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This paper presents a method to recognize continuous full-body human motion online by using sparse, low-cost sensors. The
only input signals needed are linear accelerations without any rotation information, which are provided by four Wiimote sensors
attached to the four human limbs. Based on the fused hidden Markov model (FHMM) and autoregressive process, a predictive
fusion model (PFM) is put forward, which considers the different influences of the upper and lower limbs, establishes HMM for
each part, and fuses them using a probabilistic fusion model. Then an autoregressive process is introduced in HMM to predict the
gesture, which enables the model to deal with incomplete signal data. In order to reduce the number of alternatives in the online
recognition process, a graph model is built that rejects parts of motion types based on the graph structure and previous recognition
results. Finally, an online signal segmentation method based on semantics information and PFM is presented to finish the efficient
recognition task. The results indicate that the method is robust with a high recognition rate of sparse and deficient signals and can

be used in various interactive applications.

1. Introduction

In recent years, sensor-based human motion recognition has
received a great deal of attention from researchers. Sensors
have been adapted for large-scale movements to avoid shad-
ing and lighting problems. This has advantages over vision-
based methods for special scenes and has allowed full-body
motion recognition and sensor-based motion control to be
applied in various fields, such as medical rehabilitation and
interactive games.

Currently, motion control tasks are based on accurate
and complete accelerations, as well as signals provided by
other sensors. Unfortunately, these devices are expensive and
not easily portable. In practice, sparse and low-cost sensors
are more attractive, but they are usually accompanied by
less information, more noise, and frequent signal deletion,
making it difficult to acquire or reconstruct accurate position
information and accordingly harder to achieve a proper
online recognition result. Therefore, reconstructing human

motion from signal features based on sparse and deficient
signals has recently evoked much interest.

In light of the above problems, an online motion recog-
nition method that adopts sparse, low-cost Wii Remote
sensors (Wiimotes) as input devices is proposed. Because
sparse, deficient linear accelerations cannot acquire accurate
position information of human motion, a predictive fusion
model, which combines fused hidden Markov model (HMM)
with an autoregressive process, is presented. Considering the
independence of each part of the human body, a hierarchical
fusion structure of fused HMM is used to deal with human
motion signals, which enhances the independent and coop-
erative expression of the classification model. The predictive
capability of the model provided by the autoregressive process
ensures robustness when dealing with noisy and deficient
signals. Once the online recognition process is underway,
a graph model that builds the transition between different
motion types filters those motion types and reduces the
recognition complexity of the predictive fusion model (PFM).
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FIGURE 1: The structure of our method. The three main technologies include predictive fusion model (PFM), graph constraint, and semantics-

based segmentation.

Moreover, a semantic-based automatic signal segmentation
method is introduced to ensure the continuity of the online
recognition processes.

Thus, based on sparse and deficient input signals, a
human motion recognition PFM is presented that effectively
supports sparse, low-cost sensors. The presented model is of
a high accuracy rate and robust enough to handle insufficient
and missing signals. An online motion recognition method is
also proposed that does not require any position calibration.
The method integrates PFM, action graph structure, and
a semantic-based signal segmentation method to support
user-driven virtual human motion in virtual scenes with
continuous motions.

2. Related Works

As pattern recognition technologies develop, pattern recogni-
tion methods are increasingly used in the context of motion
recognition. Typical methods, including self-organizing
maps (SOMs), support vector machines (SVMs), and HMM
approaches, can be adapted for motion recognition processes.

Methods for motion recognition vary depending on the
input source. It has been shown that vision-based meth-
ods and sensor-based methods constitute two of the main
research areas and are based on two types of input device,
depending on the application. Poppe [1] presented a survey
of vision-based human action recognition systems. Ning and
Mokhtarian [2] used a shape to represent object contours
extracted from each frame of a movie and constructed a
tangent space based on the mean shape to approximate
the linear space encompassing the datasets. Zhou et al.
[3] and Min et al. [4] built a low-dimensional deformable
model based on shape information from human motions
in an image sequence to realize motion control. Lai et al.
[5] proposed a local feature-based human motion analysis
framework that extracted the features directly from local
regions containing motion. Research has shown that the
general idea of vision-based methods is to extract varied
feature information from image sequences. In order to avoid

the effect of light and shade and the inconvenience of vision-
based methods when moving in a larger scene, sensor-based
methods remain a hot topic in this field.

Recent work [6-9] which has described some basic
methods for gesture recognition using accelerometers shows
that sensor-based methods can be adapted for recognition
tasks. Sun et al. [10] and Shiratori and Hodgins [11] used
low-cost sensors to monitor daily physical activities. This
method is practical but the finite types of simple activities
limit recognition. Niu and Abdel-Mottaleb [12] considered
the continuity of signals and provided a segmentation and
recognition method based on HMM. Khan et al. [13] used a
hierarchical scheme for human activity recognition. Tautges
etal. [14] and Wong et al. [15] generated simple full-body ani-
mations controlled by sparse and accurate 3D accelerometers
attached to the extremities of a human actor; this method is
able to properly deal with accurate input to recover accurate
human position information. In terms of both sparse and
deficient signals, learning models are more effective than
generative models. Early methods of the learning model
define features analysis with HMM but require improvement
in the robustness for deficient signals and the recognition
rate.

The present research is motivated by the above studies. A
probabilistic fusion model and autoregressive process in the
hierarchical model of virtual human movement are proposed,
which ensures that full-body motion information can be
expressed relatively independently and deals with deficient
input caused by sparse, inexpensive sensors. The recognition
process ensures robustness, accuracy, and efficiency.

3. Method

3.1. Overview. Inthis paper, a recognition model PFM to deal
with offline single motion segments is proposed first. Com-
bined with graph constraint and online signal segmentation,
the model can then be applied to online motion recognition.
The method consists of three main key technologies, the
structure of which can be found in Figure 1.



Mathematical Problems in Engineering

Predictive Fusion Model. Sparse and deficient inputs require
more relevant information between each input signal
sequence to keep local and global information. Therefore,
HMMs of different part inputs were constructed, and a
probabilistic model was used to fuse these HMMs together
so as to enhance the model robustness. An autoregressive
process is then introduced, which ensures that the unstable
signals can be adjusted based on the past signals and training
signals. The model can properly deal with offline motion
recognition with sparse and deficient inputs.

Graph Constraint Construction. A graph structure based on
the content of motion segments is constructed, limiting the
choice for the following motion type based on the current
motion content. The graph structure can filter part of motion
type, reducing the complexity when dealing with a large
motion database and improving the recognition accuracy as
well.

Semantics-Based Signal Segmentation. Because input signals
are continuous and may consist of multiple motion types, a
method to separate the long continuous signal into segments
was proposed. This method supports online motion recogni-
tion, the basis of the PFMs and graph constraint built offline.

3.2. Predictive Fusion Model. To build a robust learning
model that can acquire feature information from sparse and
deficient sequential input, HMM shows a high capability of
dealing with time series. Here a predictive fusion model is
presented based on the structure of HMM, which not only
considers the sparse and deficient signal but also considers
the features of human motion.

Consider two HMMs with observations O; and O,,
which indicate two groups of signal divided from all input
sources, respectively. These input sources can be Wiimotes
attached to different body parts in our experiments. For each
motion type, a corresponding model is needed so as to value
the similarity between the current input and the model, and
the highest similarity probability determines the input type.
Then, the problem can be defined as finding a solution to
constructing the connections between the two HMM:s so as
to provide an optimal estimate for this similarity probability
p (0, 0,). To capture the statistical dependence between two
observations O, and O,, the maximum entropy principle is
used:

p(u,v)

rwpw W

p(0,,0,) = p(0,) p(0;) =

where u and v are the respective transforms of O, and O, and
absorb some dependence between O, and O,. Here, (u,v)
should be chosen from the two components of HMM, that
is, the hidden state S and the observation O.

Supported by the maximum mutual information criterion
in [20], it is better to connect two HMMs by the hidden state
sequence for one HMM and the observation sequence for the
other one, rather than two hidden states for each one. The
structure is shown in Figure 2. Thus, the transforms (u, v) can
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FIGURE 2: The structure of the model. A fusion relationship has
been built between the hidden states of HMM1 and observations of
HMM2.

bereplaced by (S, O,) or (S,, O, ). The probability defined by
(1) yields

P1 (0,,0,) = p(0,) p(0, 18))
_ p(81,0,) 2)
=p(0,) p(0,) —P (S,) p(0,)
P2 (0,,0,) = p(0,) p(0, 18,), 3)

where the structures defined by (2) and (3) are different.
Equation (2) expresses the relationship between §; and O,,
indicating that the former HMM is more reliable than the
latter one. The reliability of each HMM can be quantified as
the weights for each part:

p(0,,0,) = wlPl (0,,0,) + szZ (0,,0,), (4)

where w; and w, represent the reliability of each body part
motion. The values of w, and w, are determined by the
selected types of actions. For general and daily activities, such
as actions in our experiment, w can be valued as 0.5, while for
special occasion and activities, such as ping-pong, where the
action focus is on the upper body part, w can be valued as 0.8
and 0.2.

The observation O and state S can be unfolded as O =
(01,...,0,), S = (s,...,8;), where ¢ is the length of data
sequence. The structure of this model is described in Figure 2.

Vary the basic parameters {r, A,B} in HMM, where 7
stands for initial probability vector, A for state transition
probability matrix, and B for observation probability vector,
and the new parameters enhance the model’s ability to deal
with intermittent or noisy O, where the hidden state S is taken
into account in assuming o,, which can be written in the form
of autoregressive process:

M

0, =e(8;_1>8)+ ) ¢;(81,8)0,; +€, (5)

1



where e, is a parameter that preserves the descriptive power of
the standard HMM when ¢; = 0 and € is residual error when
calculating the observation o,. Since all current observations
are affected by the current hidden state and past observations,
parameter B of HMM can be modified as

1
\/(27T)D K (s,-1>8,)]

xexp (-5(e) K(shis!) el?).,

where € can be calculated from (5).

The methods described above define the model parame-
ters ¢ = {m, A, e, ¢, K, 75, A, ,,¢,,K,, B, }, consisting
of two predictive HMM parameters and the dependencies
parameter B,,. The training process can be summarized as
follows.

(1) Calculate the parameters of two predictive HMMs
with the expectation-maximization (EM) algorithm pre-
sented in [21] and Baum-Welch method in [22]. To maximize
P(O | @), A(s;, sj)B (s> sj) has to be maximized at each time
t of the sequence, which can also be written as In A(s;, s;) +
In B(s;, s j). The terms that have to be maximized are

B2 (f) =

(6)

transition term observation term

T
;yt<s,»,sj) lnA(si,sj)+lnB(si,sj) , (7)

where y,(s;, s;) is the probability of being in state s; at time
t—1andin state s; at time f in the Baum-Welch algorithm. To
solve the terms in (7), the derivatives of the terms with respect

to each variable e and ¢ must be determined:

T T T
Z%Of - Z%e - CZYtOprior =0,
t=1 t=1

t=1

(8)
T - T - T -
ZYtOtOprior - Zyteoprior - Czytoprioroprior =0,
t=1 t=1 t=1

where O,;,, indicates {0,_;,0,,,...,0,_,}. The parameters
e(s;>s;) and c(s;,s;) can be calculated by solving (8). The
covariance matrix K can then be calculated using the updated
parameters e and c:

T
1 T
K= =) vee, . ©)

(2) Select one predictive HMM as the leading HMM and
calculate the hidden state sequence for the leading HMM
using the Viterbi algorithm. Then, determine the fusion
parameters B;, or B,,. If O is discrete, the following is
obtained:

_ Zi8(0h )0 (s0i)
EICR)

where N is the total hidden state number, j is the clustering
number, and § is the impulse function. When the parameter

, (10)

b;” (j)
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set @ of the model has been trained, the similarities p (O, S,)
and p (0,,S;) can be acquired by forward-backward algo-
rithm, and the similarity p (O;, O,) can be calculated by (2)
or (3).

Then, how to use the model in the process of recognition
will be shown. In training process, the input signal sequences
O are four Wiimotes attached to all four human limbs, which
are divided into two groups (upper and lower limbs). M
models are trained for recognition use, where M indicates the
total number of motion types. In the recognition process, the
models trained for each motion type are used to compute the
model’s similarity to the input signal sequence. The solution
to the similarity probability p,,(O;,0,) can be calculated
using the same forward algorithm as HMM. If the similarity
to any motion exceeds a certain threshold, the sequence
is classified as the motion type for which the similarity
probability is the largest. The recognition result and similarity
probability variation trend are shown in Figure 3. The results
indicate that “waving hello” is the motion most similar to the
input signal of the six types. Inspect the similarity probability
of these models at each time, and it can be found that PFM
had a higher classification capacity than the standard model
because PFM can be determined timely at 20-40th frames.
More experiments with larger databases will be described in
Section 4.

3.3. Graph Constraint Construction. The model detailed
above can properly identify the motion type from dozens of
alternative ones. However, when the number of alternative
motion types grows, it not only affects the accuracy rate
of recognition but also increases the computation time due
to the probability calculations required for each model.
Therefore, a structured method was used to reduce the scale
of alternative motion types in dealing with a large database.

When a user performs continuous and varied actions,
it is noticed that certain action types cannot appear when
the current action type has been determined, due to the
coordination of human motion. This constraint can be used
to guide selection of the following motion type based on the
current determinate type.

The present graph model is motivated by the methods of
Li et al. [23] and the motion graph of Kovar et al. [24] but
different from the methods for different purposes and results.
The model can be weighted or unweighted: the weighted
one is a directed graph that contains the transition pos-
sibility detailing the compatibility and transitivity between
two motion types. The node of the graph is of a single
motion type, such as “walk” or “run” Before constructing
the graph, a training process is necessary to obtain a more
precise transition probability. Hundreds of long, continuous
human motions are required, and the transition probability is
calculated statistically by recording the frequency of motion
transitions from one motion type to another. The unweighted
graph has a similar structure to the weighted graph, but the
transition probability only contains two values {0,1}. The
structure of the graph is shown in Figure 4.

Once the recognition process is underway, the motion
type is annotated immediately after recognizing the current
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FIGURE 3: The accumulative results of similarity probability for HMM and PEM in a small scale database. The values on the y-axis indicate
e’, taking the logarithm of the probability, and the trend declines over time or frame number.

Graph  Typel  Type2  Type3
Typel 1 1 0
Type2 0 1 1
Type3 1 0 1
TypeN 1 1 0

()

(b)

FIGURE 4: The constraint built by unweighted graphs. (a) The transition probability between two motion types. (b) The visual graph structure
constructed from the table on the left. The transition probability [type x, type y] = 0 indicates that the type x is not permitted to follow the

type y.

motion signal segment type i. For the unweighted graph, the
nodes which are directed from node type i are selected, and
the remaining motion types are excluded without calculating
the similarity probability between the upcoming input signal
and the current model. Only the models that correspond to
selected nodes will calculate the similarity probability. For the
weighted graph, the transition probability P; between two
motion types i and j measures their similarities, as follows:

transition term  pfm term

Pi(x)= f(B)) p:(0,)p(O,),

where x is one of the alternative motion types for the current
signal segment and f is a scaling function that reduces the

effect of P, such as a logarithmic function.

(1)

3.4. Online Semantics-Based Signal Segmentation and Motion
Recognition. For the online recognition process input signals

which are always continuous and long need to be separated
into short segments based on different motion types. In recent
studies, such as the recursive least squares (RLS) method
presented by [25] and the piecewise linear representation
(PLR) method presented by [26], signal segmentation prob-
lems are always located at the break point in the signal energy
curve, which may lead to oversegmentation or skipping
smooth transition points. Therefore, signal segmentation
based only on the signal shape is not comprehensive and
requires consideration of the semantic information in the
signal sequence.

In order to combine the semantic information with the
segmentation process, the motion content needs to be parsed
by a recognition model in the online signal segmentation.
PFM is introduced into the process to acquire semantic infor-
mation. With specific semantic information, it can be ensured
that the segmented sequence is an intact and independent
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FIGURE 5: The accumulative process of similarity probability for
HMM and PFM in a small scale database. The values on the y-axis
indicate votes for each motion type at frame x. The red dotted line
indicates segmentation points based on the method, and the black
dotted line indicates breakpoints that the human actor expects.

motion type, which can greatly reduce the occurrence of
oversegmentation. The method can be described as follows.

Let O = {04,0,,...,0;} be a long sequence of n-
dimensional input acceleration signal vectors and let v[T][N]
be a two-dimensional integer vote array of time length T,
where N is the number of all motion types. The array v|[t][k]
indicates the number of votes of type k at frame ¢, which indi-
cates the current motion type at t. On the online recognition
stage, a sliding window of length M (M << T) scans the
input sequence O from front to back with a step length of
one frame. Each time the window is moved, the PFMs are
programmed to recognize the signal segment in the current
window M. For example, when the window moves to frame i,
similarity probabilities are calculated by PEMs of alternative
types with input of signals from o; to o;,,,. The vote array
{vlillk], vli + 11[k], ... v[i + M][k]} will then be increased by
1, where k is the winner type in the present recognition. After
the window sliding to frame p, N curves can be drawn based
on {v[1---p][1],v[1--- pl[2],v[1--- p][N]} before frame p,
which is shown in Figure 5. The intersection points shown
in Figure 5 can be classified as alternative segment points,
and recognition results can be acquired after finishing the
segmentation.

To deal with transition signals and signals that do not
belong to any alternative motion type, an appropriate thresh-
old for each PFM should be set to filter out the redundant
segment points during the PFM training process. The thresh-
old is defined as the minimum normalized probability in the
training dataset, and it rejects motion signals dissimilar to the
training set.

The method presented above considers the semantic
information of signal sequence and acquires the recognition
result based on the PFMs trained offline. The recognition
process is online, and results of which will be discussed in
Section 4.

4. Results and Discussions

In this section, the functions of PFM, the effect of online
recognition, and various applications of this technology will
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be described. As is presented in the last section, the input
devices used in our experiment are sparse and low-cost (see
Table 1). Devices with more information provided always
result in higher price. Several general portable input devices
are shown in the table, and sparser and cheaper devices
are chosen to conduct our experiment. The signals analyzed
here were the linear accelerations without any denoising or
angular information, making it difficult to calculate accurate
position information, as Table 2 shows.

The Wiimotes transmitted signals to a computer via a
bluetooth interface that supports an 8-10 meters distance
during an experiment. The sampling time in our experiment
was 25 fps, which can be adjusted to accommodate a range
of precisions. The training motion signal database has been
preliminary constructed, which is clustered as 28 nodes in
graph structure based on the content of the motion signal seg-
ments. Each node consists of 3-4 groups of motion segments
with different variants, such as walking in different styles or
kicking to different positions. Each type of motion signal
is captured 5 times by 4 different actors. These hundreds
of motion signals are well-organized for model training. In
the experiment, thousands of independent action signals and
hundreds of long continuous action signals are performed
by testers in real time to get the result on recognition rate,
robustness, and so forth.

4.1. Performance of Model. Before the experiment, we have
tested several state-based methods, such as coupled HMM
and structural HMM, as Pan et al. [20] presented. The
result shows that fused HMM presents a better accuracy
and robustness to the others when dealing with sparse
and deficient motion signals. Therefore, in this section, the
functions of our PFM will be shown and the accuracy and
efficiency of the recognition process will be only compared
with the performance of traditional Gaussian HMM and
fused HMM when dealing with sparse and deficient input.

In our experiment, the recognition effect of different
actors was validated by leave-one-out and k-fold cross val-
idation methods, and the recognition rates of the PFM are
shown in Figure 6, based on 40 alternative action types from
the database we built. The HMM method yielded an average
recognition rate of 42%, lower than the fused HMM and PFM
recognition rates. The horizontal axis in Figure 6 represents
the type of input signal sample and the vertical axis represents
the types of corresponding models we built. While HMM is
not robust when dealing with certain special motions, the
PFM presents a more robust and accurate recognition result.
In the HMM, without considering the motion of different
body parts, the combined acceleration information led to
confusion and presented a worse classification capability
than for motions of similar variance. The fused HMM
considered the structure of human motion and presented a
higher classification capability than the standard model. The
prediction capabilities of PFM were much better for these
special inputs.

The proposed model can handle imperfect signals as well
as deletion of input signals. The fewest number of sensors that
can retain complete full-body motion information remains
to be determined. Further experiments will be conducted to
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TABLE 1: The details of general current portable input devices applied to motion control and recognition.

Sensor Amount Per price Output information
Wii Remote 4 $39.99 3D linear accelerations, 2D rotation angle
Xsens MTx [14, 16] 4 or more $1500 Orientation, linear accelerations, angular velocity
MEMS sensors [17, 18] 8 for gait analysis $250-8000 3D angular velocity, Orientation, etc
HD Hero [19] 16 or more $250 Scene videos
Models
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FIGURE 6: The recognition rate shown in the form of confusion matrices. With an increase in the recognition rate, the color of the matrix grid

varies gradually from white to black.

TABLE 2: The offsets between actual motion data and position
information, calculated by incomplete accelerations as the frame
number increases.

Frame number 10 50 100 150
RMS value (cm)  9.55 22.13 49.68 77.86

200
122.46

show the robustness and capabilities of dealing with deficient
signals and to determine the requisite number of sensors
in order to properly function in the motion recognition
process. Table 3 shows the model’s robustness with respect to

TaBLE 3: The PFM recognition rate for different actors with an
increasing fraction of signal deletion.

Actor Trained actor New actor1 New actor 2
Completed signals 0.97 0.92 0.91
One intermittent Wii 0.94 0.87 0.89
Two intermittent Wiis 0.85 0.84 0.85
One missing Wii 0.84 0.78 0.75

deficient signals. In this experiment, different actors attached
with reducing input devices are chosen. The actors here
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TABLE 4: The accuracy rate of our segmentation method for different actors.

Actor Actor 1 Actor 2 Actor 3 Actor 4 Actor 5

Desired points 48/50 50/50 47/50 50/50 49/50

Redundant points 8 10 5 12 7

Accuracy rate 0.86 0.83 0.9 0.8 0.87

include both trainees and newcomers. Since the action data
of trainees are more standard and similar to trained motion
data, the recognition rates for trainees are slightly higher
than those for newcomers as the table shows. In the event
that a short signal sequence from one sensor is lost, the
recognition results remain unchanged from those derived
from the complete signal sequence. For trained actors, the
average recognition rate of HMM is 41% when two Wiis are
intermittent and 73% for FHMM. This comparison shows
that the classifying abilities of the PFM are greater than those
of the two methods.

An analysis of unknown motions not included in the
training datasets provides an estimate for the maximal proba-
bility of the motions most likely to be in the training datasets.
Evaluation methods demonstrate the accuracy of the input
signal relative to the recognition results.

4.2. Online Recognition. In an online recognition system,
continuous signal processing is key for completing the task,
and the results are essential for influencing and evaluating
the recognition process. In our experiments, five actors were
required to perform a continuous motion that included 51
motion segments used to test the segmentation accuracy rate.
The accuracy rate of the segmentation experiment was evalu-
ated by the number of desirable missing segmentation points
and the number of undesirable or redundant segmentation
points. Table 4 presents the segmentation results for these
two measures. The desired segmentation points can be always
located properly in our method, and the main factor that
reduces the accuracy is the redundant segmentation points
for our method. Unlike current segmentation methods of
human motion signal sequence, that is, the RLS method
and PLR method, whose abundant parameter and thresh-
old groups are determined by repeated adjustments, our
semantics-based method is more independent of parameters.
For all this, a large number of desirable missing segmentation
points for these two methods with an appropriate parameter
group are always one of the main factors which may affect
the accuracy rate of the segmentation. Besides, the delay of
segmentation points and the accumulation of errors which
always appear in these two methods can be effectively avoided
in our method. Taking actor 3, for example, the desirable
segmentation points are 41 for RLS and 36 for PLR, and the
redundant segmentation points are 17 and 22, which is also
more than semantics-based method. Figure 7 shows the final
accuracy rate of these methods.

When dealing with large databases of alternative motion
types, the difficulty in distinguishing features between differ-
ent motion types becomes greater. The recognition capability
of PFM is reduced substantially (see Table 5). Based on the
graph structure we built, the alternative types of current

09 -
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0 1 1 1 1 ]
Actor 1 Actor 2 Actor 3 Actor 4 Actor 5

—— Our method
- RLS
PLR

FIGURE 7: The segmentation accuracy rate of three methods. A long,
continuous motion was performed by five actors.

segment recognition were fewer than the total alternative
types, thereby preserving the online recognition accuracy rate
rather efficiently. The high classification capability of the PEM
model ensures that the results can be efficiently acquired at
30-50 frames of the signal input before the actor finishes the
motion.

4.3. Applications. The methods proposed here are applicable
to a wide variety of applications, including behavioral teach-
ing evaluations, interactive games in virtual environments,
and activity validation systems in large-scale scenes.

A general application of the proposed recognition
method includes driving the virtual human to generate
computer animations or to simulate a virtual environment
for user interactions. After the user performs the continuous
motions the segmentation and recognitions are conducted
efficiently, and the recognition results guide the searching
process of the corresponding motion data in the database. The
blending process in the motion graph technology guarantees
continuity of the generated motion. Generative models, such
as the Gaussian latent variable model presented by [27],
can be properly embedded to synthesize more delicate and
stylized motion in various applications.

In the context of educational applications, the present
method can be used to evaluate activities, such as playing
tennis, doing martial arts, or dancing. Students can act out
motions while following a standard motion sequence that is
presented in advance. The system can then evaluate the sim-
ilarity of the mimicked sequence to the standard sequence.
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TaBLE 5: The recognition rate of PFM and PFM with graph con-
straint for trained actors with an increasing number of alternative
motions.

Total alternative types 40 55 70 85 100
PFM 092 08 06 051 039
PEM with graph constraint  0.95 0.94 091 0.85 0.85

An evaluation system can be constructed by calculating the
probability ratio between the input motion signal and the
normative training data. The ratio provides an important
evaluation criterion. The weights of the fusion model may
be adjusted to standardize the motions of each appendage.
Figure 8 shows an experiment based on the evaluation system
described here. The proposed method was adapted to a set of
complex motions associated with tennis, Tai chi, and boxing.
The motions performed by the user were recognized and
evaluated using our method.

Complex virtual environmental interactions constitute
the main application focus of our method. Virtual environ-
ment games and special training regimens require environ-
mental immersion and interactions with virtual objects. Our
method, based on sparse, low-cost sensors, performed well
in the context of these applications and can provide the user
with an immersed experience.

5. Conclusion and Future Works

This paper presents a full-body motion recognition method
based on sparse, low-cost accelerometers. In the online
recognition process, a semantics-based signal segmentation
method was adopted to acquire short motion segments,
and a motion transition graph structure was constructed to
reduce the amount of alternative motion types. To recognize
the motion type accurately, a predictive fusion model was
presented to efficiently distinguish between current motion
types and alternative motion types. The models recognition
capability is robust and accurate in dealing with unstable
and deficient signals that provide little information for
reconstructing position information. Results show that the
method has a high recognition rate and can be adapted to
specific input signals.

During experiments, it is found that the method had
difficulty identifying the actors’ orientation, as the input
devices we used lack direction information for recovering
whole motion information. In addition, a short pause in a
continuous motion occasionally led to a redundant motion
segment. In the future, in order to overcome these problems
low-cost sensors will be integrated that will also provide
direction information so that the input device can be more
conveniently adapted to a specific interaction. The database of
the motion signals and the motion data will also be expanded.
Ultimately, the method will be applied to complicated scene
interactions between users and the virtual environment.
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