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Fractional-order time-delay system is thought to be a kind of oscillatory complex systemwhich could not be controlled efficaciously
so far because it does not have an analytical solution when using inverse Laplace transform. In this paper, a type of fractional-order
controller based on numerical inverse Laplace transform algorithm INVLAPwas proposed for thementioned systems by searching
for the optimal controller parameters with the objective function of ITAE index due to the verified nature that fractional-order
controllers were the best means of controlling fractional-order systems. Simulations of step unit tracking and load-disturbance
responses of the proposed fractional-order optimal 𝑃𝐼𝜆𝐷

𝜇

controller (FOPID) and corresponding conventional optimal PID
(OPID) controller have been done on three typical kinds of fractional time-delay system with different ratio between time delay
(𝐿) and time constant (𝑇) and a complex high-order fractional time delay system to verify the availability of the presented control
method.

1. Instruction

Fractional-order calculus, strictly speaking, noninteger-
order calculus, as a part of derivatives mathematics, which is
dealing with arbitrary order derivatives, attracted more and
more attention and developed extensively in numerous fields
in the past few years. It costs a fairly long period of time on the
development of research of fractional calculus applying on
control systems from the 1960s, and until the end of the 20th
century, a number of remarkable achievements have been
obtained by some researchers, for instance, that the CRONE
control principle was proposed by Oustaloup et al. (1995) [1];
Matignon (1996) investigated the stability, controllability, and
observability of fractional-order systems [2, 3]; one of the
notable landmarks on the designing of fractional-order PID
controller was achieved by Podlubny (1998) that he extended
the traditional notion of PID controller into more flexible
structure and made the number of gain variables of PID
controllers increased from 3 to 5 with two extra fractional
differential and integral orders and it was more suited for
the control of noninteger-order systems [4]. In recent years,

fractional calculus has been applied increasingly in various
fields such as mathematics, engineering, biomedicine, and
science [5–8]. At the same time, an increasing number of
dynamic complicated systems and physical phenomena were
described by fractional-order models to represent natural
phenomenon in a better way [9, 10]. Meanwhile, numerous
ways of fractional-order controller design emerged with the
rapid development of fractional-ordermodels. Valério and da
Costa (2006) used Ziegler-Nichols-type rule while designing
a fractional PID controller [11]; Monje et al. (2004) proposed
some tuning rules for robustness to plant uncertainties on
fractional PID controllers [12]; Sadati et al. (2007) have shown
a PSO based approach on fractional controller designing for
SISO or MIMO systems [13]. A RBF neural network based
FOPID controller which trained a large amount of controller
and system parameters by frequency domain robust tuning
approach was designed by Chen et al. (2010) [14].

However, among the existing fractional controller tuning
methods, few of them have been used on fractional plants
with time delay because of the inherent complexities of the
systems and the difficulty on inverse Laplace transforms
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calculating. In this paper, a novel FOPID tuning method
based on the numerical inverse Laplace transform algorithms
is proposed for the time-delay fractional systems, and a set
of noninteger-order time-delay (NIOTD) systems [15] were
tested for universality in the simulation chapter. Pan et al.
(2011) [16] have shown that NIOTD could represent many
higher order systems succinctly and precisely; hence this kind
of simulation would give rise to some meaningful conclu-
sions.The application of numerical inverse Laplace transform
algorithms in fractional calculus has been researched by
Sheng et al. (2011) [17], analytical results of three kinds
of numerical inverse Laplace transform algorithms that is
INVLAP, Gavsteh, and NILT have been compared and it
is proved that the INVLAP algorithm used in this paper
was effective and reliable for fractional-order differential
equations and offered a simple and convenient way to solve
the controller design problem for the complicated fractional-
order systems with time delay.

Laplace transform is considered to be available in solving
integer-order and some ordinary fractional-order differential
[4, 18], and inverse Laplace transform is thought to be a
significant but tough step in using it to solve differential
equations. For a complex system, for example, fractional-or-
der time-delay system, it is unable to accomplish the inverse
Laplace transform analytically by using its definition or
consulting the Laplace transform table [19]. Therefore, the
numerical inverse Laplace transform algorithm is always used
in solving this kind of problems and finding a numerical
result. In this paper, numerical inverse Laplace transform
algorithm was applied in designing a FOPID controller for
NIOTD systems and its availability has been verified by
simulation results.

The rest part of this paper is divided as follows: as a
starting point, numerical inverse Laplace transform algo-
rithm INVLAP and fractional calculus are introduced briefly
in Section 2. And then in Section 3, tuning method of
fractional-order controller, performance index, and opti-
mization means are presented. After that, a series of sim-
ulation illustrations are shown in Section 4 to demonstrate
the effectiveness and robustness of the designed FOPID con-
troller compared with the corresponding OPID controller.
Finally, conclusions are drawn in Section 5.

2. Preliminaries

2.1. Numerical Inverse Laplace Transform Algorithm INVLAP.
Inverse Laplace transform is considered to be a vital but
difficult part in using Laplace transform to solve fractional-
order differential equations, and even some of the differential
equations do not have an analytical solution at all, for
example, fractional-order time-delay systems. That is the
reason that there have been few controllers designed for this
kind of systems; however, actually the mentioned systems are
meaningful and representative in control field; that is also
why numerical inverse Laplace transform algorithm INVLAP
was applied in this paper [20].

The inverse Laplace transform function is of the form

𝑓 (𝑡) = 𝐿
−1
{𝐹 (𝑠)} =

1

2𝜋𝑖
∫

𝜎+𝑖∞

𝜎−𝑖∞

𝐹 (𝑠) 𝑒
𝑠𝑡
𝑑𝑠, (1)

where 𝑠 = 𝜎 + 𝑗𝑤.
Some assumptions were made to be fulfilled:

(i) lim|𝑠|→∞𝐹(𝑠) = 0;
(ii) 𝐹(𝑠) is regular and Re{𝑠} > 0;
(iii) 𝐹(𝑠∗) = 𝐹∗(𝑠), where ∗means complex conjugation.

Then, the exponential function could be simplified by

𝑒
𝑠𝑡
≅ 𝐸 (𝑠𝑡, 𝑎) =

𝑒
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,

(2)

where |𝑒−2𝑎𝑒2𝑠𝑡| ≪ 1 when 𝑎 > 𝜎𝑡 and then 1/(1 − 𝑒−2𝑎𝑒2𝑠𝑡)
could be expanded as a convergent MacLaurin series as
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𝑠𝑡
+

∞

∑

𝑛=1

𝑒
−2𝑛𝑎

𝑒
(2𝑛+1)𝑠𝑡

. (3)

The approximation error of the exponential term can be
represented by the sum term in (3) and it may be suppressed
by the selected value of parameter 𝑎 that
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(4)

𝜀(𝑡, 𝑎) represents the error value of inverse transform
and it could be reduced by changing the value of parameter
𝑎 similarly. The function 𝐸(𝑠𝑡, 𝑎) could be replaced by an
infinite number of rational functions as [18]

1

sinh 𝑧
=
1

𝑧
+ 2𝜋

∞

∑

𝑛=1

(−1)
𝑛

𝑛2𝜋2 + 𝑧2
. (5)

Then, we achieved that

𝐸 (𝑠𝑡, 𝑎) = 𝑒
𝑎
[

1

2 (𝑎 − 𝑠𝑡)
+ (𝑎 − 𝑠𝑡)

∞
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𝑛=0

(−1)
𝑛

𝑛2𝜋2 + (𝑎 − 𝑠𝑡)
2
] .

(6)
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So,

𝑓 (𝑡, 𝑎) =
𝑒
𝑎

2𝜋𝑖
∫

𝜎+𝑖∞

𝜎−𝑖∞

𝐹 (𝑠) [
1
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⋅
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𝑛
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2
]𝑑𝑠.

(7)

Then we substituted the sequence of summation by inte-
gration that

𝑓 (𝑡, 𝑎) =
𝑒
𝑎

2𝜋𝑖
[
1

2
𝐼0 +

∞
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(−1)
𝑛
𝐼𝑛] , (8)

where

𝐼𝑛 = ∫

𝜎+𝑖∞

𝜎−𝑖∞

(𝑎 − 𝑠𝑡) 𝐹 (𝑠)

𝑛2𝜋2 + (𝑎 − 𝑠𝑡)
2
𝑑𝑠, 𝑛 = 0, 1, 2, . . . . (9)

Assume that 𝐺𝑛(𝑠) = 𝑛
2
𝜋
2
+ (𝑎 − 𝑠𝑡)

2, so

𝐼𝑛 = ∫
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𝐻𝑛 (𝑠) 𝑑𝑠. (10)

The integration 𝐼𝑛 has been proved to be equal to the
total value of the residua of 𝐻𝑛(𝑠) in [21]. Then, the roots of
equation 𝐺𝑛(𝑠) = 0 are

𝑠1,2 =
𝑎 ± 𝑛𝜋𝑖

𝑡
. (11)

The path of the integration is easy to be closed and calcu-
lated as
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1
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2
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] .

(12)

And obviously,
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Therefore, we got
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𝑡
)}] .

(14)

There was also another form of expression which was
described by the imaginary part of 𝐹(𝑠) corresponding to the
real part expression in (14), and details could be found in [21].

2.2. Fractional Calculus. The fractional operator is defined as

𝑎𝐷
𝛼

𝑡
=

{{{{{{

{{{{{{

{

𝑑
𝛼

𝑑𝑡𝛼
, 𝑅 (𝛼) > 0,

1, 𝑅 (𝛼) = 0,

∫

𝑡

𝑎

(𝑑𝜏)
(−𝛼)

, 𝑅 (𝛼) < 0.

(15)

The Caputo definition is defined as

𝑎𝐷
𝛼

𝑡
=

1

Γ (𝑚 − 𝛼)
∫

𝑡

𝑎

𝑓
𝑚
(𝜏)

(𝑡 − 𝜏)
𝛼−𝑚+1

𝑑𝜏, (16)

where 𝑚 donates the integer part of 𝛼, 𝑚 = [𝛼] + 1, and Γ(⋅)
is Euler’s gamma function:

Γ (𝑠) = ∫

∞

0

𝑡
𝑠−1
𝑒
−𝑡
𝑑𝑡, (17)

in which if 𝑠 is an integer, it is obtained that

Γ (𝑠 + 1) = 𝑠!. (18)

Then, the Laplace transform of the fractional-order oper-
ator is expressed by

𝐿 [𝐷
𝛼
𝑓 (𝑡)] = 𝑠

𝛼
𝐹 (𝑠) −

𝑚−1

∑

𝑘=0

𝑠
𝑘
[𝐷
𝛼−𝑘−1

𝑓 (𝑡)]
𝑡=0
, (19)

where 𝑚 − 1 ≤ 𝛼 < 𝑚. More fractional-order Laplace trans-
forms could be found in Appendix in [19].

3. Controller Design

3.1. Fractional-Order 𝑃𝐼𝜆𝐷𝜇 Controller. The integral-differ-
ential equation defined the control action of a 𝑃𝐼𝜆𝐷𝜇 con-
troller by

𝑢 (𝑡) = 𝐾𝑝𝑒 (𝑡) + 𝐾𝑖𝐷
−𝜆
𝑒 (𝑡) + 𝐾𝑑𝐷

𝜇
𝑒 (𝑡) . (20)

Then the transfer function of the 𝑃𝐼𝜆𝐷𝜇 controller could
be expressed as

𝐺𝑐 (𝑠) = 𝐾𝑝 +
𝐾𝑖

𝑠𝜆
+ 𝐾𝑑𝑠

𝜇
= 𝑘

(𝑠/𝜔𝑓)
𝜆+𝜇

+ 𝑠𝛿𝑓𝑠
𝜆
/𝜔𝑓 + 1

𝑠𝜆
.

(21)

𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 have the same meaning as the gains
of classical integer-order PID controller are differential and
integral orders, they could be arbitrary and lead to a more
extensive scale of tuning; however, the regulating processes
turn into more complex at the same time. When 𝜆 = 𝜇 = 1, it
presents the traditional integer-order PID controller. Figure 1
shows the different tuning scale of PID and𝑃𝐼𝜆𝐷𝜇 controllers
intuitively [22]. 𝑃𝐼𝜆𝐷𝜇 controller extends the four control
points of the traditional PID controller to the quarter-plane
range of control points by changing the values of𝜆 and𝜇. And
the search scope of 𝜆, 𝜇 in this paper is (0, 2).
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Figure 1: Tuning scale of PID controller and 𝑃𝐼𝜆𝐷𝜇 controller.
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Figure 4: Numerical set-point tracking characteristics of 𝐺2(𝑠).

3.2. Performance Criterion. Different performance criterions
like ITAE, ISCO, ITSE, ISTES, and so on have been applied
on fractional-order systems and comparedwith step set-point
tracking and load-disturbance performance [23] and each
integral performance criterion has different advantages when
applied on designing of control systems. Among them, the
ITAE index is a tradeoff between the absolute error and the
settling time, which cannot be achieved by other criterions,
and it has been the most commonly used one in fractional-
order controller design. So, the objective function used in this
paper is given as

𝐽 = ∫

∞

0

𝑡 |𝑒 (𝑡)| 𝑑𝑡. (22)

3.3. Optimization. The optimization method used in this
paper is the Nelder-Mead (NM) simplex optimization
method which is proposed by J. A. Nelder and R. Mead
[24, 25]. The basic thought of NM method is constructing
a cursory search direction and implementing its basic five
operations (reflection, expansion, compression inside, com-
pression outside, and compression entirety) to search and
substitute for the peak synchronously. The search direction
of NM method is acquired by the assessment of objective
function rather than direction gradient, which is the center of
area shaped by all the peaks except for the worst one.We gave
the initial value of the search points at first, and the values
will be replaced by some better ones according to the value of
objection function through the above five basic operations.
Our expectant optimal 𝑃𝐼𝜆𝐷𝜇 controller parameters are
achieved by minimizing the ITAE performance index which
wasmentioned in above section as the objective function.The
optimization process is shown as Figure 2.

4. Simulation Results Validation

4.1. Numerical Results of Typical Oscillatory Fractional-Order
Time-Delay Systems. In the last few years, noninteger-order
time-delay (NIOTD) system has been proved to be the
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precisely and succinctly transformationmodel of many high-
order complicated systems [16], and it has also been shown
that fractional-order controllers were the best kind of con-
trollers corresponding to such systems [15].However, scarcely
any fractional-order controller was designed for this kind
of systems due to the fact that it did not have an analytical
solution which was because of the internal complexity of
time-delay 𝑒−𝐿𝑠. The fractional-order delay system can be
broadly represented as

𝐺 (𝑠) =
𝐾

𝑇𝑠𝛼 + 1
𝑒
−𝐿𝑠
. (23)

And in consideration of universality, three kinds of
NIOTD objective systems with different proportion of
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Figure 8: Set-pointing tracking control performance comparison of
𝐺3(𝑠).

parameters, 𝐿, respectively, 𝑇 > 𝐿, 𝑇 ≈ 𝐿, 𝑇 < 𝐿, were tested
[16]:

𝐺1 (𝑠) =
1

1.11𝑠1.5 + 1
𝑒
−0.105𝑠

,

𝐺2 (𝑠) =
1

1.5𝑠1.5 + 1
𝑒
−𝑠
,

𝐺3 (𝑠) =
1

0.004𝑠1.5 + 1
𝑒
−𝑠
.

(24)

In this paper, numerical inverse Laplace transform algo-
rithm INVLAP was applied to describe the tested compli-
cated system. Then the initial numerical set-point tracking
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Figure 9: Load-disturbance response of 𝐺
1
(𝑠).

characteristics of the three plants (24) could be achieved in
Figures 3–5.

It has been shown in Figures 3–5 that 𝐺1(𝑠) is almost
convergent and 𝐺2(𝑠) is oscillatory and may be convergent
with a long accommodation time, but 𝐺3(𝑠) is emanative;
hence, a suited controller is necessary for each of them.

4.2. Comparative Performance of Different Controllers. In this
section, a FOPID controller based on the tuning methods
proposed in Section 3 and anOPID controller based on ITAE
index are tuned, respectively, for 𝐺1(𝑠), 𝐺2(𝑠), and 𝐺3(𝑠) in
Section 4.1. The controller parameters are listed in Table 1,
comparative control performance of step set-point tracking
is shown in Figures 6–8, and Figures 9–11 are comparisons of
control performance with ±10%, ±30% load-disturbance.

It is obviously to be seen that, comparing with the
step input using OPID controller in Figures 6 and 7, the
overshoots and accommodation time using FOPID controller

are much smaller. In Figure 8, there is no much difference
between the control performance of FOPID and OPID
controllers; however, FOPID controller still holds superiority
with accommodation time, and this phenomenon may be
caused by the internal complexity and oscillatory property of
the original system.

In order to show more potential and robustness of
the presented FOPID controller, the disturbance rejection
responses of FOPID and OPID controllers mentioned above
are illustrated with ±10%, ±30% load-disturbance in Figures
9–11. It is similar to the step set-point tracking responses; the
disturbance rejection responses of 𝐺1(𝑠) and 𝐺2(𝑠) in Figures
9 and 10 show that FOPID controllers still perform well with
satisfactory overshoots, rising time, and accommodation
time, but the performance of OPID controllers is difficult
to be accepted with high overshoots, long accommodation
time, and even oscillate tempestuously. And in Figure 11,
FOPID controller still shows more flexibility than OPID
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Table 1: Parameters of controllers.

Control plant Type of controller 𝑘𝑝 𝑘𝑖 𝑘𝑑 𝜆 𝜇 𝐽min

𝐺1(𝑠)
FOPID 0.3810 5.1988 5.5785 1.0006 0.5299 0.0081
OPID 4.0602 3.7491 4.3236 — — 0.0535

𝐺2(𝑠)
FOPID 0.5590 0.6021 0.8613 1.0128 0.8845 0.4643
OPID 0.3072 0.0383 0.7511 — — 1.0918

𝐺
3
(𝑠)

FOPID 0.1462 0.7339 0.1299 0.9982 0.2328 0.2667
OPID 0.3347 0.0063 0.6674 — — 0.2701
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Figure 11: Load-disturbance response of 𝐺3(𝑠).

controller. As a whole, the simulation results clearly show
the performance advantage of the proposed FOPID con-
troller based on numerical inverse Laplace transform algo-
rithms when compared with the conventional OPID con-
troller for oscillatory fractional time-delay systems.

4.3. Comparative Performance of Different Controllers for
High-Order Complex Fractional System with Time Delay. In
this section, we had also used another complex example to
verify the effectiveness of the proposed controller. It is a high-
order complex fractional-order delay system whose transfer
function is

𝐺4 (𝑠) =
𝑒
−𝑠

𝑠2.6 + 2.2𝑠1.5 + 2.9𝑠1.3 + 3.32𝑠0.9 + 1
. (25)

The proposed optimal FOPID controller and PID con-
troller are achieved as

𝐺𝑓𝑐 = 3.9762 +
0.5313

𝑠1.0399
+ 2.7176𝑠

1.0049
,

𝐺𝑐 = 4.3510 + 2.96𝑠 +
0.7194

𝑠
.

(26)

The set-point tracking control performance comparison
and the disturbance rejection responses of ±10%, ±30%were
shown in Figures 12 and 13.

The results were similar to those of 𝐺3(𝑠). The over-
shoot and accommodation time of FOPID controller are
still more competitive. For the robustness measurements in
Figure 13, FOPID controllers still perform well with satisfac-
tory overshoots, rising time, and accommodation time, and
the performance of OPID is also acceptable from the point of
comparison.



Mathematical Problems in Engineering 9

0 2 4 6 8 10 12 14 16 18 20

0

1

FOPID
OPID

0.2

0.4

0.6

0.8

1.2

A
m

pl
itu

de

−0.2

t (s)

Figure 12: Set-pointing tracking control performance comparison of 𝐺4(𝑠).

0 5 10
−0.5

0

0.5

1

1.5

A
m

pl
itu

de

t (s)

(a) 110% load-disturbance

0 5 10
−0.5

0

0.5

1

1.5

A
m

pl
itu

de

t (s)

(b) 90% load-disturbance

0 5 10
−0.5

0

0.5

1

1.5

A
m

pl
itu

de

t (s)

(c) 130% load-disturbance

0 5 10
−0.5

0

0.5

1

1.5

A
m

pl
itu

de

t (s)

(d) 70% load-disturbance
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5. Conclusion

In this paper, we presented a study of fractional 𝑃𝐼𝜆𝐷𝜇 con-
troller for oscillatory fractional time-delay systems based on
the numerical invert Laplace transform algorithm INVLAP.
The algorithm has been applied to solve the problem caused
by the difficulties of searching for analytical solution of com-
plicated fractional-order differential equations. Simulation
results of comparisons of the proposed FOPID controllers
and conventional OPID controllers applied on the example
typical systems show that the closed-loop systemwith FOPID
controller can achieve more satisfactory dynamic perfor-
mance with faster and smoother closed-loop time responses
and robustness coping with both set-point tracking and load-
disturbance rejection problems. And this method could be
extended to be used on various complicated fractional-order
dynamic models.
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