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ABSTRACT
Background. The changing climate, particularly in regard to temperature and precipi-
tation, is already affecting tree species’ distributions. Pinus armandii, which dominates
on the Yungui Plateau and in the Qinba Mountains in China, is of economic, cultural
and ecological value. We wish to test the correlations between the distribution shift of
P. armandii and changing climate, and figure out how it tracks future climate change.
Methods. We sampled the surface soil at sites throughout the distribution of
P. armandii to compare the relative abundance of pollen to the current percent cover
of plant species. This was used to determine possible changes in the distribution
P. armandii. Given the hilly terrain, elevationwas considered together with temperature
and precipitation as variables correlated with distribution shifts of P. armandii.
Results. We show that P. armandii is undergoing change in its geographic range,
including retraction, a shift to more northern areas and from the upper high part of
the mountains to a lower-altitude part in hilly areas. Temperature was the strongest
correlate of this distribution shift. Elevation and precipitation were also both signifi-
cantly correlated with distribution change of P. armandii, but to a lesser degree than
temperature.
Conclusion. The geographic range of P. armandii has been gradually decreasing under
the influence of climate change. This provides evidence of the effect of climate change
on trees at the species level and suggests that at least some species will have a limited
ability to track the changing climate.

Subjects Ecology, Ecosystem Science, Environmental Sciences, Plant Science
Keywords Elevation, Pinus armandii, Tree distribution shift, Precipitation, Changing climate,
Temperature

INTRODUCTION
Multiple lines of scientific study show that climate change strongly and rapidly affects
the global ecosystem (Walther et al., 2002; Peñuelas & Filella, 2001), as well as animals
and plants (Root et al., 2003). Forests in particular are an important part of the terrestrial
ecosystem that are sensitive to climate change (Aber et al., 2001). Climate change will
inevitably have an impact on forests, and considerable changes will occur in forests due to
climate change (Parmesan, 2006). Climate change, including increasing temperature and
precipitation, has also been identified as the primary regulator of plant distribution (Box,
1981) in altitudinal ranges (Parmesan, 2006; Groom, 2013).
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P. armandii is a pine species native to China that occurs in southern Shaanxi, southern
Gansu, western Sichuan, Yunnan and western Guizhou provinces. Its timber can be used
for general building purposes, and the nuts and pollen powder are also of great economic
value. P. armandii is the dominant pine tree species, and one of the most widely distributed
tree species in natural forests and important forestry plantations in these areas. Obvious
changes in temperature and precipitation have been observed and reported in these areas
based on the climate data of the China Meteorological Administration; some researchers
have cited these changes in their publications (Wang et al., 2004; Song, Yan & Ma, 2011;
You, He & Duan, 2005; Ren et al., 2005). Forests are faced with the threat of deforestation
(Malhi et al., 2008) and/or migration, starting with changes in the distribution of other tree
species.

Climate-environment relationship models for different scenarios have been established
to quantify the current influence of climate on plant distribution and to forecast their
evolution (Heikkinen et al., 2006; Pearson et al., 2006) based on rigorous data and thorough
validation assessments. Hutchinson (1957) developed a bioclimate envelope to define
climatic components of an ecological niche that includes all the environmental variables
affecting a species. The Spatial Evaluator of Climate Impacts on the Envelope of Species
(SPECIES), by Pearson, Dawson & Berry (2002), employs an artificial neural network
(ANN) to characterize bioclimate envelopes based on observed species distributions and
five environmental inputs (derived primarily from climatic data and including ameasure of
the soil type). These ecosystem-climate modeling approaches require thoroughly assessed
validation and strong databases, whichmakes it very difficult to employ the relevant models
in regions with poor databases.

Surface pollen analysis essentially reflects the modern vegetation composition (Minckley
& Whitlock, 2000), to some extent based on the pollen-vegetation calibration. Luo et al.
(2009) presented a modern pollen–vegetation dataset based on surface soil samples in the
mountainous areas of China. Their results indicated that surface pollen was correlated with
the dominant vegetation community in the study regions. Understanding the relationship
between modern pollen and vegetation is of great significance in detecting the impacts
of climate on regional vegetation shift, including both temperature and precipitation
(Zhang et al., 2010).

Hence, based on the surface pollen analysis, we were interested in the following:
1. Whether the distribution of P. armandii has been changing.
2. If it has been changing, what environmental variables are correlated with this change.
3. A rough forecast of future change in distribution.
Studying change in the geographic and altitudinal distribution of tree species in

a mountain forest ecosystem in response to climate factors, mainly temperature and
precipitation is meaningful for our understanding of both forests and the global ecosystem.
We hope that our study of the distribution of P. armandii contributes to future studies on
ecosystem structure and community succession.
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Figure 1 Location of the study locations.

METHODS
Study area
The study area ranges from 101◦33′ to 108◦21′E and from 22◦59′ to 34◦34′N, encompassing
the Yungui Plateau and the Qinba Mountains and including Shaanxi, Gansu, Sichuan,
Yunnan and Guizhou provinces in the eastern part of western China. The Qinling
Mountains consist of a deciduous forest region (Olson et al., 2001) across the 800-mm
precipitation line of China. The common forest species are Pinus, Quercus, Picea, Ulmus,
Larix, Acer, Fraxinus, Castanopsis, Celtis, Betula, Carpinus, and Abies, among others. The
rainy climate and high altitude of the Yungui Plateau result in dense forests. Coniferous
species such as Pinus, Larix, Tsuga, Picea, and Abies and evergreen families such as
Magnoliaceae, Hamamelidaceae, Lauraceae, Theaceae, and Fagaceae are all widely dis-
tributed. Fifteen locations were determined to contain a natural Pinus distribution (Fig. 1).

Field work
The detailed sampling features of each location are shown in Table 1. Most of the forests are
in mountainous areas, so we performed distribution-centered vertical sampling. Surface
pollen samplings were collected from all of the 297,20 × 20 m plots chosen by the natural
distribution. The samples originated from pure and mixed forests in which Pinus is in
or around. We chose the sampling point to be the center of the corresponding plot. All
samplings occurred away from roadside, where human disturbance was negligible. The
plant coverage of Pinus was calculated separately in each plot, using the number of Pinus
trees divided by total arbor number, including shrubs higher than 2 m.
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Table 1 Characteristics of each study location.

Location Number of plot Province Coordinate Coverage range (elevation)

Maiji mountain 15 Gansu 34◦34′N 105◦52′E 1,200 m–1,700 m
Taibai Mountain 15 Shaanxi 33◦57′N 107◦45′E 1,500 m–2,300 m
Huoditang 24 Shaanxi 33◦18′N 108◦21′E 1,500 m–2,100 m
Mount Hua 20 Shaanxi 34◦25′N 109◦57′E 1,200 m–1,800 m
Jiuzhaigou 15 Sichuan 32◦54′N 103◦46′E 2,000 m–2,200 m
Aba 15 Sichuan 32◦01′N 102◦34′E 2,100 m–2,300 m
Zoige 9 Sichuan 33◦29′N 103◦31′E 2,400 m–2,500 m
Chuxiong 24 Yunnan 25◦02′N 101◦33′E 1,000 m–2,800 m
Pingbian 24 Yunnan 22◦59′N 103◦41′E 800 m–1,400 m
Zhanyi 24 Yunnan 25◦41′N 103◦50′E 1,000 m–2,100 m
Yiliang 16 Yunnan 24◦55′N 103◦11′E 1,000 m–3,400 m
Weining 24 Guizhou 26◦52′N 104◦17′E 1,400 m–2,300 m
Panxian 24 Guizhou 25◦43′N 104◦28′E 1,000 m–2,500 m
Qianxi 24 Guizhou 27◦02′N 106◦01′E 1,200 m–1,600 m
Ziyun 24 Guizhou 25◦26′N 105◦46′E 1,000 m–1,400 m

Laboratory and data analysis
Pinus has an overrepresented pollen type, which means that the percentage of pollen is
larger than that of the plant cover; however, its pollen percentage is still related to plant
cover (Xu et al., 2007). According to Li & Yao (1990), Pinus individuals should be found in
plots where the percentage of Pinus surface pollen is higher than 30%, considering the Pinus
pollen dispersal kernels, including wind and other population sources, which is to say:
‘‘Plant Cover = 0’’ + ‘‘Surface Pollen Percentage > 30%’’ = ‘‘a post retreat’’. Comparing
the surface pollen analysis with the results of the vegetation investigation could reveal the
status of distribution/coverage.

Twenty grams of soil was weighed to extract pollen. The pollen analysis method followed
that of Faegri, Kaland & Krzywinski (1989). The specific steps involved taking Lycopodium
(27,637 ± 563 grains) liquid for tracers, using a 200-µm strainer to remove the larger
plant fragments or other impurities, adding 10% HCl and 10% NaOH solutions and,
finally, floating the pollen in a specific-gravity solution (1.9–2.2). Only the Pinus pollen
was identified and counted using a 400×-magnification light microscope. The pollen
percentage was calculated using the number of Lycopodium grains as a base value in this
study.

Based on the collected climate data, the regular patterns of mean annual precipitation
and mean annual temperature in the distribution areas of P. armandii in its naturally
occurring distribution regions could help identify the main driver leading the change.
Ordination analysis reveals the relationship of environmental factors and P. armandii
distribution locations and can potentially be used to forecast the future distribution of
P. armandii.

Principal component analysis was conducted to explain the contributions of each
climate parameter to environmental variation among the sites. Most sampling districts
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Table 2 Principal components analysis results.

Component Initial eigenvalues Extraction sums of squared loadings

Total % of variance Cumulative (%) Total % of variance

Temperature 2.03 67.72 67.72 2.03 67.72
Elevation 0.59 19.80 87.52 0.59 19.80
Precipitation 0.37 12.48 100 0.37 12.48

were hilly terrain where the climate conditions, including temperature and precipitation,
are clearly affected throughout the change in elevation (Giorgi et al., 1997). We took
elevation together with temperature and precipitation as an explanatory factor parameter
in this study and explored its regional influence. The average temperature and precipitation
data within the study area were collected from the local weather bureau or meteorological
station. Ordination analysis was conducted to characterise the relationship between the
environmental parameters and the individual study areas; specifically, redundancy analysis
(RDA) was conducted due to the short gradient lengths calculated by the detrended
correspondence analysis (DCA). R version 3.3.3 (R Core Team, 2017) and Canoco for
Windows 4.5 (Ter Braak & Smilauer, 2002) were used to perform the data analysis and to
construct the figures.

RESULTS
Change in the distribution of P. armandii
We investigated and organized the main types of Pinus forests of the Qinba Mountains
and Yungui Plateau; the results are shown in Text S1. In the field investigation, we found
many samples with no Pinus trees, despite the Pinus pollen percentage being higher than
30% in all the sampling districts. The relationship between Pinus pollen percentage and
Pinus cover is shown in Fig. 2, categorized by regions. 11 (out of 15) intercepts of the
regression lines on the Y axis of the Pinus percentage and plant cover regions are higher
than 30%, except for those of Maiji Mountain, Taibai Mountain, Jiuzhaigou and Aba;
these study regions had intercepts lower than 30%. Huoditang and Zoige had the largest
intercepts, even higher than 40%. The results indicate that P. armandii cover has undergone
a distributional decline or a general shift in these regions. The distribution dispersal status
on Maiji Mountain and Taibai Mountain, as well as in Jiuzhaigou and Aba, were unclear.

Environmental correlates of change in the distribution of P. armandii
The results of principal component analysis demonstrating the regional influence of
climate factors are shown in Table 2. Mean annual temperature, elevation and mean
annual precipitation all seem to impact the distribution shift of P. armandii. Mean annual
temperature is the primary environmental factor correlated with distribution change
across the study areas, followed by elevation, then mean annual precipitation. Mean annual
temperature was the most important correlate of change in the distribution of P. armandii,
with a proportion up to 67.72%, while elevation and mean annual precipitation were
19.80% and 12.48%.
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Figure 2 The pollen percentage and plant cover. X axis represents the Pinus tree cover; Y axis repre-
sents the Pinus pollen percentage. Sites with no Pinus trees found during the investigation are located on
the vertical dotted line. The horizontal dotted line is the 30% Pinus pollen percentage line, which is the
boundary line. If the no-Pinus-tree sites are beyond the boundary line, a decline of Pinus distribution can
be inferred.
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Figure 3 Redundancy analysis ordination biplot showing the relationship between environmental
variables and location. The points with Arabic numerals represent the location, and the arrow lines with
capital letters represent the environmental parameter (1, Maiji Mountain; 2, Taibai Mountain; 3, Huodi-
tang; 4, Mount Hua; 5, Jiuzhaigou; 6, Aba; 7, Zoige; 8, Chuxiong; 9, Pingbian; 10, Zhanyi; 11, Yiliang; 12,
Weining; 13, Panxian; 14, Qianxi; 15, Ziyun; P, mean annual precipitation; MT, mean annual tempera-
ture; E, elevation).

Table 3 Location-environment DCA.

Axes 1 2 3 4 Total inertia

Eigenvalues 0.26 0.32 0.01 0.01 0.58
Lengths of gradient 0.69 0.69 0.62 0.54
Location-environment correlations 0.99 0.99 0 0
Cumulative percentage variance:

of location data 98.50 99.10 100 100
of location-environment relation 99.40 100 0 0

A rough forecast of change in the distribution of P. armandii
The DCA of the location and environment in Table 3 helped us choose the ordination
analysis method. The first two eigenvalues of the DCA are high, implying that the first two
axes represent a strong gradient, while the third and fourth axes are much weaker. All axis
gradient lengths in the results from the location-environment DCA were less than 3, so
RDA was chosen for the ordination. The results of the RDA of the climate parameters and
the study districts are shown in Fig. 3. The mean annual precipitation and mean annual
temperature increases are from left to right along the first axis of the redundancy analysis
ordination diagram, while the elevation decreases concurrently.

Along the direction-of-temperature arrow, the majority locations appear, except Aba
and Zoige; the narrow biotope with high elevation in these two locations makes them
different (Table 1). The vertical projects of other sample locations on the temperature
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variable line are close and concentrated; these samples will be intensively influenced by the
mean annual temperature. P. armandii in these study locations will be strongly affected
by changing temperature, and along the temperature arrow, increasing temperature will
limit the distribution in future. On the precipitation and elevation line, the vertical projects
are well distributed. P. armandii in the Pingbian, Panxian and Ziyun will be challenged
intensely as the precipitation increases, and P. armandii in Maiji Mountain is prone to
increasing precipitation. As to elevation, Aba and Zoige aremore sensitive to high elevation,
while Pingbian is more sensitive to low elevation. These results can be explained by the
narrow elevation coverage and relatively low elevation scope (Table 1). P. armandii in the
rest of the study locations have different capacity to the current precipitation status and
elevation range. Both elevation and mean annual precipitation have an even impact power
on these sites, unlike the mean annual temperature.

DISCUSSION
In this study, we verified that the distribution of Pinus armandii will tend to shrink
under the influence of climate change in the future. A study in America demonstrated
the existence of an impact at the tree species level: P. albicaulis will be extirpated from
most of its current range as temperatures rise (McLane & Aitken, 2012). Temperature
is one of the most important factors controlling the change of geographical ranges of
species (Ellenberg, 1988). Studies that have employed bioclimatic envelope models to
estimate species distribution changes also show that temperature has determined plant
species distributions (Hirota et al., 2011; Toledo, 2012). Thus, increased temperatures
due to climate change are likely to have been causing tree distribution shifts to higher
elevations (Tewksbury, Sheldon & Ettinger, 2011) similar to that observed in this study.
Further, elevation is correlated with temperature in that lower elevation and lower latitude
sites are warmer. Therefore, a much stronger impact by increasing temperature on tree
distribution shift is expected. This result is in line with the main evidence of the ecological
impacts of climate change. Climate change has been demonstrated to be a strong factor on
tree distribution (Canham & Thomas, 2010), which means that climate change will have a
profound influence on the range of expansion and contraction (Walther et al., 2002). As a
part of the forest ecosystem, P. armandii is influenced by the climate.

When exploring the main factors affecting shifts in species distributions due to climate
change, some scientific researchers have focused on the warming climate, i.e., temperature
(Beckage, Osborne & Gavin, 2008), and some have considered both temperature and
precipitation (Kelly & Goulden, 2008). The main causal factors may differ by ecological
niche. Our results suggest that precipitation also influences the distribution shift of
Pinus, though in a supplementary, rather than primary, way. The rare high mean annual
precipitation on Yungui Plateau, which ranges from 1,500 to 1,700 mm, further weakened
the influence of precipitation across this study.

As a rough forecasting method, this study cannot determine the precise timeline of
future change and can only speculate on direction of shift in distribution. The rate of
future climate change will be hundreds of times faster than the rate in the past century (Lee
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et al., 2016). Global and regional ecosystems are predicted to experience rapid change to a
drier and warmer future (Guan, 2009).

A limitation of this study is the accuracy with which the percentage of Pinus can be
inferred in the pollen assemblages (>30%); this is achieved by estimating quantitative
standard using power regression. Although it is relatively consistent, the complex dispersal
characters of Pinus may cause bias in reconstructing accurate relative abundances at sites.
Further, in this study we ignored other minor Pinus species, such as P. tabulaeformis
and P. massoniana in the Qinba Mountains, and P. yunnanensis and P. densata on the
Yungui Plateau, which were also present in the study areas. However, we argue here
that the approach we have taken in this analysis can be used to understand change in
the distribution dominant tree species under the effects of climate change. If the pollen
assemblages of sites can be used to accurately reconstruct the past vegetation, such as Larix,
Picea and Juglans (Xu et al., 2007), the results can be rigorous.

CONCLUSIONS
The relationship of the pollen percentage of Pinus and the corresponding plant cover
reveals that P. armandii has been experiencing a range contraction within the study area.
Increasing temperature is the main correlate of this change, and we predict that a drier
future will continue to contribute to further shifts. P. armandii in high-elevation districts
tend to disperse in a downhill direction to lower-elevation locations. Regions of lower
temperature and lower altitude will be characteristic of P. armandii habitat in the future.
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