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ABSTRACT
The digestive tract of mammals and other animals is colonized by trillions of

metabolically-active microorganisms. Changes in the gut microbiota have been

associated with obesity in both humans and laboratory animals. Dietary

modifications can often modulate the obese gut microbial ecosystem towards a more

healthy state. This phenomenon should preferably be studied using dietary

ingredients that are relevant to human nutrition. This study was designed to evaluate

the influence of whole-wheat, a food ingredient with several beneficial properties, on

gut microorganisms of obese diabetic mice. Diabetic (db/db) mice were fed standard

(obese-control) or whole-wheat isocaloric diets (WW group) for eight weeks;

non-obese mice were used as control (lean-control). High-throughput sequencing

using the MiSeq platform coupled with freely-available computational tools and

quantitative real-time PCR were used to analyze fecal bacterial 16S rRNA gene

sequences. Short-chain fatty acids were measured in caecal contents using

quantitative high-performance liquid chromatography photo-diode array analysis.

Results showed no statistical difference in final body weights between the

obese-control and the WW group. The bacterial richness (number of Operational

Taxonomic Units) did not differ among the treatment groups. The abundance of

Ruminococcaceae, a family containing several butyrate-producing bacteria, was

found to be higher in obese (median: 6.9%) and WW-supplemented mice (5.6%)

compared to lean (2.7%, p = 0.02, Kruskal-Wallis test). Caecal concentrations

of butyrate were higher in obese (average: 2.91 mmol/mg of feces) but especially

in WW-supplemented mice (4.27 mmol/mg) compared to lean controls

(0.97 mmol/mg), while caecal succinic acid was lower in the WW group compared

to obese but especially to the lean group. WW consumption was associated with

∼3 times higher abundances of Lactobacillus spp. compared to both obese and

lean control mice. Analysis of weighted UniFrac distances revealed a distinctive

clustering of lean microbial communities separately from both obese and
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WW-supplemented mice (p = 0.001, ANOSIM test). Predictive metagenome

analysis revealed significant differences in several metabolic features of the

microbiota among the treatment groups, including carbohydrate, amino acids and

vitamin metabolism (p < 0.01, Kruskal-Wallis test). However, obese andWW groups

tended to share more similar abundances of gene families compared to lean mice.

Using an in vivo model of obesity and diabetes, this study suggests that daily

WW supplementation for eight weeks may not be enough to influence body weight

or to output a lean-like microbiome, both taxonomically and metabolically.

However, WW-supplementation was associated with several statistically significant

differences in the gut microbiome compared to obese controls that deserve further

investigation.

Subjects Bioinformatics, Food science and technology, Microbiology, Nutrition,

Metabolic sciences

Keywords Fecal microbiota, High-throughput sequencing, Metabolic pathways, Obesity,

Whole-wheat

INTRODUCTION
Obesity is an epidemic with catastrophic consequences for the health of millions of people

around the globe. Different strategies can help reduce body weight including changes

in exercise and dietary habits, yet many patients genuinely struggle to successfully decrease

their body weight due to multiple interrelated factors (Gupta, 2014).

The mammalian digestive tract is a complex organ that has been constantly co-evolving

with trillions of microorganisms (the gut microbiota) to combat pathogens and maximize

food digestion for at least 600 million years. Despite its general resilience, the gut

microbiota is still susceptible to changes in dietary and other life habits, some of which

can lead to imbalances and consequently to disease (Lozupone et al., 2012). For

instance, substantial evidence has been published showing an association between obesity

and changes in gut microbial populations and its metabolism of dietary and

endogenous compounds (Delzenne & Cani, 2011). Interestingly, the changes in gut

microbial communities between lean and obese individuals are not irreversible

(Turnbaugh et al., 2008) with diet being the most practical alternative to reestablish

microbial equilibrium within the gut. Understanding changes in gut microorganisms in

response to dietary modifications is essential to develop effective dietary strategies to help

obese patients.

Growing evidence shows that the consumption of specific dietary ingredients or

supplements such as probiotics, prebiotics, polyphenols, as well as whole-grains has the

potential of modifying gut health parameters in obese individuals, both in humans

and animal models (Katcher et al., 2008; Noratto et al., 2014; Petschow et al., 2013;

Vitaglione et al., 2015). Whole-Wheat (WW) is often recommended by medical nutritionists

as part of a healthy diet for both overweighed and lean individuals. While several

investigations have previously addressed the nutritional benefits of consuming WW

(Stevenson et al., 2012), very few studies have researched the potential of either WWor its
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individual nutrients to alter the gut microbiota of lean or obese individuals (Neyrinck et al.,

2011) or as part of dietary management to treat obesity. One study investigated the effect of

replacing refined wheat with whole-grainwheat for 12 weeks on body weight and fat mass in

overweighed women (Kristensen et al., 2011). This short-period of 12 weeks was enough

to significantly reduce percentage fat mass but no body weights. Here we show that an

8-week consumption period of an isocaloric WW diet did not significantly change body

weights in obese-diabetic mice. Overall, obese mice under WW-supplemented diet showed

similarities to obese controls with regards to gut microbial composition and predicted

metabolic profile. The effect of WW was mostly observed on caecal concentrations of

butyrate and succinate and a few bacterial groups such as Lactobacillus. The results may have

implications in clinical dietary management of obesity using WW.

METHODS
Study design
The Institutional Animal Care Use Committee from Washington State University

approved all experimental procedures (animal protocol approval number: 04436-001).

Two strains of male mice were used in this study, BKS.Cg- + Leprdb/+Leprdb/OlaHsd obese

diabetic (db/db), and lean BKS.Cg-Dock7m +/+ Leprdb/OlaHsd (Harlan Laboratories,

Kent, WA). Animals were purchased at 5–6 weeks of age and maintained in ventilated rack

system with food and water provided ad libitum throughout the study. We received

11 mice for the lean group and 10 mice from all other groups. After 7 days of

acclimatization, obese mice were randomly divided into two groups (n = 10 each) namely

obese (AIN-93 G Purified Rodent Diet) and WW (whole-wheat supplemented diet). The

wild type mice group (n = 11) was named lean (AIN-93 Diet). Diets were made by Dyets

Inc. (Bethlehem, PA) (Table 1). Four or five mice per cage were housed in an

environment-controlled room (23 �C, 12 hours dark-light cycle). All mice were visually

inspected every day and body weight was recorded from all animals once a week.

Fecal collection and DNA extraction
Fresh distal colon contents (see qPCR analysis below) and fecal samples were obtained

from all mice at the end of the study (8 weeks) and stored at −80 �C prior to DNA and

16S rRNA gene profiling analysis. Total DNA was extracted from at least two different

fecal pellets weighting approximately 200 mg. Following bead-beating, the QIAamp DNA

Stool Mini Kit (Qiagen Inc., Valencia, CA, USA) was used for DNA extraction following

the manufacturer’s instructions. DNA concentration and purity was determined using a

NanoDrop Spectrophotometer (Thermo Scientific, Wilmington, DE, USA) and diluted to

a working concentration of 5 ng/mL.

High-throughput sequencing of 16S rRNA genes
Amplification and sequencing were performed as described elsewhere (Bokulich

et al., 2014). Briefly, the V4 semi-conserved region of bacterial 16S rRNA genes was

amplified using primers F515 (5′‐GTGCCAGCMGCCGCGGTAA‐3′) and R806
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(5′‐GGACTACHVGGGTWTCTAAT‐3′), with the forward primer modified to contain a

unique 8-nt barcode and a 2-nt linker sequence at the 5′ terminus. Amplicons were

combined into one pooled sample and submitted to the University of California Davis

Genome Center DNA Technologies Core for Illumina paired-end library preparation,

cluster generation, and 250-bp paired-end sequencing on an Illumina MiSeq instrument

in one runs. For data analysis, raw Illumina fastq files were demultiplexed, quality filtered,

and analyzed using the freely available Quantitative Insights into Microbial Ecology

(QIIME) Virtual Box v.1.8.0 (Caporaso et al., 2010). Operational Taxonomic Units

(OTUs) were assigned using two different approaches: first, using UCLUST v.1.2.22

(Edgar, 2010) as implemented in QIIME using the open-reference clustering algorithm

described in (Rideout et al., 2014) for alpha and beta diversity analyses; and second, using

the pick_closed_reference_otus.py QIIME script for further analysis using PICRUSt (see

Predicted metabolic profiles below). The Greengenes 13_5 97% OTU representative 16S

rRNA gene sequences was used as the reference sequence collection (DeSantis et al., 2006).

Alfa and beta diversity analyses were performed using 3000 random sequences per sample

(lowest number of sequences in a sample after demultiplexing, filtering and OTU

picking). Raw sequences were uploaded into the Sequence Read Archive at NCBI

(accession number: PRJNA281761). The trim.seqs command in MOTHUR (Schloss et al.,

2009) was used for splitting original fastq files per sample for uploading to SRA.

Predicted metabolic profiles
OTUs from the closed_reference script were normalized and used to predict metagenome

functional content using the online Galaxy version of Phylogenetic Investigation of

Communities by Reconstruction of Unobserved States (PICRUSt) (Langille et al., 2013).

PICRUSt uses existing annotations of gene content as well as 16S copy numbers from

reference microbial genomes in the IMG database (Markowitz et al., 2012) and a

Table 1 Formulation of experimental diets (g/100 g).

Ingredients Lean and obese diet Wheat diet

Casein, high nitrogen 20 0.0

L-Cysteine 0.3 0.3

Whole-wheat meal 0.0 87.94

Soybean oil 7.0 7.0

Sucrose 10 0.0

Cornstarch 39.74 0.0

Dyetrose 13.2 0.0

t-Butylhydroquinone 0.0014 0.0014

Cellulose 5 0.0

Mineral mix #210025 3.5 3.5

Vitamin mix #310025 1.0 1.0

Choline bitartrate 0.25 0.25

Kcal/100 g 376.00 387.76
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functional classification scheme to catalogue the predicted metagenome content. The

current galaxy version supports three types of functional predictions; this current study

used the popular KEGG Orthologs (Kanehisa et al., 2012).

Quantitative real-time PCR (qPCR) analysis
DNA was extracted from distal colon content using the ZR Fecal DNA MiniPrepTM kit

following the manufacturer’s protocol (Zymo Research, Irvine, CA, USA). qPCR was used

to detect specific bacterial groups as described elsewhere (Noratto et al., 2014). Table 2

shows the primers sequences used for all qPCR analyses.

Measurement of Short Chain Fatty Acids (SCFAs) in caecal contents
SCFAs were quantified as reported elsewhere (Campos et al., 2012). Briefly, samples were

analyzed by an HPLC-PDA system using an Aminex HPX-87H strong cation-exchange

resin column (300 � 7.8 mm) and fitted with an ion exchange microguard refill cartridge

(Bio-Rad, Hercules, CA, USA). The HPLC-PDA system consisted of a Water 2695

Separation Module (Waters, Milford, MA), which was equipped with a Water 2996

Photodiode Array detector (PDA). Samples (20 mL) were eluted isocratically with 5 mM

sulfuric acid at 0.6 mL/min, and the column temperature was held at 50 �C. Sodium
butyrate, acetic acid, oxalic acid, and succinic acid were identified and quantified by

comparing retention time and UV-Visible spectral data to standards.

Statistical analysis
ANOVA and the non-parametric alternative Kruskal-Wallis test were used to analyze

final body weights and SCFAs concentrations, respectively. Multiple-comparisons were

performed using Tukey and Mann-Whitney tests. The Bonferroni (for Mann-Whitney

tests) and False Discovery Rate (for Tukey’s tests) corrections were used to adjust for

multiple comparisons. Analysis of Similarities (ANOSIM) was used to test for clustering

of microbial communities using weighted and unweighted UniFrac distance matrices.

QIIME v.1.8.0, R v.3.0.3 (R Core Team, 2014), PAST (Hammer, Harper & Ryan, 2001)

and Excel were used for statistics and graphics. The Linear Discriminant Analysis (LDA)

Effect Size (LEfSe) method was used to assess differences in microbial communities

using a LDA score threshold of 3 (Segata et al., 2011). STAMP (Parks & Beiko, 2010) was

used to visualize and analyze the PICRUSt data with ANOVA and False Discovery

Rate. Unless otherwise noted, an alpha of 0.05 was considered to reject null

hypotheses.

RESULTS
One mouse in the obese group died for reasons unrelated to this study. At the end of the

study, there was a significant (p< 0.01, ANOVA) difference in bodyweight between the lean

(average: 30.6 ± 2.2 g) and both the obese (46.1 ± 2.8 g) and WW groups (45.3 ± 5.8 g).

WW consumptionwas not associated with a lower body weight compared to obese control

group (p = 0.96, Tukey’s test).
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Fecal microbiota composition
A total of 8686 different OTUs were detected using the open reference algorithm described

by Rideout et al. (2014). On the other hand, the closed_reference method used to generate

data for PICRUSt (see PICRUSt below) only yielded 1302 OTUs. Fecal microbial

composition of all mice was mostly comprised by Firmicutes (average: 58.7% across all

samples) and Bacteroidetes (average: 32.8%) (Fig. 1). Other less abundant Phyla were

Actinobacteria (∼4%), Proteobacteria (∼3%), Verrucomicrobia (∼0.8%) and others (Fig. 1).

There was no statistical difference in relative abundance of the two most abundant phyla

(Firmicutes and Bacteroidetes), partly because of the high variability among individual

mice. The ratio Bacteroidetes/Firmicutes was lower in the lean (median: 38.7%) compared

to the obese group (median: 85.3%) and theWW group (median: 75.4%) but this difference

did not reach significance (p = 0.12, Kruskal-Wallis). Several statistical differences were

found in low abundant phyla. Actinobacteria and Verrucomicrobia were higher in lean,

Cyanobacteria, TM7 and Tenericutes were higher in the WW group, and Deferribacteres

was higher in obese-control (p < 0.01, Kruskal-Wallis, Fig. 1).

Table 2 Oligonucleotides used in this study for qPCR analyses.

qPCR primers Sequence (5′‐3′) Target Reference

HDA1 ACTCCTACGGGAGGCAGCAGT All bacteria (V2–V3 regions,

position 339–539 in the E. coli 16S gene)

Walter et al. (2000)

HDA2 GTATTACCGCGGCTGCTGGCAC

Bact834F GGARCATGTGGTTTAATTCGATGAT Bacteroidetes (Phylum) Guo et al. (2008)

Bact1060R AGCTGACGACAACCATGCAG

928F-Firm TGAAACTYAAAGGAATTGACG Firmicutes (Phylum) Bacchetti et al. (2011)

1040firmR ACCATGCACCACCTGTC

BifF GCGTGCTTAACACATGCAAGTC Bifidobacterium (genus) Penders et al. (2005)

BifR CACCCGTTTCCAGGAGCTATT

E. coli F CATGCCGCGTGTATGAAGAA E. coli Huijsdens et al. (2002)

E. coli R CGGGTAACGTCAATGAGCAAA

TuriciF CAGACGGGGACAACGATTGGA Turibacter (genus) Suchodolski et al. (2012)

TuriciR TACGCATCGTCGCCTTGGTA

RumiF ACTGAGAGGTTGAACGGCCA Ruminococcaceae (family) Garcia-Mazcorro et al. (2012)

RumiR CCTTTACACCCAGTAAWTCCGGA

FaecaliF GAAGGCGGCCTACTGGGCAC Faecalibacterium (genus) Garcia-Mazcorro et al. (2012)

FaecaliR GTGCAGGCGAGTTGCAGCCT

Eco1457-F CATTGACGTTACCCGCAGAAGAAGC Enterobacteriaceae (family) Bartosch et al. (2004)

Eco1652-R CTCTACGAGACTCAAGCTTGC

V1F CAGCACGTGAAGGTGGGGAC Akkermansia muciniphila Collado et al. (2007)

V1R CCTTGCGGTTGGCTTCAGAT

PrevF CACCAAGGCGACGATCA Prevotella (genus) Larsen et al. (2010)

PrevR GGATAACGCCYGGACCT

Bfr-F CTGAACCAGCCAAGTAGCG Bacteroides fragilis Liu et al. (2003)

Bfr-R CCGCAAACTTTCACAACTGACTTA
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LEfSe showed statistical significant differences for several microbial groups at lower

taxonomic levels (Fig. 2). Among the bacterial groups that showed differences indicating an

effect of WW-supplementation include the genus Lactobacillus, the class

Gammaproteobacteria and the controversial S24-7 family http://groups.google.com/forum/

#!topic/qiime-forum/Ds75aZoVrFY (Fig. 2). Other differences in bacterial abundances

suggested that WW-supplementation did not generate a lean-like microbiome. For

example, the genera Bifidobacterium, Allobaculum and Akkermansia were higher in lean

compared to both obese and WW group (Fig. 2). Also, the family Ruminococcacea was

more similar between obese (median: 6.9%) and WW-supplemented mice (5.6%)

compared to lean (2.7%). Despite these differences, overall the fecal microbial composition

of obese-control and WWmice was more similar to each other compared to lean although

WW-supplementation yielded a unique pattern of bacterial abundances that did not

necessarily cluster together with all obese samples (Fig. 3).

Alpha diversity
There was no significant difference in number of OTUs and Chao1 diversity index.

Interestingly, samples from the obese group showed a more disperse distribution of

Figure 1 Box plots. Composition of fecal microbiota at the phylum level in the Lean (n = 11), obese

control (Obese, n = 9) and whole-wheat (Wheat, n = 10) group. Boxes represent the 25–75 quartiles, the

median is shown with a vertical line inside the box. Values outside 1.5 times the box height are shown as

circles; values outside 3 times the box height are shown as stars. The differences in relative abundance of

Firmicutes, Bacteroidetes and Proteobacteria did not reach statistical significance (see main text for

details).
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OTUs (Fig. 4). Rarefied plots of number of OTUs showed that more than the 3000

sequences per sample used in this study are needed to fully describe the fecal microbiota

of all mice.

Beta-diversity
Principal Coordinate Analysis (PCoA) of weighted and unweighted UniFrac metrics

showed different clustering of microbial communities. Weighted (which takes

phylogenetic information as well as sequence abundance into account) metrics clearly

showed a different microbial structure in lean individuals compared to obese and WW

groups (ANOSIM, p = 0.001) (Fig. 5). This was expected based on the clustering of lean

subjects using relative abundance of sequence reads (Fig. 3). On the other hand, the

qualitative (does not take sequence abundance into account) unweighted UniFrac analysis

shows that the microbiota of the WW group clustered separately from the lean and obese

groups (ANOSIM, p = 0.001) (Fig. 5).

Figure 2 Bar charts of most significant results using the LDA Effect Size method (LEfSe). LefSe identifies those bacterial groups that showed

statistical significance effect size and associate them with the class (in this study treatment group) with the highest median. (A) lean; (B) obese-

control; (C) WW-supplemented obese mice. Dotted lines represent medians; straight lines represent averages.
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Predicted metabolic profile
The taxa predicted by 16S RNA marker gene sequencing was used to predict the

functional profile of the fecal microbiome in all three experimental groups. Using a

p < 0.01 for ANOVA tests in STAMP, several statistical differences were found (Table 3).

Overall, obese and WW groups tended to share more similar abundances of gene

families compared to lean mice, an observation that supports the differences in

bacterial abundances.

qPCR assessment of microbiota in distal colon contents
We performed qPCR analysis for bacterial groups of interest to health in distal colon

contents. Similarly to the sequencing results from fecal samples, qPCR results

revealed several differences in relative abundance for different bacterial groups

(Fig. 6).

Figure 3 Heatmap. Heatmap of relative abundance of the most abundant bacterial taxa at the family

level (x axis, ordered by abundance) in Lean (n = 11), Obese (n = 9) and Wheat (n = 10) group. This

figure shows that lean subjects clustered separately from obese and WW subjects. Clustering was per-

formed using Bray-Curtis distances in R v.3.2.2.
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SCFAs caecal concentrations
There was a statistically significant difference among the treatment groups for several

SCFAs in caecal contents (Table 4). Butyrate concentrations were higher in theWW group

compared to both the lean and the obese group (p < 0.001, Kruskal-Wallis). Also,

WW consumption was associated with lower succinic acid concentrations (p = 0.009,

Kruskal-Wallis).

DISCUSSION
Obesity is a worldwide epidemic disease that has been associated with changes in the

gut microbiome in many different studies. Consumption of whole grains is often

recommended by medical nutritionists as part of a healthy diet. To our knowledge, this is

Figure 4 Dispersion in number of OTUs detected. (A) shows the relationship between the numbers of

OTUs and the proportion of samples containing those OTUs for each treatment group. These plots show

that more obese control samples contained higher numbers of OTUs compared to whole-wheat.Lines

were used to illustrate 50% of the samples (vertical line) and 1000 OTUs (horizontal line). (B) shows

boxplots to illustrate the distributions of the number of OTUs for each treatment group (boxes represent

the 25–75 quartiles, the median is shown with a horizontal line inside the box).
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the first study evaluating the in vivo effect of WW consumption on fecal bacterial

community structure of obese diabetic mice, adding valuable information to the literature

with regard to the use and development of dietary strategies to help obese patients.

Ley et al. (2005) showed that lean mice have more Bacteroidetes and less Firmicutes

compared to obese mice, a finding that has been reported by several other research groups.

However, it is important to note that these observations were division-wide (in other

words, there was no specific subgroup such as families or genera that were present high or

low in abundance) and, more importantly, that other researchers have found either no

difference in Firmicutes and Bacteroidetes between obese and lean (Duncan et al., 2008) or

more Bacteroidetes in obese compared to normal-weight individuals (Zhang et al., 2009).

Interestingly, in this study sequencing showed no statistical difference in the abundance of

both phyla Firmicutes and Bacteroidetes between lean and obese control; nonetheless, two

important aspects must be taken into account. First, obese and WWmice were

consistently more like each other compared to lean mice with regard to the abundance of

both phyla. Also, contrary to the observations by Ley et al. (2005), lean mice had more

Firmicutes and less Bacteroidetes compared to both obese and WWmice, a difference that

did not reach statistical significance. qPCR confirmed the sequencing results about the

Figure 5 Principal Coordinates Analysis plots. Principal Coordinates Analysis (PCoA) plots of weighted (A) and unweighted (B) UniFrac

distance metrics. Please note that each plot gives contrasting results with regards to the clustering of samples.
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abundance of Firmicutes but not Bacteroidetes, maybe due to the use of fecal

(sequencing) or colon (qPCR) contents for bacterial analysis. Regardless, differences in

taxa abundance at the phylum level have little relevance when considering all their

individual groups within. For instance, many bacterial groups at lower taxonomic levels

deserve attention, like the mucin-degrader Akkermansia which has been shown to be

Table 3 Metabolic features in Lean (n = 11), Obese (n = 9) and whole-wheat supplemented (n = 10) mice.

KEGG gene categories

Treatment Groups

p value

Lean Obese Whole-wheat

Level_1 Level_2 Level_3 Mean ± st. dev. Mean ± st. dev. Mean ± st. dev.

Cellular processes Transport and

catabolism

Peroxisome 0.15 ± 0.03a 0.18 ± 0.04a,b 0.23 ± 0.03c 0.001

Environmental

information

processing

Signal transduction Phosphatidylinositol

signaling system

0.11 ± 0.01a 0.08 ± 0.01b 0.10 ± 0.01a,c 0.002

Signaling molecules and

interaction

Ion channels 0.05 ± 0.01a 0.02 ± 0.01b 0.02 ± 0.01b,c <0.001

Genetic information

processing

Replication and repair Base excision repair 0.50 ± 0.06a 0.41 ± 0.03b 0.41 ± 0.04b,c 0.001

Human diseases Infectious diseases Tuberculosis 0.18 ± 0.02a 0.13 ± 0.01b 0.13 ± 0.02b,c 0.001

Cancers Pathways in cancer 0.07 ± 0.01a 0.04 ± 0.00b 0.05 ± 0.00b,c <0.001

Neurodegenerative

diseases

Amyotrophic Lateral

Sclerosis (ALS)

0.02 ± 0.01a 0.03 ± 0.01b 0.04 ± 0.01b,c <0.001

Cancers Renal cell carcinoma 0.03 ± 0.01a 0.01 ± 0.00b 0.01 ± 0.01b,c <0.001

Metabolism Carbohydrate

metabolism

Fructose and mannose

metabolism

1.16 ± 0.19a 0.94 ± 0.08b 0.86 ± 0.12b,c 0.005

Pentose phosphate pathway 0.92 ± 0.05a 0.86 ± 0.07a,b 0.78 ± 0.06c 0.002

Metabolism of cofactors

and vitamins

Porphyrin and chlorophyll

metabolism

0.55 ± 0.15a 0.85 ± 0.13b 0.66 ± 0.14a,c 0.009

Vitamin B6 metabolism 0.17 ± 0.02a 0.20 ± 0.02b 0.22 ± 0.01b,c <0.001

Metabolism of other

amino acids

Selenocompound

metabolism

0.40 ± 0.02a 0.37 ± 0.01b 0.35 ± 0.01b,c <0.001

Cyanoamino acid

metabolism

0.23 ± 0.04a 0.33 ± 0.02b 0.30 ± 0.06b,c 0.002

Beta-alanine metabolism 0.18 ± 0.04a 0.22 ± 0.04 0.28 ± 0.06b 0.005

Carbohydrate

metabolism

C5-branched dibasic acid

metabolism

0.23 ± 0.06a 0.32 ± 0.02b 0.31 ± 0.02b,c 0.003

Biosynthesis of other

secondary metabolites

Phenylpropanoid

biosynthesis

0.12 ± 0.03a 0.20 ± 0.02b 0.17 ± 0.05 0.003

Metabolism of

terpenoids and

polyketides

Biosynthesis of ansamycins 0.14 ± 0.04a 0.11 ± 0.02 0.09 ± 0.02b 0.006

Biosynthesis of other

secondary metabolites

Flavonoid biosynthesis 0.02 ± 0.01a 0.01 ± 0.00b 0.00 ± 0.00b,c <0.001

Stilbenoid, diarylheptanoid

and gingerol biosynthesis

0.01 ± 0.01a 0.00 ± 0.00b 0.00 ± 0.00b,c 0.007

Note:
This table only shows features that reached statistical significant differences (ANOVA, p < 0.1 adjusted for False Discovery Rate in STAMP). Different letters(a,b,c) indicate
statistical significant difference (Tukey’s post-hoc tests, p < 0.05).
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inversely correlated with body weight in rodents and humans (Everard et al., 2013).

Accordingly, both sequencing and qPCR in this current study showed that obese mice had

fewer Akkermansia and WW consumption surprisingly helped to decrease its abundance

even further. Here it is important to note that a higher abundance in feces does not

necessarily imply a higher abundance in the mucus. WW consumption was also associated

with much more Lactobacillus spp., a bacterial genus frequently used in probiotic

formulations, and the genus Allobaculum was practically absent in both obese and

WW groups while lean individuals were heavily colonized by this group. These changes in

bacterial abundances deserve more investigation.

Beta diversity metrics are useful to study similarities of microbiomes, which in

turn have critical consequences for understanding health and disease processes.

Lozupone et al. (2007) explains that quantitative beta-diversity measures (weighted

UniFrac distances) are better for revealing community differences that are due to changes

in relative taxon (OTUs) abundance, while qualitative (unweighted) are most informative

Figure 6 Boxplots. Quantitative real-time PCR (qPCR) results for selected bacterial groups. Results are expressed as relative abundance of 16S

rRNA amplified DNA (all results were normalized to qPCR data for total bacteria). � p < 0.05 against lean; # p < 0.05 against Whole-Wheat (WW).

Table 4 Median (minimum-maximum) for all Short-Chain Fatty Acids (SCFAs). Results are

expressed in mmol/mg of caecal contents.

SCFA Lean Obese Whole-wheat p value

Sodium butyrate 0.97 (0.15–2.65)a 2.91 (1.47–4.35)b 4.27 (3.05–6.26)b,c <0.001

Acetic acid 10.2 (7.7–26.3) 12.0 (8.3–18.7) 15.4 (10.1–31.9) 0.208

Oxalic acid 15.14(6.68–18.91)a 14.60 (8.78–28.01) 9.96 (6.76–12.15)b 0.033

Succinic acid 39.84 (15.29–97.63)a 22.97 (3.86–71.18)a,b 3.12 (0.91–63.36)c 0.009

Note:
Different letters(a,b,c) denote statistical significance. p values come from the Kruskal-Wallis test and multiple
comparisons were performed using the Mann-Whitney test and corrected with the Bonferroni method.
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when communities differ by what can live in them. Most studies report either weighted or

unweighted but few report both. In this study, weighted analysis showed a clear separation

of lean samples from all samples from the obese and WW groups, suggesting that the

numbers of OTUs are an important determinant to separate lean microbiomes from obese

individuals with and without WW. In this study, the results of weighted analysis also show

that animal genetics was the predominant factor to separate microbial communities. On

the other hand, unweighted analysis showed opposite results: lean and obese samples

clustered separately from all samples of the WW group, suggesting that WWhelped create

an environment that favored a phylogenetically different ecosystem. Importantly, the

variation explained by the axes is much lower when using unweighted UniFrac. At this

point, both methods should be considered for explaining the changes in gut microbiomes

in investigations like this study (Lozupone et al., 2007). The discrepancy between the

results of weighted and unweighted results suggests that an 8-week period of WW

consumption helped change the overall environment in the intestinal lumen, thus

modulating what can live and proliferate in it (unweighted results). Thus, the different

environment could promote changes in the abundance of specific taxa (weighted results),

as shown in this study for several bacterial groups. Given that the assessment of microbial

diversity is a major component in microbial ecological studies and closely relates to our

understanding of health and health deviations, we expect others to start inspecting and

reporting both weighted and unweighted UniFrac distance metrics. The use of both

metrics has been shown to be useful in various investigations (Campbell et al., 2015;

Igarashi et al., 2014; Wu et al., 2010).

Microbial butyrate is essential for colon health and lower concentrations of this

fatty acid are usually considered non-optimal for gut health (Donohoe et al., 2011).

Nonetheless, studies have shown that obese individuals actually have higher fecal

butyrate and other SCFAs compared to lean individuals (Fernandes et al., 2014), an

observation that suggests that both lower and higher butyrate concentrations than

normal may be associated with and perhaps aggravate disease. Similarly, obese mice in

this current study (with and without WW supplementation) had higher butyrate

concentrations in caecal contents compared to lean mice. Butyrate-producers are

abundant in the mammalian gut and mainly belong to the family Ruminococcaceae

within the Firmicutes (Louis & Flint, 2009). In this study both sequencing and qPCR

revealed higher fecal Ruminococcaceae in obese and WW groups compared to lean

individuals, thus potentially explaining the higher caecal butyrate concentrations.

Another SCFA that deserves attention is succinic acid, which has been shown to increase

in rats fed a high-fat diet (Jakobsdottir et al., 2013). In this current study, obese mice

had lower concentrations of succinic acid and WW-supplementation seemingly

helped to drastically decrease it. Unfortunately, far more attention has been paid to

butyrate compared to succinate, propionate and other SCFA (Cheng et al., 2013;

Reichardt et al., 2014).

The assessment of microbial metabolic activity in complex ecosystems is hampered in

part by the huge number of microorganisms and the cost of sequencing either whole

genomes or transcriptomes. PICRUSt allows a prediction of the metabolic profile using
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taxa predicted by 16S rRNA gene sequencing. PICRUSt is, however, not exempt of pitfalls:

it only uses information for well-defined 16S sequences and the presence of a given set of

genes does not tell anything about their functional activity depending on the specific

environmental conditions. Supported by the similarities in abundance of most bacterial

groups between obese-control and WW groups, this study showed that 8-week WW

consumption was not enough to make a significant difference in the abundance of

bacterial gene families.

Caveats
This study was designed to obtain preliminary information about the influence of

WW consumption on gut microbial ecology of obese diabetic mice; therefore, we did not

aim to determine the exact compound(s) behind the observed effects. Wheat is a fiber-rich

grain and consumption of fiber alone is associated with changes in the gut microbiome

and the immune system of the host (Bermudez-Brito et al., 2015). Aside from fiber, WW

also contains other bioactive compounds (e.g. polyphenols) that may be responsible for

specific effects on host metabolism, physiology and immune system. For instance, it has

been recently shown that wheat-derived alkylresorcinols were capable of showing

beneficial effects on diet-induced obese mice (Oishi et al., 2015). Interestingly, our group

showed that carbohydrate-free polyphenol-rich juice from plum is capable of impeding

body weight gain in obese Zucker rats (Noratto et al., 2014), a finding that was not

observed with WW consumption in mice in this current study. More research is necessary

to investigate the separate effect of the different nutrients in WW.

SUMMARY
In summary, this study suggests that an 8-week consumption of whole-wheat may not be

enough to exert an effect on body weight and to output a lean-like microbiome using an

in vivo model of obesity and diabetes. However, WW-supplementation was associated

with several statistically significant changes compared to obese controls that deserve

further investigations. These results may or may not apply to obesity in human patients.

Also, our experimental scheme was not designed to address the effect of WW

supplementation on lean mice; whether the observed changes in the gut microbiome and

metabolite concentrations are irrespective of mice phenotype may warrant further

research. The clinical relevance of this present work remains to be determined.

Future directions
In humans, obesity is a multifactorial disease that can be partly controlled with dietary

modifications. This paper adds valuable information to the current literature with regard to

the potential influence of WW consumption on the gut microbiota of obese diabetic mice.

However, research is needed to investigate the effect of WWon obese human individuals.

ACKNOWLEDGEMENTS
The authors would like to express our deepest gratitude to the QIIME, Mothur

and PICRUSt Developers and Help Forums for the creation of such exceptional

Garcia-Mazcorro et al. (2016), PeerJ, DOI 10.7717/peerj.1702 15/20

http://dx.doi.org/10.7717/peerj.1702
https://peerj.com/


computational tools and all the support provided. The authors would also like to thank

Indira Mohanty and Alejandra Mencia for their technical assistance in the analysis of

SCFAs and qPCR.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Washington Gran Commission (Grant number: 3057–

4668). JFGM received financial support from CONACYT (Mexico) through the National

System of Researchers (SNI, for initials in Spanish) program and PRODEP (Mexico).

DAM received support from the Peter J. Shields Endowed Chair. The funders had no role

in study design, data collection and analysis, decision to publish, or preparation of the

manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:

Washington Gran Commission: 3057–4668.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Jose F. Garcia-Mazcorro analyzed the data, wrote the paper, prepared figures and/or

tables, reviewed drafts of the paper.

� Ivan Ivanov analyzed the data, wrote the paper, reviewed drafts of the paper.

� David A. Mills performed the experiments, analyzed the data, contributed reagents/

materials/analysis tools, wrote the paper, reviewed drafts of the paper.

� Giuliana Noratto conceived and designed the experiments, performed the experiments,

analyzed the data, contributed reagents/materials/analysis tools, wrote the paper, reviewed

drafts of the paper.

Animal Ethics
The following information was supplied relating to ethical approvals (i.e., approving body

and any reference numbers):

The Institutional Animal Care Use Committee from Washington State University

approved all experimental procedures (animal protocol approval number: 04436–001).

DNA Deposition
The following information was supplied regarding the deposition of DNA sequences:

NCBI SRA: PRJNA281761.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/

10.7717/peerj.1702#supplemental-information.

Garcia-Mazcorro et al. (2016), PeerJ, DOI 10.7717/peerj.1702 16/20

http://www.ncbi.nlm.nih.gov/bioproject/PRJNA281761
http://dx.doi.org/10.7717/peerj.1702#supplementalnformation
http://dx.doi.org/10.7717/peerj.1702#supplementalnformation
http://dx.doi.org/10.7717/peerj.1702
https://peerj.com/


REFERENCES
Bacchetti DG, Aldred N, Clare AS, Burgess JG. 2011. Improvement of phylum- and class-specific

primers for real-time PCR quantification of bacterial taxa. Journal of Microbiological Methods

86(3):351–356 DOI 10.1016/j.mimet.2011.06.010.

Bartosch S, Fite A, Macfarlane GT, McMurdo ME. 2004. Characterization of bacterial

communities in feces from healthy elderly volunteers and hospitalized elderly patients by using

real-time PCR and effects of antibiotic treatment on the fecal microbiota. Applied

Environmental Microbiology 70(6):3575–3581 DOI 10.1128/AEM.70.6.3575-3581.2004.
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