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A modeling based on the improved Elman neural network (IENN) is proposed to analyze the nonlinear circuits with the memory
effect. The hidden layer neurons are activated by a group of Chebyshev orthogonal basis functions instead of sigmoid functions in
this model.The error curves of the sum of squared error (SSE) varying with the number of hidden neurons and the iteration step are
studied to determine the number of the hidden layer neurons. Simulation results of the half-bridge class-D power amplifier (CDPA)
with two-tone signal and broadband signals as input have shown that the proposed behavioral modeling can reconstruct the system
ofCDPAs accurately anddepict thememory effect ofCDPAswell. ComparedwithVolterra-Laguerre (VL)model, Chebyshev neural
network (CNN) model, and basic Elman neural network (BENN) model, the proposed model has better performance.

1. Introduction

The networks, communications, and television systems have
entered the digital age.The class-Dpower amplifiers (CDPAs)
[1] have become increasingly popular for audio applications
because of their high power efficiency. Since the output tran-
sistors of CDPAs operate in the ohmic and cut-off regions,
there exists nonlinearity in the system. One of the nonlinear
phenomena is the intermodulation distortion (IMD) [2].The
CDPAs also have the memory effects, resulting from the
node voltage and current depending on not only the current
input but also the historical signals due to the existence of
parameters with dynamic distribution [3]. The existence of
memory effects [4] is often identified by imbalances between
the corresponding upper and lower distortion products, such
as the same order of IMD.

Behavioral modeling [5, 6] of nonlinear circuits and
systems has received much attention in recent years. In
behavioral modeling, the nonlinear component is generally
considered as a “black box,”which is completely characterized
by external responses, that is, in terms of input and output
signals, through the use of relatively simple mathematical

expressions. Behavioral modeling techniques provide a con-
venient and efficient means to predict system-level perfor-
mance without the computational complexity of full circuit
simulation or physical level analysis of nonlinear systems,
thereby significantly speeding up the analysis process. The
existing PA’s behavioral models are mainly based on Volterra
series or its expanded and simplified forms [7, 8]. However,
its large number of coefficients complicates its practical
implementation, which makes the standard Volterra series
only limited to “weak” nonlinear PAs.

Owing to the fact that the neural networks are provided
with available solutions for nonlinear function approxima-
tion, system identification, exclusive or and encoder prob-
lems, the study of PA’s behavioral models based on neural
networks has already been developed in recent years [9–12].
In order to well study the nonlinear characteristics of CDPAs,
a new behavioral model based on improved Elman neural
network (IENN) is proposed in this paper. In IENN, a self-
connection of context nodes is added in this model, which
could make the neurons more sensitive to the history of
input data. The Chebyshev orthogonal polynomials [13, 14]
instead of sigmoid functions are employed as the activation
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functions of hidden layer neurons to improve accuracy and
the convergence rate of IENN, and the structure of IENN is
simpler.The gradient descent (GD) algorithm is used to train
the neural network model. Simulation results with two-tone
signal, linear frequency modulated (LFM) signal, and binary
phase shift keying (2PSK) signal as inputs have shown that
the proposed model IENN could well depicts the nonlinear
distortions of PAs.

The remainder of this paper is organized as follows.
The basic Elman neural network (BENN) is introduced in
Section 2. In Section 3, the new behavioral model based on
IENN and the training algorithm of IENN is presented in
detail. Simulation results using two-tone signal and broad-
band signals as input are given in Section 4. The conclusion
is shown in Section 5.

2. The Basic Elman Neural Network

The architecture of BENN [15, 16] is illustrated in Figure 1,
which is generally divided into four layers: input layer, hidden
layer, context layer, and output layer. The feedforward loop
consists of input layer, hidden layer, and output layer in
which the weights connecting two neighboring layers are
variable. There exists a back-forward loop between context
layer and hidden layer, which makes the neural networks
sensitive to the history of input data. In BENN, the context
neurons can be treated as thememory units, so themodel can
manifest thememory effect of nonlinear system theoretically.
Furthermore, because the dynamic characteristics of BENN
are provided only by internal connections, there is no need to
use the state as input or training signal, which makes BENN
prior to static feedforward network.

3. The Behavioral Model Based on IENN

3.1. The Architecture of Improved Elman Neural Network. The
architecture of IENN is presented in Figure 2; it is similar to
BENN. To improve the learning speed and output accuracy,
some changes are made. To better deliver the memory
effect of the nonlinear system, a self-feedback is added to
the context layer neurons with a feedback coefficient gain.
This operation increases the memory depth and makes the
model’s output more sensitive to the history inputs. The
value of Chebyshev orthogonal basis functions can easily
be calculated by recursion operation, which is simpler than
the sigmoid function. And the Chebyshev orthogonal basis
functions have been used as active functions in many neural
networks [14, 17, 18] for different applications and proved to
be fast and accurate. We consider using the first category
Chebyshev orthogonal basis as the activation function in
the hidden layer instead of the sigmoid function in BENN.
The research results have proved that the IENN model can
simplify the computing complexity, reduce the training time,
and enhance the convergence precision.

In IENN, the input layer has𝑅nodes, the hidden layer and
the context layer own𝑁 nodes, and the output layer possesses
𝑀 nodes. The basic functions in each layer are as follows.
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Figure 2: The architecture of IENN.

3.1.1. Input Layer. In the input layer,

𝑢𝑞 (𝑘) = 𝑒𝑞 (𝑘) , 𝑞 = 1, 2, . . . , 𝑅, (1)

where 𝑘 represents the 𝑘th iteration step and 𝑒𝑞(𝑘) and
𝑢𝑞(𝑘) denote the input and the output of the input layer,
respectively.

3.1.2. Hidden Layer. The input of the 𝑗th hidden layer neuron
is

V𝑗 (𝑘) =
𝑁

∑

𝑙=1

𝑤
1

𝑗𝑙
(𝑘) 𝑥
𝑐

𝑙
(𝑘) +

𝑅

∑

𝑞=1

𝑤
2

𝑗𝑞
(𝑘) 𝑢𝑞 (𝑘) , 𝑗 = 1, 2, . . . , 𝑁,

(2)

where 𝑥
𝑐

𝑙
(𝑘) is the output of the 𝑙th context layer neuron,

𝑤
1

𝑗𝑙
(𝑘) represents the weight from the 𝑙th context layer neuron

to the 𝑗th hidden layer neuron, and 𝑤
2

𝑗𝑞
(𝑘) represents the

weight from the 𝑞th input layer neuron to the 𝑗th hidden layer
neuron.

Since the input of Chebyshev orthogonal basis functions
is defined within the interval [−1, 1], the input of the hidden
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layer needs to be normalized. The normalization of V𝑗(𝑘) is
defined as

V𝑗 (𝑘) =
V𝑗 (𝑘)

max1≤𝑝≤𝑁 (

V𝑝 (𝑘)


)

, 𝑗 = 1, 2, . . . , 𝑁. (3)

The output of the 𝑗th hidden layer neuron is

𝑥𝑗 (𝑘) = 𝑓𝑗 [V𝑗 (𝑘)] , 𝑗 = 1, 2, . . . , 𝑁. (4)

The function 𝑓𝑗(⋅) indicates the first category Chebyshev
orthogonal basis functions given in Figure 2.

3.1.3. Context Layer. In the context layer, the output is repre-
sented as

𝑥
𝑐

𝑙
(𝑘) = 𝛼𝑥

𝑐

𝑙
(𝑘 − 1) + 𝑥𝑙 (𝑘 − 1) , 𝑙 = 1, 2, . . . , 𝑁, (5)

where 0 ≤ 𝛼 ≤ 1 is the self-connection feedback gain of the
context layer. When 𝛼 = 0, this network is reductive into the
BENN.

3.1.4. Output Layer. The output 𝑦𝑖(𝑘) of IENN can be
expressed as

𝑦𝑖 (𝑘) =

𝑁

∑

𝑗=1

𝑤
3

𝑖𝑗
(𝑘) 𝑥𝑗 (𝑘) , 𝑖 = 1, 2, . . . ,𝑀, (6)

where𝑤3
𝑖𝑗
(𝑘)denotes theweight from 𝑗th hidden layer neuron

to 𝑖th output layer neuron.

3.2. Training Algorithm. Training of the neural networks has
been developed rapidly in recent years [19–21]. The gradient
descent (GD) algorithm, as a basic approach for training
neural networks in many areas, searches the parameter space
of the network in the steepest descent way to minimize the
error between the network output and the desired output
[22]. In IENN, the gradient descent algorithm is used to
update the weights. Assume that the actual system output
vector is y(𝑘) = [𝑦1(𝑘), 𝑦2(𝑘), . . . , 𝑦𝑀(𝑘)]

𝑇 (𝑇 is used for
transpose) and the 𝑘th iteration of IENNmodel output vector
is ỹ(𝑘) = [𝑦1(𝑘), 𝑦2(𝑘), . . . , 𝑦𝑀(𝑘)]

𝑇. The error-function,
namely, the sum of squared error (SSE), is defined as

SSE (𝑘) = 1

2
[y (𝑘) − ỹ (𝑘)]𝑇 [y (𝑘) − ỹ (𝑘)] . (7)

By using the partial derivative of error-function with
respect to the weight parameters, the increments of the
weights are as follows:

Δ𝑤
1

𝑗𝑙
(𝑘) = 𝜂1

𝑀

∑

𝑖=1

[𝛿𝑖 (𝑘) 𝑤
3

𝑖𝑗
(𝑘)]

𝜕𝑥𝑗 (𝑘)

𝜕𝑤
1

𝑗𝑙
(𝑘)

,

Δ𝑤
2

𝑗𝑞
(𝑘) = 𝜂2𝜆𝑗 (𝑘) 𝑢𝑞 (𝑘) ,

Δ𝑤
3

𝑖𝑗
(𝑘) = 𝜂3𝛿𝑖 (𝑘) 𝑥𝑗 (𝑘) ,

(8)

Triangular signal
Amplitude: AMt = 9.6V
Frequency: ft = 400kHz

Pulse width
modulator

Input signal

MOSFET
driver

IRFR9214

IRFR214

e

q y

RC
L

= 50V

= −50V

VDD

−VDD

Figure 3: The circuit of half-bridge CDPA.

with

𝛿𝑖 (𝑘) = 𝑦𝑖 (𝑘) − 𝑦𝑖 (𝑘) ,
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(9)

where 𝑓


𝑗
(⋅) is the first derivative of the normalized input

of hidden layer neurons V𝑗(𝑘). 𝜂1, 𝜂2, and 𝜂3 represent the
learning rate of 𝑤1

𝑗𝑙
, 𝑤2
𝑗𝑞
, and 𝑤

3

𝑖𝑗
, respectively.

In order to well analyze the error of system output and
IENN output, the transient absolute error vector 𝜎(𝑘) is
defined as

𝜎 (𝑘) =
y (𝑘) − ỹ (𝑘) . (10)

The mean error of 𝜎(𝑘) is

𝜎 (𝑘) =

[∑
𝑀

𝑖=1

𝑦𝑖 (𝑘) − 𝑦𝑖 (𝑘)
]

𝑀
. (11)

3.3. Training Steps of IENN. By using the GD method, the
training steps to determine the optimal number of neurons
in hidden layer are as follows. The initial values of 𝛼, 𝜂1, 𝜂2,
and 𝜂3 are got by continuous testing.

Step 1. Prepare the training input and output data. Set the
initial number for neurons 𝑁 = 4 in hidden layer, define
the maximum neurons 𝑁max = 100 in hidden layer, and the
maximum iteration step 𝐾max = 100. The threshold value of
SSE is 𝜀min.

Step 2. Set the self-connection feedback coefficient 𝛼 = 0.1;
weights of IENN 𝑤

1

𝑗𝑙
(1), 𝑤2

𝑗𝑞
(1), and 𝑤

3

𝑖𝑗
(1) as constant 0 and

their learning rate 𝜂1 = 𝜂2 = 𝜂3 = 0.01; the partial derivative
𝜕𝑥𝑗(0)/𝜕𝑤

1

𝑗𝑙
(0) = 0. The initial iteration step 𝑘 = 0.

Step 3. Increase the number of iteration step 𝑘 = 𝑘 + 1; if
𝑘 > 𝐾max, end the training process. According to formulas
(1) to (7), calculate the value of every neuron in every layer
and the SSE(𝑘) of 𝑘th iteration step. If the SSE(𝑘) is less than
𝜀min, end the training process.
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Figure 4: SSE varying with iteration number 𝐾 and number of hidden neurons𝑁.

Step 4. Calculate the increments of the weights shown in
formulas (8); then the weights are updated as 𝑤1

𝑗𝑙
(𝑘 + 1) =

𝑤
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𝑗𝑙
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𝑤
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(𝑘) + Δ𝑤

3

𝑖𝑗
(𝑘). Jump to Step 3.

Step 5. Increase the number of neurons𝑁 in hidden layer; if
𝑁 > 𝑁max, end the training process. Jump to Step 2.

4. Simulation Results and Analysis

In order to verify the correctness and reliability of IENN
model, the training sample sequences are achieved from input
𝑒 of half-bridge CDPA shown in Figure 3.

As shown in Figure 3, the PWM signal 𝑞 is produced
by the comparison between the two-tone signal and the
triangular signal. The frequency and amplitude of triangular
signal are𝑓𝑡 = 400 kHz andAM𝑡 = 9.6V.Theoutput signal of
CDPA is termed as y. A group of the training data is extracted
by the sampling frequency 𝑓𝑠 = 1MHz. The testing data has
the same length and sampling frequency with the training
data; the difference is the starting time. In the simulation
results, the testing data’s starting time is treated as 0ms.

4.1. Optimal Neurons Number in Hidden Layer. In order
to determine the optimal neurons number in hidden layer
of two models, by using the training data of two-tone

signal, with the frequencies of the two-tone signal being
𝑓1 = 4.36 kHz and𝑓2 = 30 kHz, their amplitudes being
AM1 = AM2 = 4V, and the signal length being 0.5ms,
the relationship between SSE(𝑘) and the number of hidden
layer neurons is studied. When the maximum iteration step
𝐾max = 100, the number of hidden neurons𝑁 increases from
5 to 100 with the interval of 5; do not set the error threshold
of SSE(𝑘); the error curves of SSE(𝑘) are shown in the left side
of Figure 4. The lower side of Figures 4(a) and 4(b) shows
the SSE(𝑘) changing with hidden neurons number; when the
iteration step 𝐾 = 50, the neurons number in hidden layer
increases from 5 to 50 with the interval of 1.

It can be seen in the top of Figures 4(a) and 4(b) that, with
the increase of the iteration step, the error curves of SSE(𝑘)
drop rapidly. The larger the number of hidden neurons𝑁 is,
the faster SSE(𝑘) decreases, and the less iteration steps needed
to reach the same SSE are. The comparison between BENN
and IENN shows that IENN has faster convergence rate than
BENN. For example, to reach the same SSE(𝑘) of 50, with the
same number of hidden neurons 𝑁 = 15, BENN needs an
iteration number of about 55, while IENN needs an iteration
number of only 25; the calculation of IENN is reduced to
almost half of BENN.

On the lower side of Figures 4(a) and 4(b), when BENN
and IENN have the same number of iteration; to achieve the
same SSE(𝑘), IENN needs less neurons in hidden layer than
BENN. For instance, to reach the logarithmic SSE(𝑘) of 0 dB,
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Figure 5: Comparison among four behavioral models in time domain with two-tone signal input.

BENN needs 30 neurons in hidden layer while IENN needs
only 15 neurons in hidden layer.

In consideration of the convergence rate and the calcula-
tion,𝑁 = 25 is chosen as the number of hidden layer neurons
in the following discussion.

4.2. Simulation Analysis of Four Models with Two-Tone Sig-
nal Input. The Volterra-Laguerre (VL) model [7] and the
Chebyshev neural network (CNN) model [17, 23, 24] are
introduced to be comparedwith the BENN and IENNmodel.
The VL model is proposed in [7]. There are two parameters
in this model: the number of Laguerre orthogonal functions
𝐾 and the pole of Laguerre functions 𝜆 (|𝜆| < 1). When
𝐾 = 3, this model cannot reconstruct the output well. Here,
we choose 𝐾 = 5 and 𝜆 = 0.97; there are 605 parameters
needed to be estimated. The CNN model in [23] employs
a group of Chebyshev orthogonal polynomials to activate
the hidden layer neurons, and based on the GD method,
the iterative training formula is obtained. For three neural

Table 1: Mean error 𝜎 and maximum transient error 𝜎max of four
behavioral models with two-tone signal input.

Model 𝜎 (V) 𝜎max (V) Condition
VL 0.9272 31.3400 𝐾 = 5, 𝜆 = 0.97

CNN 5.9397 27.6531

𝑁 = 25, 𝐾max = 50BENN 0.0182 0.0391

IENN 8.2434𝑒 − 06 1.7754𝑒 − 05

network models, set the number of hidden layer neurons
𝑁 = 25 and the iteration step 𝐾max = 50. Using the two-
tone signal as input, the simulation results of four behavioral
models in time domain are shown in Figure 5.

In Figure 5, the time domain error is the transient error
y − ỹ. Values of the mean error 𝜎 and the maximum transient
error 𝜎max of four models are listed in Table 1 with two-tone
signal input.
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Figure 6: Comparison among four behavioral models in frequency domain with two-tone signal input.

It can be seen in Figure 5 and Table 1 that IENN is the
most accurate model among four models. The VL and CNN
model cannot reconstruct the output signal accurately, and
the transient error is very large at the beginning of the
data. Both the BENN and IENN have stable approximation
capability; under the same conditions, IENN is more precise
than BENN. The final maximum transient error of BENN is
0.0391 V, while it is only 1.78 × 10

−5 V in IENN.
The two-tone signal is often used to study the memory

effect of the nonlinear system [4, 25] since the IMD of the
signal is easy to measure. When a two-tone signal is used
as training data, the simulation results of four models in
frequency domain are given in Figure 6.

In Figure 6(d), 𝑓1 = 4.36 kHz and 𝑓2 = 30 kHz are the
input two-tone signal’s frequencies. 𝑓3 = 𝑓2 − 𝑓1 and 𝑓4 =

𝑓2 + 𝑓1 are the second order IMD (IMD2). 𝑓5 = 𝑓2 − 2𝑓1 and
𝑓6 = 𝑓2 + 2𝑓1 are the third order IMD (IMD3). The existence
of IMD means the system is nonlinear and the asymmetry

Table 2: Spectrum of the circuit and spectrum error of four behav-
ioral models with two-tone signal input.

Freq. (Hz)
Circuit
spectrum
(dB)

VL
(dB)

CNN
(dB)

BENN
(dB)

IENN
(dB)

𝑓
1

71.83 −0.22 0.62

0.0108 4.919𝑒 − 06

𝑓
2

65.15 0.24 2.39

𝑓
3

54.07 −0.58 23.56

𝑓
4

46.33 −3.19 5.55

𝑓
5

42.58 −3.57 5.06

𝑓
6

45.01 −4.56 7.17

of IMD demonstrates the memory effect of the system. The
circuit output spectrum and the spectrum error are listed in
Table 2.
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Figure 7: Comparison among four behavioral models in time domain with LFM signal input.

As shown in Figure 6 and Table 2, the spectrum error at
IMD2 and IMD3 of VL model is a little large, the asymmetry
between the upper and lower sidebands has been weakened,
and some of the memory effect characteristics are lost. The
short memory length of VL model is the reason for this. But
the number of parameters in this model is already large; if
the memory length increases, the parameters will increase
rapidly. The spectrum of CNN in Figure 6(b) shows that it
has lost almost all the information of the IMD. Since the
CNN model is a feedforward neural network, the output of
the model is only related to the input at present moment; it
cannot express the previous influence of the inputs on the
output, namely, that the CNN model cannot demonstrate
the memory effect. The spectrum errors of BENN and IENN
model are stable; under the same conditions, the spectrum
error of BENN is 0.011 dB, and IENN is 4.92 × 10

−6 dB. The
IENN is much more accurate than BENN.

4.3. Simulation Analysis of Four Models with LFM Signal
Input. For the experimental validation, the LFM signal is
used as input 𝑒 of half-bridge CDPA, whose center frequency
is 30 kHz, amplitude is 8.5 V, bandwidth is 4 kHz, and training
data length is 2.0ms. Other parameters of the simulation
are the same as above. Using the LFM signal as training
samples, the simulation results of four behavioral models in
time domain are shown in Figure 7; the results in frequency
domain are given in Figure 8. The mean error 𝜎 and the
maximum transient error𝜎max of fourmodels in time domain
are listed in Table 3, and the average spectrum errors and the
maximum spectrum errors are listed in Table 4.

As shown in Figure 7 and Table 3, when the LFM signal
is used as input of CDPA, the transient error of the VL
and CNN model is very huge, and the output signal cannot
be reconstructed accurately. In the same conditions of the
number of hidden neurons 𝑁 = 25 and the iteration step
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Figure 8: Comparison among four behavioral models in frequency domain with LFM signal input.

Table 3: Mean error 𝜎 and maximum transient error 𝜎max of four
behavioral models with LFM signal input.

Model 𝜎 (V) 𝜎max (V) Condition
VL 0.9564 4.2593 𝐾 = 5, 𝜆 = 0.97

CNN 11.0047 61.6258

𝑁 = 25, 𝐾max = 50BENN 1.1539𝑒 − 05 1.7378𝑒 − 05

IENN 1.2176𝑒 − 05 1.8337𝑒 − 05

𝐾max = 50, the time domain errors of both IENN and BENN
model are basically the same and the finalmaximum transient
error of BENN is 1.74 × 10

−5 V, while it is 1.83 × 10
−5 V in

IENN. Both the BENN and IENN have stable approximation
capability.

As shown in Figure 8 and Table 4, using the training data
of LFM signal, the spectrum error of the VL and CNNmodel

Table 4: Spectrum error of four behavioral models with LFM signal
input.

Model Average error (dB) Max. error (dB) Condition
VL 2.3714 24.2021 𝐾 = 5, 𝜆 = 0.97

CNN 33.0427 77.3836

𝑁 = 25, 𝐾max = 50BENN 4.6617𝑒 − 06 4.6617𝑒 − 06

IENN 4.9190𝑒 − 06 4.9190𝑒 − 06

is similarly very large and has lost the correct information
of the memory effect in frequency domain. The spectrum
errors of BENN and IENN model are stable; under the
same simulation conditions, the maximum spectrum error
of BENN is 4.66 × 10

−6 dB, and IENN is 4.92 × 10
−6 dB.

The performance of IENN and BENN model in frequency
domain is almost the same.
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Figure 9: Comparison among four behavioral models in time domain with 2PSK signal input.

4.4. Simulation Analysis of Four Models with 2PSK Signal
Input. In further experiments, a 2PSK signal is used as
input 𝑒 of half-bridge CDPA, whose carrier frequency is
20 kHz, amplitude is 8.5 V, digital baseband signal is a 7-
bit pseudorandom sequence (𝑚 sequence), baseband symbol
width is 0.25ms, and testing data length is 1.75ms. Other
parameters of themodels are the same as above too. Using the
2PSK signal input, the simulation results of four behavioral
models in time domain are shown in Figure 9, and the results
in frequency domain are given in Figure 10.Themean error 𝜎
and themaximum transient error 𝜎max of fourmodels in time
domain are listed in Table 5, and the average spectrum error
and the maximum spectrum error are listed in Table 6.

It can be seen in Figure 9 and Table 5 that with a 2PSK
signal input, the VL and CNN model cannot reconstruct the
CDPA output accurately, and the transient error is still very
large. Under the same conditions that the number of hidden
neurons is 25 and the iteration step is 50, IENNmodel ismore
precise than BENN model. The final maximum transient

Table 5: Mean error 𝜎 and maximum transient error 𝜎max of four
behavioral models with 2PSK signal input.

Model 𝜎 (V) 𝜎max (V) Condition
VL 1.0395 31.9100 𝐾 = 5, 𝜆 = 0.97

CNN 8.6677 41.8680

𝑁 = 25, 𝐾max = 50BENN 0.0271 0.0398

IENN 1.2309𝑒 − 05 1.8071𝑒 − 05

error of BENN is 0.0398V, while it is only 1.81 × 10
−5 V in

IENN. IENN model is the most accurate model among four
models.

As shown in Figure 10 and Table 6, using the training
samples of 2PSK signal, the spectrum errors of the VL and
CNN model are still very large, and the memory effect
of CDPA cannot be demonstrated by these models. The
spectrum errors of BENN and IENNmodel are steady. Under
the same conditions, the maximum spectrum error of BENN
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Figure 10: Comparison among four behavioral models in frequency domain with 2PSK signal input.

Table 6: Spectrum error of four behavioral models with 2PSK signal
input.

Model Average error (dB) Max. error (dB) Condition
VL 8.1023 33.1085 𝐾 = 5, 𝜆 = 0.97

CNN 14.5702 52.7683

𝑁 = 25, 𝐾max = 50BENN 0.0108 0.0108

IENN 4.9190𝑒 − 06 4.9190𝑒 − 06

is 0.011 dB, and IENN is 4.92×10−6 dB.At this point, the IENN
model is much more accurate than BENNmodel.

The comparison among four behavioralmodels under the
condition of different input signals and the same simulation
parameters shows that the proposed IENNmodel is the most
accurate model for analyzing the nonlinearity and memory
effect of the CDPAs in both time domain and frequency
domain.

5. Conclusions

In this paper, a behavioral modeling based on IENN is
proposed to describe the nonlinearity and memory effect of
CDPAs. In IENN, a group of Chebyshev orthogonal basis
functions is employed to activate hidden layer neurons to
improve the learning speed and the accuracy and also to
simplify the structure of model. A self-connection of context
nodes is added to make the output more sensitive to the
history of input data.

According to the simulation results, it can be seen that, to
reach the same error threshold, compared to BENN, IENN
needs fewer hidden layer neurons and less iteration steps.
It means that IENN has fast learning speed and can use
simpler network structure to achieve the same requirements
than many other neural networks. Using the same number
of hidden layer neurons and iteration number, simulation
results by using the training data of two-tone, LFM and 2PSK
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signal have shown that the IENN is superior to VL, CNN, and
BENNmodel in accuracy; it has reconstructed the nonlinear
CDPA system with almost no transient or spectrum error;
the memory effect is also visualized. Above all, the proposed
IENN model is an effective, efficient, and simple behavioral
model for nonlinear systems.
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