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With the increase of sensors’ resolution, traditional object tracking technology, which ignores object’s physical extension, gradually
becomes inappropriate. Extended object tracking (EOT) technology is able to obtain more information about the object through
jointly estimating both centroid’s dynamic state and physical extension of the object. Randommatrix based approach is a promising
method for EOT. It uses ellipse/ellipsoid to describe the physical extension of the object. In order to reduce the physical extension
estimation error when object maneuvers, the relationship between ellipse/ellipsoid and symmetrical positive definite matrix is
analyzed at first. On this basis, ellipse/ellipsoid fitting based approach (EFA) for EOT is proposed based on themeasurement model
and centroid’s dynamic model of random matrix based EOT approach. Simulation results show that EFA is effective. The physical
extension estimation error of EFA is lower than those of random matrix based approaches when object maneuvers. Besides, the
estimation error of centroid’s dynamic state of EFA is also lower.

1. Introduction

In recent years, object tracking has always been the research
focus in information fusion and many other fields [1, 2].
Physical extension of targets can be ignored if sensor’s reso-
lution is relatively low. Traditional object tracking techniques
usually ignore target’s physical extension and use centroid’s
dynamic state to depict that of the entire target [3]. As the
resolution of measurement sensors is gradually improved,
this hypothesis becomes no longer suitable [4]. For example,
when tracking large surface ships (such as aircraft carriers),
each scan may produce several measurement data and the
number of these data varies all the time. When some objects
compose an intensive formation, such as flight formation in
aerial refueling, the measurement sensors may fail to distin-
guish every individual object. These situations make it quite
difficult to establish one-to-one correspondence between an
object and a measurement. Traditional OT technology is no
longer appropriate in these cases. Thus, it is necessary to
measure and estimate object’s physical extension by extended
object tracking (EOT) technique to improve the tracking
performance [4–8]. Different from traditional OT, EOT
estimates object’s physical extension and centroid’s dynamic

state jointly. According to different modeling methods of the
physical extension, EOT approaches include particle filter [9],
probability hypothesis density filter [10, 11], and the approach
based on random hypersurface model [12]. Compared with
the above methods, random matrix based EOT approach
(RMF) is simpler and has a smaller amount of computation,
which makes it more practical and promising. RMF is first
proposed by Koch [4] and uses ellipse/ellipsoid to describe
the physical extension of object. This simplification can be
applied in many scenarios, especially in the military fields, as
shown in Figure 1.

Because ellipse/ellipsoid can be expressed by symmetrical
positive definite (SPD) matrix, the extension of object can
be further depicted by SPD matrix. RMF assumes that the
physical extension evolution is subject to Wishart-related
distributions [4, 7]. The basic principle of RMF is to convert
the joint posteriori probability distribution to the product
of a Gaussian distribution and an inverse Wishart distribu-
tion within Bayesian framework. The filtering equations are
obtained during the derivation. Feldmann et al. [7] improved
measurement noise model and applied RMF in interactive
multiple-model algorithm. Lan and Li [5, 6] further improved
both of physical extension evolutionmodel andmeasurement
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Figure 1: Describing physical extension of object with an ellipse:
aircraft carrier (a) and flight formation (b).

noise model. Li et al. [13] proposed the adaptive RMF based
on model parameter adaption. According to the simulation
results in literature, physical extension estimation error of
RMF significantly increased when object is maneuvering,
even utilizing multimodel algorithm [4–7, 13]. The “maneu-
vering” here refers to object’s actions that influence the
physical extension, such as turning [4–7, 13] and significant
change of object size.

In order to improve EOT performance and reduce the
physical extension estimation error during object’s maneu-
vering, the relationship between ellipse/ellipsoid and SPD
matrix is analyzed in this paper. Then ellipse/ellipsoid fitting
based approach (EFA) for EOT is proposed. EFA can be
integrated into a switching scheme, as shown in [8]. Utilizing
“Givens rotation” [14] for SPD matrix decomposition, EFA
divides the ellipse/ellipsoid fitting problem into two sub-
problems: direction angle estimation and semiaxis lengths
estimation.The simulation results show that either the object
is maneuvering or not; physical extension estimation error
of EFA does not change much. When the object maneuvers,
physical extension estimation error of EFA is lower thanRMF.

The object state is characterized by centroid’s dynamic
state x𝑘 and physical extension X𝑘 simultaneously in EOT.
Their estimation processes in EFA are mutually influenced
and will be introduced successively in the sequel.

2. Centroid’s Dynamic State Estimation

Let 𝑑 denote the spatial dimension, which is usually set as 2 or
3. 𝑠 is the number of dimensions of centroid’s dynamic state in
a spatial dimension. For example, when 𝑠 = 2, the centroid’s
dynamic state includes position and velocity; when 𝑠 = 3, it
also includes the acceleration [4–7, 13]. Thus, the centroid’s
dynamic state x𝑘 is a random 𝑠𝑑×1 vector, while the physical
extension X𝑘 is a random 𝑑 × 𝑑 SPD matrix representing the
ellipse/ellipsoid in 𝑑-dimension space.

This section will introduce the dynamic model and
measurement model of x𝑘. Then the centroid’s dynamic state
estimation x𝑘|𝑘 can be obtained by suitable estimators, for
example, standard Kalman Filter.

2.1. Dynamic Model. The dynamic model of x𝑘 used in EOT
is quite similar to that of standard Kalman filter [5–7, 13] as
follows:

x𝑘 = F𝑘x𝑘−1 + 𝜔𝑘, (1)

where F𝑘 = F̃𝑘 ⊗ I𝑑 is the state matrix, F̃𝑘 is the state matrix
in one spatial dimension, ⊗ is the right Kronecker product
[15], and I𝑑 is the 𝑑×𝑑 identity matrix. 𝜔𝑘 is the independent
process noise, which is subject to the following Gaussian
distribution:

𝜔𝑘 ∼N (0, D̃𝑘 ⊗ I𝑑) , (2)

where D̃𝑘 is the covariancematrix of𝜔𝑘 in a spatial dimension
andN(𝜇,Σ) is theGaussian distributionwith the expectation
of 𝜇 and the covariance matrix of Σ.

2.2. Measurement Model. At scan 𝑘, the measurement sensor
obtains measurement data z𝑟

𝑘
(𝑟 = 1, 2, . . . , 𝑛𝑘) with 𝑛𝑘 ≥

1, where 𝑛𝑘 is independent from X𝑘 and x𝑘 and subject to
Poisson distribution with mean 𝑛P. The real distribution of
these measurement data is set as uniform distribution over
the object, which is depicted by ellipse/ellipsoid, with the
Gaussian noise of the measurement sensor superimposed
[5, 7] as follows:

z𝑟
𝑘
∼ U (X𝑘) +N (0,Ψ𝑘) . (3)

Measurement model (3) is hard to be directly used in
the Bayesian framework or Kalman-related filter. Therefore,
the following model of a single measurement is used for
approximating [4, 7]:

z𝑟
𝑘
= H𝑘x𝑘 + 𝜐

𝑟

𝑘
, (4)

whereH𝑘 = H̃𝑘⊗I𝑑 and H̃𝑘 is themeasurementmatrix in one
spatial dimension. Let 0𝑠−1 be (𝑠−1)×1 zero vector and H̃𝑘 =
[1, 0𝑠−1]; then, only the position of centroid is measured. 𝜐𝑟

𝑘
is

independent from 𝜐𝑗
𝑘
(𝑗 = 1, 2, . . . , 𝑛𝑘, 𝑗 ̸= 𝑟) and is subject

to the Gaussian distribution N (0, 𝜆X𝑘 + Ψ𝑘), where 𝜆 is
a scalar constant. 𝜆 can be set as 0.25 [7] via equaling the
covariance matrices of z𝑟

𝑘
in (3) and (4). Since the probability

density of the Gaussian distribution near the expectation is
relatively large, only equaling two covariance matrices would
lead to excessive measurement data near the ellipse’s center.
Therefore, 𝜆 can be set as a relatively larger value so that (4)
could be closer to the real measurement model as shown in
(3).

Furthermore, the simplified centroid’s measurement
model for estimation of x𝑘 in EFA is as follows:

z𝑘 = H𝑘x𝑘 + 𝜐𝑘, (5)

whereH𝑘 is the same as that in (4) and

z𝑘 =
1

𝑛𝑘

𝑛𝑘

∑

𝑟=1

z𝑟
𝑘
. (6)
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In (5), 𝜐𝑘 ∼ N(0, 𝜆X𝑘−1|𝑘−1 + Ψ𝑘) is the simplified
measurement noise, and X𝑘−1|𝑘−1 is the estimation of the
physical extension at scan 𝑘 − 1 (𝑘 > 1), which is used to
approximate X𝑘. Equation (5) can be interpreted as taking
the mean value of 𝑛𝑘 measurement data as the final mea-
surement result at scan 𝑘. It indicates that the distribution of
measurement data is influenced by object’s physical extension
X𝑘, which alsomeans that the estimation process of centroid’s
dynamic state is influenced by physical extension.

3. Physical Extension Estimation

Since each scan would produce several measurement data in
EOT, the basic idea of physical extension estimation in EFA
is to treat the position components of these measurement
data as points in 𝑑-dimension space. These measurement
points could be used for ellipse/ellipsoid fitting, and then
the estimated value of object’s physical extension is obtained
based on the relationship between ellipse/ellipsoid and SPD
matrix.

In this section, EFA firstly uses “Givens rotations” [14]
to decompose SPD matrix and analyze the relationship
between ellipse/ellipsoid and SPD matrix. On this basis,
ellipse/ellipsoid fitting problem is divided into the estimation
of direction angle and semiaxis lengths, relatively.

Asmost cases in EOT research set 𝑑 as 2 [4–7, 13], we take
𝑑 = 2 as the example for introduction. The principle of EFA
when 𝑑 = 3 is analogous to that when 𝑑 = 2.

3.1. Ellipse/Ellipsoid and SPD Matrix. Based on the dynamic
model and measurement model of x𝑘 defined in Section 2,
the equation of ellipse/ellipsoid which depicts the object is as
follows [5]:

(x⃗ −H𝑘x𝑘)
TX−1
𝑘
(x⃗ −H𝑘x𝑘) = 1, (7)

where 𝑑 × 1 vector x⃗ is the coordinates of points on the
ellipse/ellipsoid.

To facilitate the analysis of the relationship between
ellipse/ellipsoid and SPD matrix, the following lemma is
introduced at first.

Lemma 1. 𝑑×𝑑 SPDmatrixA can be converted into a diagonal
matrix by “Givens rotations” with the maximal times of 𝑑(𝑑 −
1)/2. The diagonal elements of the diagonal matrix are the
eigenvalues of A [14].

When 𝑑 = 2, according to Lemma 1, X𝑘 could be
decomposed into

X𝑘 = R (𝜑𝑘) diag (𝜎
2

𝑘,1
, 𝜎
2

𝑘,2
)RT

(𝜑𝑘) , (8)

where R(𝜑𝑘) = [
cos𝜑𝑘 − sin𝜑𝑘
sin𝜑𝑘 cos𝜑𝑘 ] is rotation matrix, 𝜎2

𝑘,1
and 𝜎2

𝑘,2

are eigenvalues of X𝑘, and

𝜑𝑘 = arctan(−𝜌 ± √1 + 𝜌2) ,

𝜌 =
X𝑘 (1, 1) − X𝑘 (2, 2)

2X𝑘 (1, 2)
.

(9)

An SPD matrix can be decomposed into the form shown
in (8) by singular value decomposition, eigenvalue decom-
position, and other means. However, these means could
only ensure that R(𝜑𝑘) is an orthogonal matrix. By Givens
rotations, it could be guaranteed that R(𝜑𝑘) is a rotation
matrix. If the determinant of an orthogonal matrix is +1, then
it is a rotation matrix.

With (7) inmind, the following three elements are needed
to completely identify an ellipse/ellipsoid in 𝑑-dimension
space:

(a) coordinates of the center point, which are identified
by position component of x𝑘,

(b) direction angle, which is identified by the rota-
tion angle of “Givens rotations” in Lemma 1: 𝑑(𝑑 −
1)/2 direction angles are needed at most to describe
an ellipse/ellipsoid in 𝑑-dimension space,

(c) the semiaxis lengths are equal to the square roots of
X𝑘’s eigenvalues.

Therefore, X𝑘 and x𝑘 could jointly depict any
ellipse/ellipsoid in 𝑑-dimension space. When the direction
angles and semiaxis lengths of ellipse/ellipsoid are identified,
X𝑘 could be uniquely determined according to Lemma 1.

3.2. Direction Angle Estimation. Considering that X𝑘 could
depict all of the ellipses/ellipsoids centering at the origin,
according to (8), any ellipse X𝑘 on a 2-dimension (2D) plane
could be obtained by rotation of ellipse depicted by X0 =
diag(𝜎2

𝑘,1
, 𝜎
2

𝑘,2
), where 𝜎2

𝑘,1
and 𝜎2

𝑘,2
are eigenvalues of X𝑘. X0

is regarded as the “reference ellipse” in EFA, whose axes are
parallel to two coordinate axes, relatively. If we assume that
𝜎
2

𝑘,1
≥ 𝜎
2

𝑘,2
> 0, then the direction angle 𝜑𝑘 in (8) is the

intersection angle between the major axis of ellipse X𝑘 and
the 𝑥-axis, while the counter-clockwise direction is set as the
positive direction. Therefore, the method to estimate ellipse’s
direction angle 𝜑𝑘 when 𝑑 = 2 is as follows.

(a) Centralize measurement data:

z𝑟,∗
𝑘
= z𝑟
𝑘
−H𝑘x𝑘|𝑘, 𝑟 = 1, 2, . . . , 𝑛𝑘. (10)

(b) Calculate the covariance matrix Σ∗z of z𝑟,∗
𝑘
, 𝑟 =

1, 2, . . . , 𝑛𝑘.
(c) Solve the 2 × 1 feature vector ⃗rz,max corresponding

to the larger eigenvalue of Σ∗z . Then the intersection
angle between ⃗rz,max and 𝑥-axis is the estimated value
of 𝜑𝑘 as follows:

𝜑𝑘 = arctan(
⃗rz,max (2)

⃗rz,max (1)
) . (11)

Step (a) of direction angel estimation indicates that phys-
ical extension estimation is influenced by centroid’s dynamic
state. According to the principle of principal component
analysis [16], ⃗rz,max is the direction of the largest variance
of z𝑟,∗
𝑘
. In addition, when utilizing the measurement model

shown in (3), the direction of X𝑘’s major axis could be



4 Mathematical Problems in Engineering

approximately considered the direction with the greatest
changes of z𝑟,∗

𝑘
. Therefore, EFA uses ⃗rz,max as the estimated

value of the major axis direction of X𝑘, which is also the
estimation of direction angle 𝜑𝑘.

3.3. Semiaxis Lengths Estimation. The method of estimating
semiaxis lengths in EFA is divided into two steps as follows:

(a) identifying the upper and lower bounds of semiaxis
lengths;

(b) selecting a suitable step size that is selected for
traversing, and then the semiaxis lengths of an ellipse
are estimated according to corresponding criterion.

When 𝑑 = 2, the semiaxis lengths of ellipse X𝑘 are 𝜎𝑘,1 ≥
𝜎𝑘,2 > 0. Their upper bounds can be determined as follows:

(a) z𝑟,∗
𝑘

is projected to the directions of two feature vectors
of Σ∗z ;

(b) the maximal value of absolute projected coordinates
could be taken as the upper bounds 𝜎max

𝑘,1
and 𝜎max

𝑘,2
,

respectively.

The lower bounds of semiaxis lengths could be identified
by the covariance matrix Ψ𝑘 of measurement sensor’s noise.
Let 𝜎2
Ψ,𝑎

≥ 𝜎
2

Ψ,𝑏
> 0 denote the eigenvalues of Ψ𝑘. Then the

lower bound of semiaxis lengths could be set as 𝜎min
𝑘,1

= 𝜎
Ψ,𝑎

and 𝜎min
𝑘,2

= 𝜎
Ψ,𝑏.

Once the upper and lower bounds of semiaxis lengths
are identified, the method to estimate semiaxis lengths is as
follows.

(a) Determine traversal step size according to the req-
uired accuracy and operating speed.

(b) Starting from 𝜎
min
𝑘,1

and 𝜎min
𝑘,2

, each pair of semiaxis
lengths candidates 𝜎𝑘,1 and 𝜎𝑘,2 that meets the condi-
tions of (12) is traversed. And the corresponding esti-
mated X𝑘|𝑘 is calculated according to (8) as follows:

𝜎𝑘,1 ≥ 𝜎𝑘,2

𝜎𝑘,1 ∈ [𝜎
min
𝑘,1
, 𝜎

max
𝑘,1
] , 𝜎𝑘,2 ∈ [𝜎

min
𝑘,2
, 𝜎

max
𝑘,2
] .

(12)

(c) Calculate 𝑛den based on (7), which is the number of
measurement points on and inside the ellipse.

(d) If 𝑛den/𝑛𝑘 > 𝑡den, the density of measurement points
is calculated as 𝜉den ∝ 𝑛den/𝜎𝑘,1𝜎𝑘,2, which is the
number of measurement points in the unit area of
ellipse, and 0 < 𝑡des < 1 is a preset threshold; else,
𝜉den is set to an infinitesimal.

(e) If there is no candidate value of semiaxis lengths that
meets (12), advance to Step (f); else, return to Step (b).

(f) The candidate value of semiaxis lengths which
has the largest corresponding 𝜉den is the estimated
value 𝜎̂𝑘,1 and 𝜎̂𝑘,2.

In Step (d), 𝜉den could be replaced by the lower bound of
the Wilson interval [17] as follows:

𝜉wilson

= (𝜉den +
𝜅
2

2𝑛den
− 𝜅√

𝜉den (1 − 𝜉den)

𝑛den
+

𝜅
2

4𝑛2den
)

× (1 +
𝜅
2

𝑛den
)

−1

,

(13)

where 𝜅 is set as 1.96 under the confidence level of 95%
and 𝜉den is the normalization result of all valid 𝜉den. When
using 𝜉den, the improper situation that 𝑛des and 𝜎𝑘,1𝜎𝑘,2
are all quite small but that 𝜉den is large is easy to occur.
𝜉wilson simultaneously considers 𝑛den and 𝜉den; that is, it is
required that the density is maximized while the number of
measurement points on and inside the ellipse should not be
too small.Thus, the aforementioned improper situation could
be effectively avoided. When 𝑛𝑘 is large, the effect of 𝜉wilson
and 𝜉den is more or less equivalent. Since 𝑛𝑘 in EOT is usually
not very large, 𝜉wilsonwould perform better than 𝜉den in EFA,
yet resulting in more complex calculations.

To take into account higher precision and faster calcu-
lation speed simultaneously, we could use a relatively larger
step size to obtain 𝜎̂𝑘,1 and 𝜎̂𝑘,2, and then repeat the above
algorithmwith a smaller step size in the interval near 𝜎̂𝑘,1 and
𝜎̂𝑘,2. Thus, a more efficient estimation result can be achieved
through a relatively smaller amount of computation.

After calculating the direction angle and semiaxis lengths,
the estimated valueX𝑘|𝑘 ofX𝑘 could be obtained according to
(8).

3.4. Physical Extension EstimationWhen 𝑑 = 3. When 𝑑 = 3,
according to Lemma 1, we have

X𝑘 = R3 (𝜑𝑘,3)R2 (𝜑𝑘,2)R1 (𝜑𝑘,1) diag (𝜎
2

𝑘,1
, 𝜎
2

𝑘,2
, 𝜎
2

𝑘,3
)

× [R3 (𝜑𝑘,3)R2 (𝜑𝑘,2)R1 (𝜑𝑘,1)]
T
,

(14)

whereR⋅(𝜑𝑘,⋅) is the rotationmatrix having counterclockwise
rotation around a certain coordinate axis. For example,
by counterclockwise rotation around 𝑥-axis, it should be
[
1 0 0
0 cos𝜑𝑘,⋅ − sin𝜑𝑘,⋅
0 sin𝜑𝑘,⋅ cos𝜑𝑘,⋅

].
Equation (14) shows that maximally three Givens rota-

tions are needed to convert X𝑘 to a diagonal matrix when
𝑑 = 3. Similar to that when 𝑑 = 2, we may assume that
𝜎
2

𝑘,1
≥ 𝜎
2

𝑘,2
≥ 𝜎
2

𝑘,3
> 0 and adopt the following sequence of

rotation matrix:

X𝑘 = R𝑧 (𝜑𝑘,3)R𝑦 (𝜑𝑘,2)R𝑥 (𝜑𝑘,1) diag (𝜎
2

𝑘,1
, 𝜎
2

𝑘,2
, 𝜎
2

𝑘,3
)

× [R𝑧 (𝜑𝑘,3)R𝑦 (𝜑𝑘,2)R𝑥 (𝜑𝑘,1)]
T
,

(15)

where R𝑥(𝜑𝑘,1) is the rotation matrix with the
angle 𝜑𝑘,1 around 𝑥-axis at the counterclockwise direction,
which is the same with R𝑦(𝜑𝑘,2) and R𝑧(𝜑𝑘,3). Therefore,
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Figure 2: Object trajectory in Scenario 1.

the ellipsoid’s direction angles 𝜑𝑘,𝑗 (𝑗 = 1, 2, 3) could be
estimated as follows.

(a) Centralize measurement data according to (10).
(b) Project z𝑟,∗

𝑘
to the 𝑦-𝑧 2D plane. The estimation

method of direction angle when 𝑑 = 2 is used to
obtain 𝜑𝑘,1.

(c) Similarly, project z𝑟,∗
𝑘

to 2Dplane of𝑥-𝑧 and𝑥-𝑦; then,
calculate 𝜑𝑘,2 and 𝜑𝑘,3, respectively.

When 𝑑 = 3, the semiaxis lengths estimation method
with 𝑑 = 2 is completely suitable. The difference is that
𝜉den ∝ 𝑛den/𝜎𝑘,1𝜎𝑘,2𝜎𝑘,3 represents the number of measure-
ment points in the unit volume of the ellipsoid.

Once the direction angles and semiaxis lengths are
obtained, the estimated valueX𝑘|𝑘 could be calculated accord-
ing to (15).

4. Simulation Results and Discussion

4.1. Scenario 1. Scenario 1, as shown in Figure 2, is commonly
used inRMF research [5, 7, 13].Theobject is an aircraft carrier
with the length of about 350m and the width of about 100m.
An ellipse with the semiaxis lengths of 175m and 50m is used
to depict its physical extension. The object starts from the
origin and performs uniform linear motion along the path.
Then it makes three turns as shown in Figure 2. The velocity
of object is set as 27 knots (about 50 km/h).Themeasurement
period is set as 𝑇 = 10 s and the covariance matrix of
measurement sensor’s noise is Ψ𝑘 = diag(402, 152)m2. The
number of measurement points of each scan is subject to
Poisson distribution with the mean value of 𝑛p = 25.

The following four EOT approaches are compared
through𝑁MC = 600Monte Carlo simulations:

(a) Koch’s RMF [4]: single-model RMF approach and
time decay constant 𝜏 is set as 8𝑇;

(b) Feldmann’s RMF-MM [7]: multimodel RMF
approach and parameters are set according to the
literature [7];
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Figure 3: RMSEs of physical extension in Scenario 1.
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Figure 4: RMSEs of centroid’s position in Scenario 1.

(c) EFA-den: 𝜉den is selected for semiaxis lengths estima-
tion, and threshold value 𝑡den is set as 0.5;

(d) EFA-wilson: 𝜉wilson is selected for semiaxis lengths
estimation, and threshold value 𝑡den is set as 0.5.

To compare the performance of physical extension esti-
mation, rootmean square error (RMSE) of physical extension
is defined as follows [7]:

RMSEX =
√
∑
𝑁MC
ℎ=1

tr [(Xℎ
𝑘|𝑘
− X𝑘)

2

]

𝑁MC
,

(16)

whereXℎ
𝑘|𝑘

is the estimated value of physical extension at scan
𝑘 in ℎth Monte Carlo simulation.
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Figure 5: RMSEs of centroid’s velocity in Scenario 1.
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Figure 6: Object trajectory in Scenario 2.

Physical extension RMSE curves in Scenario 1 are shown
in Figure 3. When the object is maneuvering (making three
turns), physical extension RMSEs of RMFs increase while
those of EFAs do not change significantly. Physical extension
RMSEs of EFAs are lower than Koch’s RMF but higher than
Feldmann’s RMF-MM when the object is not maneuvering.
Physical extension RMSE of EFA-wilson is lower than that of
EFA-den.

The centroid’s position and velocity RMSE curves in
Scenario 1 are shown in Figures 4 and 5. The position and
velocity RMSEs of two EFAs are nearly the same and lower
than two RMFs.

4.2. Scenario 2. In Scenario 2, the trajectory of object is
shown in Figure 6. From the origin, the object takes uniform
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Figure 7: RMSEs of physical extension in Scenario 2.
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Figure 8: RMSEs of centroid’s position in Scenario 2.

linear motion for some time and then keeps taking uniform
circular motion. Four EOT approaches and other simulation
parameters for comparison are the same as those in Scenario
1.

RMSE curves of physical extension are shown in Figure 7.
In the beginning, the object is not maneuvering, and physical
extension RMSE of Feldmann’s RMF-MM is lower than
EFAs. When the object is taking uniform circular motion
(maneuvering), the physical extension RMSEs of two EFAs
become lower than two RMF approaches.

RMSE curves of centroid’s position and velocity are
shown in Figures 8 and 9. Similar to Scenario 1, the position
and velocity RMSEs of two EFAs are quite close to each other
and lower than the RMFs.
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Figure 9: RMSEs of centroid’s velocity in Scenario 2.

5. Conclusions

Extended object tracking is able to estimate centroid’s
dynamic state and physical extension of objects jointly and
provide more information about the object. Therefore, it
has become a research focus of information fusion and
maneuvering object tracking in recent years. RMF uses
simple models and could obtain iterative filtering equations
within the Bayesian framework. Its main drawback is the
significant rise of physical extension estimation error during
object’s maneuvering. In order to overcome the shortcoming
of RMF, an EOT approach based on ellipse/ellipsoid fitting
is proposed on the basis of the analysis of the internal
correlation between ellipse/ellipsoid and SPD matrix. The
simulation results show that EFA is insensitive to whether the
object is maneuvering or not. Physical extension estimation
error of EFA is lower than the two RMFs during object’s
maneuvering. Centroid’s dynamic state estimation error of
EFA is lower than RMF. EFA-wilson performs better than
EFA-den in physical extension estimation.
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