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We consider two mixed claim frequency risk models. Some important probabilistic properties are obtained by probability-theory
methods. Some important results about ruin probabilities are obtained by martingale approach.

1. Introduction

Mixture models are a fundamental tool in applied statistics,
for most mixture models, including the widely used mixtures
of Gaussians and hidden Markov models (HMMs); the cur-
rent practice relies on the Expectation-Maximization (EM)
algorithm, a local search heuristic for maximum likelihood
estimation; an efficient method of moments approach to
parameter estimation for a broad class of high-dimensional
mixture models with many components was developed [1–
3]. Finite mixture models have a long history in statistics; a
detailed review of mixture models and models-based clus-
tering was provided in [4], for a finite mixture of regressions
model, [5, 6] develop an efficient EM algorithm for numerical
optimization with provable convergence properties.

In this paper we consider two mixture models. In Sec-
tion 2 we set up the binomial-Poisson model, and some
important results about ruin probabilities are obtained by
martingale approach.

In Section 3 we also set up another Poisson-dualistic
model; in this sectionwe obtain some important probabilistic
properties and estimates for ruin probability.

In the classical risk model, the surplus of an insurance
company over the interval (0, 𝑡] is 𝑋(𝑡), which is defined by

𝑋 (𝑡) = 𝑐𝑡 −

𝑁(𝑡)

∑
𝑘=1

𝑍
𝑘
, (1)

where𝑁(𝑡) is to be interpreted as the number of claims on the
company during the interval (0, 𝑡]; assume that {𝑁(𝑡); 𝑡 ≥ 0}

is an homogeneous Poisson process with intensity 𝜆. In the
complex problems of actual operation in insurance business,
insurance company classifies the risk by its some charac-
teristics, but the claim frequency 𝜆 of the individual policy
which has been classified into the same kind of portfolio may
be different; that is, this is the so-called nonhomogeneity.
For a nonhomogeneous portfolio, we can assume that 𝜆 is a
random variable; thus the mixed Poisson distribution model
can be derived.

In general, just as reported in [6] if the number for
claim 𝑁 is a discrete distribution with parameter 𝛼 and the
distribution sequence is

𝑃 (𝑁 = 𝑘 | 𝛼) = 𝑝 (𝑘; 𝛼) (2)

and the parameter 𝛼 is random variable or random vector, its
probability distribution function is

𝛼 ∼ 𝐺 (𝛼) . (3)

Then the corresponding risk model is a mixed claim fre-
quency risk model.

2. Binomial-Poisson Model

2.1. The Setting-Up of the Model

Definition 1. Suppose 𝑀 = {𝑀(𝑡); 𝑡 ≥ 0} is an homogeneous
Poisson process with intensity 𝜆. Consider 𝑀(𝑡) = 𝑚; then
the conditional distribution of𝑁 = {𝑁(𝑡); 𝑡 ≥ 0} is a binomial
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2 Mathematical Problems in Engineering

distribution with parameters 𝑚, 𝑝. A sequence {𝑍
𝑘
}
∞

1
is an

independent and identically distributed nonnegative random
variable, having the common distribution function 𝐹, with
𝐹(0) = 0, mean value 𝜇, and variance 𝜎2; the above random
process and random sequence are mutually independent;
𝑐, 𝑝 (𝑐 > 0, 0 < 𝑝 < 1) are both constants.

Let

𝑋(𝑡) = 𝑐𝑡 −

𝑁(𝑡)

∑
𝑘=1

𝑍
𝑘
. (4)

Then the process defined by (4) is a binomial-Poisson mixed
claim frequency risk model.

The conditional moment generating function of 𝑁 is

𝑀
𝑁 (𝑠 | 𝑚) = (𝑝𝑒

𝑠
+ 𝑞)

𝑚
, (𝑞 = 1 − 𝑝) . (5)

Therefore

𝑀
𝑁(𝑡) (𝑠) = 𝐸𝑒

𝑠𝑁(𝑡)
= 𝐸 [𝐸 (𝑒

𝑠𝑁(𝑡)
| 𝑀 (𝑡))]

=

∞

∑
𝑚=0

(𝑝𝑒
𝑠
+ 𝑞)

𝑚 𝑒−𝜆𝑡(𝜆𝑡)
𝑚

𝑚!

= exp [𝜆𝑝𝑡 (𝑒
𝑠
− 1)] .

(6)

Then {𝑁(𝑡); 𝑡 ≥ 0} is a homogeneous Poisson process with
intensity 𝜆𝑝. Thus the model defined by (4) is a classical risk
model.

2.2. The Meaning of the Model in the Insurance Practice.
Suppose that 𝑀(𝑡) is the number of accidents during the
interval (0, 𝑡]; the number of claims per accident 𝐿 is 0-1
distributionwith𝑝; that is,𝑃(𝐿 = 1) = 𝑝,𝑃(𝐿 = 0) = 1−𝑝 (for
example, in the deductible insurance, the probability of loss
exceeding the amount of deductible is 𝑝); then the number of
claims𝑁(𝑡) during the interval (0, 𝑡] is a conditional binomial
distribution with parameters 𝑚, 𝑝. Obviously the process
{𝑁(𝑡); 𝑡 ≥ 0} is a𝑝-sparse process of the process {𝑀(𝑡); 𝑡 ≥ 0}.
{𝑁(𝑡); 𝑡 ≥ 0} is a homogeneous Poisson process with intensity
𝜆𝑝, if only {𝑀(𝑡); 𝑡 ≥ 0} is a homogeneous Poisson process
with intensity 𝜆. 𝑐 is the premium rate, {𝑍

𝑘
}
∞

1
is the size of

claim amount per accident, and ∑
𝑁(𝑡)

𝑘=1
𝑍
𝑘
is the total claim

process.

2.3. Several Conclusions about the Ultimate Ruin Probability.
We can get easily

𝐸 [𝑋 (𝑡)] = (𝑐 − 𝜆𝑝𝜇) 𝑡. (7)

In order to stabilize the operation of company, we should
ensure that premiums received in a unit of timemeet 𝑐 > 𝜆𝑝𝜇.

The relative safety loading 𝜌 is defined by

𝜌 =
𝑐

𝜆𝑝𝜇
− 1. (8)

We can nowdefine the ruin probability𝜓(𝑢) of a company
facing the risk process (4) and having initial capital 𝑢.
Consider

𝜓 (𝑢) = 𝑃 {𝑢 + 𝑋 (𝑡) < 0 for some 𝑡 > 0} . (9)

Let

ℎ (𝑟) = ∫
∞

0

𝑒
𝑟𝑧
𝑑𝐹 (𝑧) − 1. (10)

We assume that there exists 𝑟
∞

> 0 such that ℎ(𝑟) ↑ +∞

when 𝑟 ↑ 𝑟
∞
, that is, a light-tailed distribution 𝐹.

Theorem 2. If 𝜌 > 0, 𝜓(0) = 𝜆𝑝𝜇/𝑐.

Theorem 3. Let amount claimed sequence {𝑍
𝑘
, 𝑘 = 1, 2, . . .}

with exponential distribution with mean 𝜇; then

𝜓 (𝑢) =
1

1 + 𝜌
𝑒
−𝜌𝑢/𝜇(1+𝜌)

, (11)

where 𝜌 is given by (8).

Theorem 4. Consider

lim
𝑢󳨀→∞

𝑒
𝑅𝑢

𝜓 (𝑢) =
𝜌𝜇

ℎ󸀠 (𝑅) − 𝑐/𝜆𝑝
, (12)

where 𝑅 is the positive solution of ℎ(𝑟) = 𝑐𝑟/𝜆𝑝, which is called
adjustment coefficient. And 𝜌 is given by (8).

Theorem 5. Ruin probability:

𝜓 (𝑢) ≤ 𝑒
−𝑅𝑢

, (13)

where 𝑅 is the positive solution of ℎ(𝑟) = 𝑐𝑟/𝜆𝑝, which is called
adjustment coefficient.

The above theorem can be derived directly by the corre-
sponding results in classical risk theory [7].

3. Poisson-Dualistic Model

3.1. The Setting-Up of the Model

Definition 6. The random variable 𝜆 follows two-point dis-
tribution; that is, 𝑃(𝜆 = 𝜆

𝑖
) = 𝑝

𝑖
, 𝑖 = 1, 2, 𝑝

2
= 1 − 𝑝

1
.

The conditional distribution of 𝑁 = {𝑁(𝑡); 𝑡 ≥ 0} about 𝜆 is
a homogeneous Poisson process with intensity 𝜆. A sequence
{𝑍

𝑘
}
∞

1
is independent and identically distributed nonnegative

random variable, having the common distribution function
𝐹, with 𝐹(0) = 0, mean value 𝜇, and variance 𝜎2; {𝑁(𝑡); 𝑡 ≥ 0}

and {𝑍
𝑘
} are mutually independent; 𝑝

1
, 𝑝

2
, 𝜆

1
, 𝜆

2
, 𝑐 are both

positive real constants.
Let

𝑌 (𝑡) = 𝑐𝑡 −

𝑁(𝑡)

∑
𝑘=1

𝑍
𝑘
. (14)

Then the random process defined by (14) is a Poisson-dua-
listic mixed claim frequency risk model.

Obviously, 𝑁 = {𝑁(𝑡); 𝑡 ≥ 0} is a mixed Poisson process.

3.2. The Meaning of the Model in the Insurance Practice. We
assume that a portfolio is composed of high risk and low risk
insurance policy, where high risk policy is accounting for 𝑝

1
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and low risk policy is accounting for 𝑝
2
= 1 − 𝑝

1
; the Poisson

parameter of these two kinds of policy, respectively, is 𝜆
1
, 𝜆

2

(corresponding high risk cover for 𝜆
1
, obviously 𝜆

1
> 𝜆

2
). 𝑐

is the premium rate, {𝑍
𝑘
}
∞

1
is the size of claim amount per

accident, and ∑
𝑁(𝑡)

𝑘=1
𝑍
𝑘
is the total claim process.

3.3. Some Probabilistic Properties of Model. The probabilistic
properties of the number of claims 𝑁(𝑡) are as follows.

Property 1. Claim frequency distribution is

𝑃 (𝑁 (𝑡) = 𝑘) = 𝑝
1

𝑒−𝜆1𝑡(𝜆
1
𝑡)
𝑘

𝑘!
+ 𝑝

2

𝑒−𝜆2𝑡(𝜆
2
𝑡)
𝑘

𝑘!
,

𝑘 = 0, 1, 2, . . . .

(15)

Proof. The above distribution can be derived by

𝑃 (𝑁 (𝑡) = 𝑘) = ∫
Ω

𝑃 (𝑁 (𝑡) = 𝑘 | 𝜆) 𝑑𝐺 (𝜆) . (16)

The proof is ended.

Property 2. Themean and variance of 𝑁(𝑡) are

𝐸 [𝑁 (𝑡)] = (𝜆
1
𝑝
1
+ 𝜆

2
𝑝
2
) 𝑡

Var [𝑁 (𝑡)] = (𝜆
1
− 𝜆

2
)
2
𝑝
1
𝑝
2
𝑡
2
+ (𝜆

1
𝑝
1
+ 𝜆

2
𝑝
2
) 𝑡.

(17)

Proof. Consider

𝐸 [𝑁 (𝑡)] = 𝐸 [𝐸 (𝑁 (𝑡) | 𝜆)] = 𝐸 (𝜆𝑡)

= (𝜆
1
𝑝
1
+ 𝜆

2
𝑝
2
) 𝑡

Var [𝑁 (𝑡)] = Var [𝐸 (𝑁 (𝑡) | 𝜆)] + 𝐸 [Var (𝑁 (𝑡) | 𝜆)]

= Var (𝜆𝑡) + 𝐸 (𝜆𝑡)

= [𝜆
2

1
𝑝
1
+ 𝜆

2

2
𝑝
2
− (𝜆

1
𝑝
1
+ 𝜆

2
𝑝
2
)
2
] 𝑡

2

+ (𝜆
1
𝑝
1
+ 𝜆

2
𝑝
2
) 𝑡

= (𝜆
1
− 𝜆

2
)
2
𝑝
1
𝑝
2
𝑡
2
+ (𝜆

1
𝑝
1
+ 𝜆

2
𝑝
2
) 𝑡.

(18)

The proof is ended.

Since the mean and variance of the Poisson distribution
are always equal, if the sample variance of the portfolio’s
claim of a random variable is greater than the number of the
samplemean,we can conclude that the existence of this policy
combination of a degree of nonhomogeneity, and because
Var[𝑁(𝑡)] − 𝐸[𝑁(𝑡)] = Var(𝜆𝑡) can reflect the variance of
the degree of nonhomogeneity of portfolio, if the variance
is much more greater than the mean, that is, the bigger
(𝜆

1
− 𝜆

2
)
2
𝑝
1
𝑝
2
is, the more serious the nonhomogeneity is.

Property 3. Themoment generating function of 𝑁(𝑡) is

𝑀
𝑁(𝑡) (𝑟) = 𝑝

1
exp [𝜆

1
𝑡 (𝑒

𝑟
− 1)] + 𝑝

2
exp [𝜆

2
𝑡 (𝑒

𝑟
− 1)] .

(19)

Proof. Consider

𝑀
𝑁(𝑡) (𝑟) = 𝐸𝑒

𝑟𝑁(𝑡)

= 𝐸 [𝐸 (𝑒
𝑟𝑁(𝑡)

| 𝜆)] = 𝐸 [exp (𝜆𝑡 (𝑒
𝑟
− 1))]

= 𝑝
1
exp [𝜆

1
𝑡 (𝑒

𝑟
− 1)] + 𝑝

2
exp [𝜆

2
𝑡 (𝑒

𝑟
− 1)] .

(20)

The proof is ended.

Theorem 7. Assume that the random variable 𝜆 follows two-
point distribution; that is, 𝑃(𝜆 = 𝜆

𝑖
) = 𝑝

𝑖
, 𝑖 = 1, 2, and 𝑝

2
=

1−𝑝
1
. The conditional distribution of𝑁 = {𝑁(𝑡); 𝑡 ≥ 0} about

𝜆 is a homogeneous Poisson process with intensity 𝜆. Then the
process 𝑁 has stationary increments.

Proof. Consider

𝑃 (𝑁 (𝑡 + ℎ) − 𝑁 (𝑡) = 𝑘)

= 𝐸 [𝑃 (𝑁 (𝑡 + ℎ) − 𝑁 (𝑡) = 𝑘 | 𝜆)]

= 𝐸[
𝑒
−𝜆ℎ

(𝜆ℎ)
𝑘

𝑘!
]

= 𝑝
1

𝑒−𝜆1ℎ(𝜆
1
ℎ)

𝑘

𝑘!
+ 𝑝

2

𝑒−𝜆2ℎ(𝜆
2
ℎ)

𝑘

𝑘!
, 𝑘 = 0, 1, 2, . . . .

(21)

The proof is ended.

Theorem 8. Assume that the random variable 𝜆 follows two-
point distribution; that is, 𝑃(𝜆 = 𝜆

𝑖
) = 𝑝

𝑖
, 𝑖 = 1, 2, 𝑝

2
=

1 − 𝑝
1
. The conditional distribution of 𝑁 = {𝑁(𝑡); 𝑡 ≥ 0}

about 𝜆 is a homogeneous Poisson process with intensity 𝜆 if
and only if the interval {𝑇

𝑛
} of {𝑁(𝑡); 𝑡 ≥ 0} about 𝜆 has

conditional independence and is the same as the exponential
distribution with parameter 𝜆; thus {𝑇

𝑛
} follow the following

mixed exponential distribution:

𝑓
𝑇
𝑛
(𝑡) = 𝑝

1
𝜆
1
𝑒
−𝜆
1
𝑡
+ 𝑝

2
𝜆
2
𝑒
−𝜆
2
𝑡
, 𝑡 > 0. (22)

Proof. We only need to prove that when the conditional
distribution of {𝑇

𝑛
} about 𝜆 is exponentially distributed, {𝑇

𝑛
}

follow the mixed exponential distribution.Then, when 𝑡 > 0,
the distribution function of {𝑇

𝑛
} is

𝐹
𝑇
𝑛
(𝑡) = 𝑃 (𝑇

𝑛
≤ 𝑡)

= 𝐸 [𝑃 (𝑇
𝑛
≤ 𝑡 | 𝜆)] = 𝐸 [1 − 𝑒

−𝜆𝑡
]

= 𝑝
1
(1 − 𝑒

−𝜆
1
𝑡
) + 𝑝

2
(1 − 𝑒

−𝜆
2
𝑡
) .

(23)

Thus the density function of {𝑇
𝑛
} is

𝑓
𝑇
𝑛
(𝑡) = 𝑝

1
𝜆
1
𝑒
−𝜆
1
𝑡
+ 𝑝

2
𝜆
2
𝑒
−𝜆
2
𝑡
, 𝑡 > 0. (24)

The proof is ended.
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Theorem 9. It occur 𝑁(𝑡) claims over (0, 𝑡]; then the occur-
rence probability of intensity 𝜆 = 𝜆

1
for claim is

𝑃 (𝜆 = 𝜆
1
| 𝑁 (𝑡) = 𝑛) =

𝑝
1
𝑒−𝜆1𝑡(𝜆

1
𝑡)
𝑛

𝑝
1
𝑒−𝜆1𝑡(𝜆

1
𝑡)
𝑛
+ 𝑝

2
𝑒−𝜆2𝑡(𝜆

2
𝑡)
𝑛
.

(25)

Proof. It can be derived by

𝑃 (𝜆 = 𝜆
1
| 𝑁 (𝑡) = 𝑛) =

𝑃 (𝑁 (𝑡) = 𝑛 | 𝜆 = 𝜆
1
) 𝑃 (𝜆 = 𝜆

1
)

𝑃 (𝑁 (𝑡) = 𝑛)
.

(26)

The proof is ended.

Thus we can get

𝑃 (𝜆 = 𝜆
2
| 𝑁 (𝑡) = 𝑛) = 1 −

𝑝
1
𝑒−𝜆1𝑡(𝜆

1
𝑡)
𝑛

𝑝
1
𝑒−𝜆1𝑡(𝜆

1
𝑡)
𝑛
+ 𝑝

2
𝑒−𝜆2𝑡(𝜆

2
𝑡)
𝑛

=
𝑝
2
𝑒−𝜆2𝑡(𝜆

2
𝑡)
𝑛

𝑝
1
𝑒−𝜆1𝑡(𝜆

1
𝑡)
𝑛
+ 𝑝

2
𝑒−𝜆2𝑡(𝜆

2
𝑡)
𝑛
.

(27)

Theorem 10. Assume that 𝑈(𝑡) is the time interval from the
moment t to the next claim; then the conditional distribution
of 𝑈(𝑡) is

𝑃 (𝑈 (𝑡) ≤ 𝑥 | 𝑁 (𝑡) = 𝑛)

=
𝑝
1
𝑒−𝜆1𝑡(𝜆

1
𝑡)
𝑛
(1 − 𝑒−𝜆1𝑥) + 𝑝

2
𝑒−𝜆2𝑡(𝜆

2
𝑡)
𝑛
(1 − 𝑒−𝜆2𝑥)

𝑝
1
𝑒−𝜆1𝑡(𝜆

1
𝑡)
𝑛
+ 𝑝

2
𝑒−𝜆2𝑡(𝜆

2
𝑡)
𝑛

.

(28)

Proof. Obviously 𝑈(𝑡) is the occurrence time after the
moment 𝑡, when 𝜆 is a constant; then 𝑈(𝑡) follows the
exponential distribution with 𝜆. Then the result can be
derived by

𝑃 (𝑈 (𝑡) ≤ 𝑥 | 𝑁 (𝑡) = 𝑛)

= 𝑃 (𝑈 (𝑡) ≤ 𝑥 | 𝑁 (𝑡) = 𝑛, 𝜆 = 𝜆
1
)

× 𝑃 (𝜆 = 𝜆
1
| 𝑁 (𝑡) = 𝑛)

+ 𝑃 (𝑈 (𝑡) ≤ 𝑥 | 𝑁 (𝑡) = 𝑛, 𝜆 = 𝜆
2
)

× 𝑃 (𝜆 = 𝜆
2
| 𝑁 (𝑡) = 𝑛)

=
𝑝
1
𝑒−𝜆1𝑡(𝜆

1
𝑡)
𝑛
(1 − 𝑒−𝜆1𝑥) + 𝑝

2
𝑒−𝜆2𝑡(𝜆

2
𝑡)
𝑛
(1 − 𝑒−𝜆2𝑥)

𝑝
1
𝑒−𝜆1𝑡(𝜆

1
𝑡)
𝑛
+ 𝑝

2
𝑒−𝜆2𝑡(𝜆

2
𝑡)
𝑛

.

(29)

The proof is ended.

The probabilistic properties of total amount of claims
𝑆(𝑡) = ∑

𝑁(𝑡)

𝑘=1
𝑍
𝑘
are as follows.

Property 4. Themean and variance of total amount of claims
𝑆(𝑡) = ∑

𝑁(𝑡)

𝑘=1
𝑍
𝑘
are

𝐸 [𝑆 (𝑡)] = (𝜆
1
𝑝
1
+ 𝜆

2
𝑝
2
) 𝜇𝑡

Var [𝑆 (𝑡)] = 𝜇
2
(𝜆

1
− 𝜆

2
)
2
𝑝
1
𝑝
2
𝑡
2

+ (𝜇
2
+ 𝜎

2
) (𝜆

1
𝑝
1
+ 𝜆

2
𝑝
2
) 𝑡.

(30)

Proof. Consider

𝐸 [𝑆 (𝑡)] = 𝐸 [𝑁 (𝑡)] 𝐸𝑍
𝑘
= (𝜆

1
𝑝
1
+ 𝜆

2
𝑝
2
) 𝜇𝑡

Var [𝑆 (𝑡)] = Var [𝐸 (𝑆 (𝑡) | 𝑁 (𝑡))] + 𝐸 [Var (𝑆 (𝑡) | 𝑁 (𝑡))]

= Var [𝑁 (𝑡) 𝐸𝑍
𝑘
] + 𝐸 [𝑁 (𝑡)Var𝑍𝑘

]

= 𝜇
2 Var [𝑁 (𝑡)] + 𝜎

2
𝐸 [𝑁 (𝑡)]

= 𝜇
2
[(𝜆

1
− 𝜆

2
)
2
𝑝
1
𝑝
2
𝑡
2
+ (𝜆

1
𝑝
1
+ 𝜆

2
𝑝
2
) 𝑡]

+ 𝜎
2
(𝜆

1
𝑝
1
+ 𝜆

2
𝑝
2
) 𝑡

= 𝜇
2
(𝜆

1
− 𝜆

2
)
2
𝑝
1
𝑝
2
𝑡
2

+ (𝜇
2
+ 𝜎

2
) (𝜆

1
𝑝
1
+ 𝜆

2
𝑝
2
) 𝑡.

(31)

The proof is ended.

Property 5. Themoment generating function of total amount
of claims 𝑆(𝑡) = ∑

𝑁(𝑡)

𝑘=1
𝑍
𝑘
is

𝑀
𝑆(𝑡) (𝑟) = 𝑝

1
exp [𝜆

1
𝑡 (𝑀

𝑍 (𝑟) − 1)]

+ 𝑝
2
exp [𝜆

2
𝑡 (𝑀

𝑍 (𝑟) − 1)] ,
(32)

where 𝑀
𝑍
(𝑟) is the moment generation function of the

individual claim amount.

Proof. We can get the following from (19):

𝑀
𝑆(𝑡) (𝑟) = 𝐸𝑒

𝑟𝑆(𝑡)
= 𝐸 [(𝑀

𝑍 (𝑟))
𝑁(𝑡)

]

= 𝑀
𝑁(𝑡)

(ln𝑀
𝑍 (𝑟))

= 𝑝
1
exp [𝜆

1
𝑡 (𝑀

𝑍 (𝑟) − 1)]

+ 𝑝
2
exp [𝜆

2
𝑡 (𝑀

𝑍 (𝑟) − 1)] .

(33)

The proof is ended.

3.4. Estimation of Lundberg Exponential Upper Bounds for the
Ultimate Ruin Probability. Obviously, 𝐸[𝑌(𝑡)] = [𝑐 − (𝜆

1
𝑝
1
+

𝜆
2
𝑝
2
)𝜇]𝑡.
It seems very natural to assume the premium rate per unit

of time 𝑐 > (𝜆
1
𝑝
1
+ 𝜆

2
𝑝
2
)𝜇. Further, let 𝑐 > 𝜆

1
𝜇, in order to

stabilize the operation of the company.
The relative safety loading:

𝜌 =
𝑐

(𝜆
1
𝑝
1
+ 𝜆

2
𝑝
2
) 𝜇

− 1. (34)
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Obviously,

𝜌 >
𝑐

𝜆
1
𝜇

− 1 =̂ 𝜌
1
. (35)

𝜌
1
can be seen as the corresponding relative safety loading

of portfolio consisted by high risk policy. Obviously in terms
of premium rate and the average individual claim amount
are equal, the relative safety loading of the corresponding
portfolio of model (14) should be greater.

Let 𝑢 be the initial capital; then the ruin moment is
defined as

𝑇
𝑢
= inf {𝑡 ≥ 0 | 𝑢 + 𝑌 (𝑡) < 0} . (36)

Obviously 𝑇
𝑢
is a 𝐹𝑌-stopping time.

The finite time ruin probability is

𝜓 (𝑢, 𝑡) = 𝑃 (𝑇
𝑢
< 𝑡) . (37)

The ultimate ruin probability is

𝜓 (𝑢) = 𝑃 (𝑇
𝑢
< ∞) . (38)

Let

ℎ (𝑟) = 𝑀
𝑍 (𝑟) − 1. (39)

We assume that there exists 𝑟
∞

> 0, such that ℎ(𝑟) ↑ +∞

when 𝑟 ↑ 𝑟
∞
. It is easy to be seen that ℎ(0) = 0, ℎ󸀠(𝑟) > 0,

and ℎ󸀠󸀠(𝑟) > 0 and that ℎ(𝑟) is continuous on [0, 𝑟
∞

) (where
𝑟
∞

≤ +∞).
Easy to verify, the risk process defined by (14) is a right

continuous process and has the following properties:

(i) 𝑌(0) = 0 𝑃 − a.s.;
(ii) 𝑌 has stationary and independent increments about

𝜆;
(iii) 𝐸[𝑌(𝑡)] = [𝑐 − (𝜆

1
𝑝
1
+ 𝜆

2
𝑝
2
)𝜇]𝑡 > 0.

Let

𝐹
𝜆

∞
= 𝜎 (𝜆, 𝑡 ≥ 0) , 𝐹

𝑡
= 𝐹

𝜆

∞
∨ 𝐹

𝑌

𝑡
. (40)

Note that 𝐹
0
= 𝐹𝜆

∞
.

We can easily get

𝐸 [𝑒
−𝑟𝑌(𝑡)

| 𝐹
𝜆

∞
] = 𝐸 {exp [−𝑟 (𝑐𝑡 − 𝑆 (𝑡))] | 𝐹

𝜆

∞
}

= exp (−𝑟𝑐𝑡) ⋅ 𝐸 [exp (𝑟𝑆 (𝑡)) | 𝐹
𝜆

∞
]

= exp [𝑡 (𝜆ℎ (𝑟) − 𝑟𝑐)] .

(41)

From the hypothesis of function ℎ(𝑟), we know ∃𝑟 > 0, s.t.
𝐸[𝑒

−𝑟𝑌(𝑡)
| 𝐹

𝜆

∞
] < ∞.

From property (ii) of 𝑌, we have

exp [𝑡 (𝜆ℎ (𝑟) − 𝑟𝑐)] = 𝐸 [𝑒
−𝑟𝑌(𝑡)

| 𝐹
𝜆

∞
]

= 𝐸 [𝑒
−𝑟(𝑌(𝑡)−𝑌(𝑠))

⋅ 𝑒
−𝑟𝑌(𝑠)

| 𝐹
𝜆

∞
]

= 𝐸 [𝑒
−𝑟(𝑌(𝑡)−𝑌(𝑠))

| 𝐹
𝜆

∞
] 𝐸 [𝑒

−𝑟𝑌(𝑠)
| 𝐹

𝜆

∞
] .

(42)

Thus

𝐸 [𝑒
−𝑟(𝑌(𝑡)−𝑌(𝑠))

| 𝐹
𝜆

∞
] = exp [(𝜆ℎ (𝑟) − 𝑟𝑐) (𝑡 − 𝑠)] . (43)

Theorem 11. Let

𝑀
𝑢 (𝑡) =

exp [−𝑟 (𝑢 + 𝑌 (𝑡))]

exp [𝑡 (𝜆ℎ (𝑟) − 𝑟𝑐)]
. (44)

Thus 𝑀
𝑢
= {𝑀

𝑢
(𝑡); 𝑡 ≥ 0} is an 𝐹-martingale.

Proof. We get from (43) that

𝐸 [𝑀
𝑢 (𝑡) | 𝐹

𝑠
]

= 𝐸 [
exp (−𝑟 (𝑢 + 𝑌 (𝑡)))

exp (𝑡 (𝜆ℎ (𝑟) − 𝑟𝑐))
| 𝐹

𝑠
]

= 𝐸[
exp (−𝑟 (𝑢 + 𝑌 (𝑠)))

exp (𝑠 (𝜆ℎ (𝑟) − 𝑟𝑐))
⋅

exp (−𝑟 (𝑌 (𝑡) − 𝑌 (𝑠)))

exp [(𝜆ℎ (𝑟) − 𝑟𝑐) (𝑡 − 𝑠)]
| 𝐹

𝑠
]

= 𝑀
𝑢 (𝑠) 𝐸 [

exp (−𝑟 (𝑌 (𝑡) − 𝑌 (𝑠)))

exp [(𝜆ℎ (𝑟) − 𝑟𝑐) (𝑡 − 𝑠)]
| 𝐹

𝑠
]

= 𝑀
𝑢 (𝑠) .

(45)

The proof is ended.

Choose 𝑡
0
< ∞ and consider 𝑡

0
∧ 𝑇

𝑢
which is a bounded

𝐹-stopping time. We get from Doob’s stopping theorem that

𝑒
−𝑟𝑢

= 𝑀
𝑢 (0) = 𝐸

𝐹
0 [𝑀

𝑢
(𝑡
0
∧ 𝑇

𝑢
)]

= 𝐸
𝐹
0 [𝑀

𝑢
(𝑡
0
∧ 𝑇

𝑢
) | 𝑇

𝑢
≤ 𝑡

0
] 𝑃

𝐹
0 (𝑇

𝑢
≤ 𝑡

0
)

+ 𝐸
𝐹
0 [𝑀

𝑢
(𝑡
0
∧ 𝑇

𝑢
) | 𝑇

𝑢
> 𝑡

0
] 𝑃

𝐹
0 (𝑇

𝑢
> 𝑡

0
)

≥ 𝐸
𝐹
0 [𝑀

𝑢
(𝑡
0
∧ 𝑇

𝑢
) | 𝑇

𝑢
≤ 𝑡

0
] 𝑃

𝐹
0 (𝑇

𝑢
≤ 𝑡

0
)

= 𝐸
𝐹
0 [𝑀

𝑢
(𝑇

𝑢
) | 𝑇

𝑢
≤ 𝑡

0
] 𝑃

𝐹
0 (𝑇

𝑢
≤ 𝑡

0
) .

(46)

Using 𝑢+𝑌(𝑇
𝑢
) ≤ 0 on {𝑇

𝑢
< ∞}, the lower boundwas shown

to be given by

𝐸
𝐹
0 [𝑀

𝑢
(𝑇

𝑢
) | 𝑇

𝑢
≤ 𝑡

0
]

= 𝐸
𝐹
0 [

exp (−𝑟 (𝑢 + 𝑌 (𝑇
𝑢
)))

exp (𝑇
𝑢 (𝜆ℎ (𝑟) − 𝑟𝑐))

| 𝑇
𝑢
≤ 𝑡

0
]

≥ 𝐸
𝐹
0 [

1

exp (𝑇
𝑢 (𝜆ℎ (𝑟) − 𝑟𝑐))

| 𝑇
𝑢
≤ 𝑡

0
]

≥ inf
0≤𝑡≤𝑡

0

[
1

exp (𝑡 (𝜆ℎ (𝑟) − 𝑟𝑐))
] .

(47)

Thus we have

𝑃
𝐹
0 (𝑇

𝑢
≤ 𝑡

0
) ≤

𝑒−𝑟𝑢

𝐸𝐹0 [𝑀
𝑢
(𝑇

𝑢
) | 𝑇

𝑢
≤ 𝑡

0
]

≤ 𝑒
−𝑟𝑢 sup

0≤𝑡≤𝑡
0

{exp [𝑡 (𝜆ℎ (𝑟) − 𝑟𝑐)]} .

(48)
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and, by taking expectation,

𝜓 (𝑢, 𝑡
0
) = 𝑃 (𝑇

𝑢
≤ 𝑡

0
)

≤ 𝑒
−𝑟𝑢

𝐸{ sup
0≤𝑡≤𝑡

0

exp [𝑡 (𝜆ℎ (𝑟) − 𝑟𝑐)]} .
(49)

When 𝑡
0
󳨀→ ∞ in the above equation, we get

𝜓 (𝑢) ≤ 𝑒
−𝑟𝑢

𝐸{sup
𝑡≥0

exp [𝑡 (𝜆ℎ (𝑟) − 𝑟𝑐)]} . (50)

We now want to choose 𝑟 as large as possible under the
restriction 𝐸{sup

𝑡≥0
exp[𝑡(𝜆ℎ(𝑟) − 𝑟𝑐)]} < ∞. Let 𝑅 denote

that value, named adjustment coefficient of surplus process
(14).

Since

𝐸{sup
𝑡≥0

exp [𝑡 (𝜆ℎ (𝑟) − 𝑟𝑐)]}

= 𝑝
1
sup
𝑡≥0

exp [𝑡 (𝜆
1
ℎ (𝑟) − 𝑟𝑐)]

+ 𝑝
2
sup
𝑡≥0

exp [𝑡 (𝜆
2
ℎ (𝑟) − 𝑟𝑐)]

=̂𝑝
1
sup
𝑡≥0

𝑒
𝑡𝑔
1
(𝑟)

+ 𝑝
2
sup
𝑡≥0

𝑒
𝑡𝑔
2
(𝑟)

,

(51)

where 𝑔
𝑖
(𝑟) = 𝜆

𝑖
ℎ(𝑟) − 𝑟𝑐, 𝑖 = 1, 2, the two terms of the

right side in the above equality are both positive, which
corresponds to restrict

𝑔
1 (𝑟) ≤ 0, 𝑔

2 (𝑟) ≤ 0. (52)

Since

𝑔
1 (𝑟) ≥ 𝑔

2 (𝑟) , (53)

thus we just need to restrict

𝑔
1 (𝑟) ≤ 0. (54)

Then we have

𝑅 = sup {𝑟 | 𝑔
1 (𝑟) ≤ 0} . (55)

Theorem 12. The ultimate ruin probability meets the inequal-
ity

𝜓 (𝑢) ≤ 𝑒
−𝑅𝑢

, (56)

where𝑅 is the only positive solution of𝑔
1
(𝑟) = 0, named adjust-

ment coefficient.

Proof. For 𝑔
1
(𝑟) = 𝜆

1
ℎ(𝑟) − 𝑟𝑐, we have

𝑔
1 (0) = 0, 𝑔

󸀠

1
(𝑟) = 𝜆

1
ℎ
󸀠
(𝑟) − 𝑐. (57)

Therefore

𝑔
󸀠

1
(0) = 𝜆

1
ℎ
󸀠
(0) − 𝑐 = 𝜆

1
𝜇 − 𝑐 < 0. (58)

Then there exists small enough Δ𝑟 ∈ (0, 𝑟
∞

) such that
𝑔
1
(Δ𝑟) < 0. Further 𝑔

1
(𝑟) 󳨀→ +∞ when 𝑟

∞
< +∞ and

𝑟 ↑ 𝑟
∞
.

When 𝑟
∞

= +∞, since 𝑀
𝑍
(𝑟) = 1 + 𝑟𝜇

1
+ 𝑟2𝜇

2
/2 + ⋅ ⋅ ⋅ >

𝑟2𝜇
2
/2, where 𝜇

𝑗
is the 𝑗thmoment of the claim amount {𝑍

𝑘
},

then

𝑔
1 (𝑟) = 𝜆

1
𝑀

𝑍 (𝑟) − 𝜆
1
− 𝑟𝑐

>
𝜆
1
𝜇
2

2
𝑟
2
− 𝜆

1
− 𝑟𝑐 󳨀→ +∞, (𝑟 󳨀→ +∞) .

(59)

Thus there must exist 𝑟∗ ∈ (0, 𝑟
∞

) such that 𝑔
1
(𝑟∗) = 0. And

from 𝑔󸀠󸀠
1
(𝑟) = 𝜆

1
ℎ󸀠󸀠(𝑟) > 0, we know 𝑔

1
(𝑟) is a lower convex

function.
Then 𝑔

1
(𝑟) < 0 for 0 < 𝑟 < 𝑟∗ and 𝑔

1
(𝑟) > 0 for 𝑟∗ < 𝑟 <

𝑟
∞
.
Therefore there exists the only positive solution of 𝑔

1
(𝑟) =

0; let 𝑟∗ denote that value. From (55) we know 𝑅 = 𝑟∗, so we
get 𝜓(𝑢) ≤ 𝑒−𝑅𝑢.

The proof is ended.

3.5. Boundary of the Adjustment Coefficient 𝑅. The exact
value of adjustment coefficient 𝑅 generally cannot be deter-
mined by 𝑔

1
(𝑟) = 0, but because of its great significance to

estimate the upper bound of the ruin probability, we estimate
the boundary of the adjustment coefficient 𝑅.

Theorem 13. Theadjustment coefficient𝑅meets the inequality

𝑅 <
2 (𝑐 − 𝜆

1
𝜇)

𝜆
1
(𝜇2 + 𝜎2)

. (60)

Proof. From [7] we know 𝑅 < 2(𝑐 − 𝜆
1
𝜇)/𝜆

1
𝜇
2
; then we can

get the conclusion.
The proof is ended.

Form the above theorem and the expression of the relative
safety loadings 𝜌, 𝜌

1
, we get

𝑅 <
2 (𝑐 − 𝜆

1
𝜇)

𝜆
1
(𝜇2 + 𝜎2)

=
2𝜌

1
𝜆
1
𝜇

𝜆
1
(𝜇2 + 𝜎2)

=
2𝜌

1
𝜇

𝜇2 + 𝜎2
<

2𝜌𝜇

𝜇2 + 𝜎2
.

(61)

The result shows that the upper bound of 𝑅 can be only
defined by the one- or two-order moment of individual
claim amount and the relative safety loading; while having
nothing to do with the Poisson parameter, this case have its
convenience in use.

Theorem 14 (see [7]). If the individual claim amount {𝑍
𝑘
} has

the upper bound 𝑊, that is, 𝑍
𝑘
≤ 𝑊, we have

𝑅 >
1

𝑊
ln 𝑐

𝜆
1
𝜇

=
1

𝑊
ln (1 + 𝜌

1
) . (62)

The result indicates that, under the conditions of the the-
orem, the lower bound of𝑅 can be only defined by the relative
safety loading 𝜌

1
and the upper bound of individual claim

amount.
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When the exact value of 𝑅 cannot be determined by the
equation 𝑔

1
(𝑟) = 0, we can solve its approximate solution by

the numerical method, and using these two boundaries as the
initial values for iteration, we can quickly find the approxi-
mate solution satisfying requirements of certain accuracy.

3.6.The Probability of Survival. Except for a few special cases,
generally, complicated calculation is needed to get the adjust-
ment coefficient values. Through the following discussion on
integrodifferential equations satisfied by survival probability,
we can avoid the computation of the adjustment coefficient.

Let Φ(𝑢) = 1 − 𝜓(𝑢); then Φ(𝑢) indicates survival proba-
bility.

Since the number of claim process {𝑁(𝑡); 𝑡 ≥ 0} about 𝜆 is
a conditional renewal process and will not be ruined during
the period of (0, 𝑆

1
), then we get

Φ (𝑢)

= 𝐸 [𝑃 (𝑌 (𝑡) ≥ 0, ∀𝑡 ≥ 0 | 𝑆
1
, 𝑍

1
, 𝜆)]

= 𝐸 {𝐸 [Φ (𝑢 + 𝑐𝑆
1
− 𝑍

1
) | 𝜆]}

= 𝐸{∫
∞

0

𝜆𝑒
−𝜆𝑡

∫
𝑢+𝑐𝑡

0

Φ (𝑢 + 𝑐𝑡 − 𝑧) 𝑑𝐹 (𝑧) 𝑑𝑡}

= ∫
∞

0

(𝑝
1
𝜆
1
𝑒
−𝜆
1
𝑡
+ 𝑝

2
𝜆
2
𝑒
−𝜆
2
𝑡
)∫

𝑢+𝑐𝑡

0

Φ (𝑢 + 𝑐𝑡 − 𝑧) 𝑑𝐹 (𝑧) 𝑑𝑡.

(63)

Let

𝑥 = 𝑢 + 𝑐𝑡. (64)

Then we have
Φ (𝑢)

=
𝑝
1
𝜆
1

𝑐
𝑒
𝜆
1
𝑢/𝑐

∫
∞

𝑢

𝑒
−𝜆
1
𝑥/𝑐

∫
𝑥

0

Φ (𝑥 − 𝑧) 𝑑𝐹 (𝑧) 𝑑𝑥

+
𝑝
2
𝜆
2

𝑐
𝑒
𝜆
2
𝑢/𝑐

∫
∞

𝑢

𝑒
−𝜆
2
𝑥/𝑐

∫
𝑥

0

Φ (𝑥 − 𝑧) 𝑑𝐹 (𝑧) 𝑑𝑥.

(65)

Let two terms of the hand side in the above equality be, res-
pectively, Φ

1
(𝑢) and Φ

2
(𝑢); then Φ(𝑢) = Φ

1
(𝑢) + Φ

2
(𝑢).

Theorem 15. The integrodifferential equations assured by
Φ
1
(𝑢) and Φ

2
(𝑢) are

Φ
󸀠

1
(𝑢) =

𝜆
1

𝑐
Φ
1 (𝑢)

−
𝑝
1
𝜆
1

𝑐
∫
𝑢

0

[Φ
1 (𝑢 − 𝑧) + Φ

2 (𝑢 − 𝑧)] 𝑑𝐹 (𝑧)

Φ
󸀠

2
(𝑢) =

𝜆
2

𝑐
Φ
2 (𝑢)

−
𝑝
2
𝜆
2

𝑐
∫
𝑢

0

[Φ
1 (𝑢 − 𝑧) + Φ

2 (𝑢 − 𝑧)] 𝑑𝐹 (𝑧) .

(66)

Proof. From (65) and the hypothesis of Φ
1
(𝑢) and Φ

2
(𝑢), by

taking derivation, we can get the above result.
The proof is ended.

Φ
1
(𝑢) andΦ

2
(𝑢) are calculated using the above equations;

thus the expression of Φ(𝑢) can be obtained. According to
the above method to obtain the survival probability, we can
immediately get the expression of ruin probability, and then
the calculation of the adjustment coefficient can be avoided.
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