasets because many reads assigned to mock samples contain valid sequences from other
samples due to cross-talk (Edgar, 2017c). However, the reason for the high error rates on
Bok and Extreme compared to the 454 datasets is not clear. Naively, it might be expected
that the FPR would correlate with the number of OTUs because each spurious OTU gives
a new opportunity for a prediction error, but the number of OTUs is lower on Extreme
(298) than any of the 454 datasets (minimum 536 on HmpV31A).

Errors in the Greengenes taxonomy hierarchy
In QIIME v1.9, taxonomy annotations for the GG97 OTUs are specified in the file
97_otu_taxonomy.txt (https://github.com/biocore/qiime-default-reference/blob/master/
qiime_default_reference/gg_13_8_otus/taxonomy/97_otu_taxonomy.txt.gz, accessed 25th
April 2017). In these annotations, 36 genera are placed in two or more families, violating
the structure required for a valid taxonomy. To give some examples, genus Rhodospirillum
is placed in family Rhodospirillaceae (e.g., in the annotation for OTU 326714), which is
correct according toBergey’sManual (Bergey, 2001), and also in familyAlcaligenaceae (OTU
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Table 6 Taxonomy assignment accuracy forQIIME* OTUs.

Platform Set N M TP FP FN DR TPR FPR

Bok 19 39 16 23 3 84% 41% 58%
Extreme 11 16 7 9 4 63% 43% 56%
Koz.V34 18 37 16 21 2 88% 43% 56%
Koz.V4 18 134 16 118 2 88% 11% 88%

Illumina

Koz.V45 18 73 17 56 1 94% 23% 76%
HmpV13A 18 10 9 1 9 50% 90% 10%
HmpV13B 18 11 10 1 8 55% 90% 9%
HmpV31A 18 12 11 1 7 61% 91% 8%
HmpV31B 18 10 9 1 9 50% 90% 10%
HmpV35A 18 18 16 2 2 88% 88% 11%
HmpV53A 18 18 16 2 2 88% 88% 11%
HmpV53B 18 17 16 1 2 88% 94% 5%
HmpV69A 18 17 15 2 3 83% 88% 11%
HmpV69B 18 16 15 1 3 83% 93% 6%
HmpV96A 18 14 13 1 5 72% 92% 7%

454

HmpV96B 18 14 13 1 5 72% 92% 7%

119663). GenusVibrio is inVibrionaceae (OTU 9303, correct), and Pseudoalteromonadaceae
(OTU 1115975). Genus Flexibacter is placed in three families: Cytophagaceae (OTU
1142767, correct), Flammeovirgaceae (OTU 4447268), and Flavobacteriaceae (OTU
1136639).

Sensitivity of GG97 clustering and database search
I found 41 pairs of sequences in GG97 with 100% identity, for example 4365807 and
4374946 (see Supplemental Information 2 for complete list). These are errors by the
method used to construct GG97, strongly suggesting that there are many more pairs
with >97% identity, though these cannot be unambiguously identified because different
methods do not always agree on the identity of a given pair of sequences, and the method
used to create GG97 is not documented to the best of my knowledge. Qclosed results on
the GG-tags dataset are summarized in Table 7. From 0.6% (V45) to 6.9% (V13) of tags
failed (i.e., were not assigned to a GG97 OTU). Some of these failures are due to tags
with <97% identity as shown in the last column in Table 7. The remainder is due to false
negatives by the database search method. Notably, some of the fails are tags extracted from
the GG97 subset, which therefore have 100% identity with at least one full-length sequence
in GG97.

DISCUSSION
Alpha diversity estimates by QIIME are inflated
The default alpha diversity metrics reported by the QIIME core_diversity_analysis.py script
are richness (number of OTUs), Chao-1 (Chao, 1984) and Phylogenetic Diversity (PD)
(Faith, 1992). Richness was grossly inflated on the Illumina mock datasets. Chao-1 has a
lower bound of richness, which is already inflated, so Chao-1 would also be over-estimated.
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Table 7 Qclosed results for GG-tags. Columns are Sequences, the number of tag sequences (and as a
fraction GG sequences these represent due to a truncated full-length sequence or >2 primer mismatches);
GG97 tags, the number of GG97 sequences from which this tag was extracted (and as percentage of all
GG97 sequences); Fails, the total number of fails (and as a percentage of all tested tags); GG97 fails (and as
a percentage of GG97 tags), and <97%, the number of tags with <97% identity with the full-length GG97
database (and as a fraction of GG-tags).

Tag Sequences GG97 tags Fails GG97 fails <97%

V13 266,317 (21.1%) 46,426 (46.7%) 18,404 (6.9%) 186 (0.4%) 10,386 (3.9%)
V34 1,236,137 (97.9%) 93,280 (93.9%) 13,956 (1.1%) 180 (0.2%) 6,179 (0.5%)
V35 1,240,170 (98.3%) 94,370 (95.0%) 18,477 (1.5%) 880 (0.9%) 6,201 (0.5%)
V4 1,245,904 (98.7%) 93,610 (94.2%) 13,018 (1.0%) 152 (0.2%) 6,228 (0.5%)
V45 1,249,794 (99.0%) 94,621 (95.3%) 7,866 (0.6%) 33 (0.0%) 4,999 (0.4%)
V69 100,470 (8.0%) 13,848 (13.9%) 2,422 (2.4%) 25 (0.2%) 1,706 (1.7%)

Chao-1 values were not explicitly considered here because the QIIME calculation is
incorrect: the number of singletons appears in the formula, but singletons are discarded
by the recommended QIIME procedure (here called QIIME*). PD was designed to enable
comparison of genetic and phenotypic diversity in different communities with the goal of
prioritizing conservation efforts (Faith, 1992). It is calculated using a tree such that OTUs
which are close in the tree contribute less to diversity. This is analogous to unweighted
UniFrac, because tree distance is considered but abundance is not. UniFrac is relatively
robust against spurious OTUs (at least, on mock samples, when weighted to suppress
low-frequency OTUs), and is it therefore possible that PD could also be robust. I did
not attempt to validate PD in this work because it is not clear to me how to interpret
its numerical value on a single sample, and in particular how to determine whether an
estimated value on a mock sample is biologically realistic.

Weighted UniFrac is tolerant of spurious OTUs
Weighted UniFrac was found to report small distances between identical (or very similar)
mock samples despite high rates of spurious OTUs and substantial divergences in which
spurious OTUs were present (as shown by the large distances according to the weighted
Jaccard metric). This is presumably explained because UniFrac considers OTUs to be
similar if they are close in the tree, and spurious OTUs due to sequence errors tend to
be close to the correct OTU. However, if UniFrac is not sensitive to such errors, then
it is necessarily also insensitive to genuine biological differences which induce similar
differences between the OTUs in a pair of samples; e.g., the replacement of a species in
one sample by a closely related species in the other. Beta diversity metrics such as Jaccard
which do not consider tree distance are less tolerant of spurious OTUs but more sensitive
to variations in closely related OTUs.

Failures to assign known sequences cannot be avoided by
closed-reference
Table 7 shows that a known sequence (i.e., a sequence which is present in GG) may fail
to be assigned to an OTU for two reasons: (1) a false negative by the database search, and
(2) a tag has identity <97% despite having ≥97% identity over the full-length sequence.
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False negatives could be addressed by an improved database search method, but some tags
have lower identities than their full-length sequences, and failures of type (2) are therefore
unavoidable in a closed-reference method. With open-reference, failures of both types
(1) and (2) cause de novo OTUs to contain known sequences and these OTUs could be
regarded as unexpected or erroneous. Some sequences which are very close to GG should
fail according to the design of the algorithm. For example, consider a sequence S in GG
which has exactly 97% identity with the most similar GG97 sequence (R), and a sequence
T which is not in GG and has one substitution compared to S. It is very likely that T is
<97% with GG97 (because 97% of possible substitutions are at positions where S and R
are identical, and substitutions at those positions necessarily reduce identity between T
and R), in which case T would be a correct fail [sic] by the design of the algorithm despite
being almost identical to a GG sequence.

Inflated diversities are primarily caused by inadequate error filtering
Qclosed and QIIME* gave biologically reasonable numbers of OTUs with error-free
sequences but inflated numbers with a low rate of simulated errors, which strongly suggests
that many, probably most, of the spurious OTUs obtained with noisy reads are caused by
inadequate error filtering. This is consistent with an earlier study which observed that a
large number of reads with >3% errors and high diversity are allowed by the QIIME quality
filter (Edgar & Flyvbjerg, 2014). Spurious OTUs are also caused by chimeras, which are
known to be ubiquitous in 16S rRNA amplicon sequences (Haas, Gevers & Earl, 2011) but
are not filtered by Qclosed or QIIME*. This issue could be mitigated but not fully solved
by adding a chimera filtration step, noting that the best current algorithms cannot reliably
detect chimeras in reads that are quality-filtered but not denoised (Edgar, 2016a).

Inflated diversities on mock tests suggest that similar results may
occur in practice
Mock communities have low diversity, which raises the question of whether comparable
results should be expected on communities with higher diversities. While there is
insufficient evidence to support a robust claim, I believe that the number of spurious OTUs
obtained onmock samples is probably representative of numbers obtained in practice. I will
briefly summarize the argument here;more details are given in Supplemental Information 1.
SpuriousOTUs are primarily caused by chimeras, splitting due to paralogs, and substitution,
insertion and deletion (SID) errors due to PCR and sequencing. Chimeras form
preferentially between sequences with higher identity, and samples with low taxonomic
diversity are known to occur in practice (Ravel et al., 2011). Such samples are likely to have
higher chimera rates than the mock communities considered here. Splitting due to paralogs
will tend to increase with richness because each strain adds a new opportunity to split.
Rates of PCR and sequencing error should average out over different template sequences
to a reasonable approximation, and the overall SID error rate should therefore not strongly
depend on diversity. Then, if a sample with higher diversity is divided into subsets (call
them mock-like) of 20 template sequences, the reads of each mock-like subset will induce
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a similar number of spurious OTUs to the same number of reads of a mock community.
Combining the mock-like subsets then indicates that there will be a comparable number
of spurious OTUs overall.
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