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This paper is concerned with the problem of designing a fault-tolerant controller for uncertain discrete-time networked control
systems against actuator possible fault. The step difference between the running step 𝑘 and the time stamp of the used plant state is
modeled as a finite state Markov chain of which the transition probabilities matrix information is limited. By introducing actuator
fault indicatormatrix, the closed-loop systemmodel is obtained bymeans of state augmentation technique.The sufficient conditions
on the stochastic stability of the closed-loop system are given and the fault-tolerant controller is designed by solving a linear matrix
inequality. A numerical example is presented to illustrate the effectiveness of the proposed method.

1. Introduction

Networked control systems (NCSs) are used in many fields
such as remote surgery and unmanned aerial vehicles espe-
cially in a number of emerging engineering applications such
as arrays of microactuators and even neurobiological and
socialeconomical systems [1–3]. Compared with the tradi-
tional wiring, the communication channels can simplify the
installation and reduce the costs of cables andmaintenance of
the system. However, the network in the control systems also
brings many problems, such as network-induced delay and
packet dropout, and makes system analysis more challenging
[4, 5]. Network-induced delays can degrade the performance
of control systems designed without considering them and
even destabilize the system [6, 7].

Because of the complexity caused by network, NCSs are
more vulnerable to faults. An effective way to increase the
reliability of the NCSs is to introduce fault-tolerant control
(FTC). Therefore, the research on fault-tolerant control of
NCSs has great theoretical and applied significance; however
research on FTC forNCSs is different from that for traditional
control systems in many aspects [8, 9]. In [10], a fault esti-
mator was proposed for NCSs with transfer delays, process
noise, andmodel uncertainty. On the basis of the information
on fault estimator, a fault-tolerant controller using sliding

mode control theory was designed to recover the system
performance. In [11], the random packet dropout and the
sensor or actuator failure were described as binary random
variables; the sufficient condition for asymptotical mean-
square stability of the NCSs was derived. By using matrix
measure technique, a fault-tolerant controller was designed
for NCSs with network-induced delay andmodel uncertainty
in [12]. In [13], a FTC algorithm considering actuator failure
of an NCS was presented, and the NCS with data packet
dropout was modeled as an asynchronous dynamical system.
Based on information scheduling, FTC design methods were
proposed for NCSs with communication constrains in [14].
In [15], the problem of fault-tolerant control for NCSs with
data packet dropout is studied and the closed-loop system
was modeled as Markov jump system. However, elements of
transition probabilities matrix are assumed to be completely
known and the controller can not be solved by LMIs. To the
best of the authors’ knowledge, up to now, very limited efforts
have been devoted to studying FTC for uncertain NCSs with
uncertain transition probability matrices, which motivates
our investigation.

Problems of partial sensors inactivation are equal to
problems of data pack dropout which can be solved by
common technique; we focus on the problems of reliability
when actuators are inactivated in this paper.
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In this paper, the step difference 𝜏𝑘 between the running
step 𝑘 and the time stamp of the used plant state is modeled
as a finite state Markov chain. And the information of
the transition probabilities matrix is limited; that is, a part
of elements of transition probabilities matrix is unknown.
The closed-loop system model is obtained by means of
state augmentation technique and themode-dependent fault-
tolerant controller is designed which guarantees the stochas-
tic stability of the closed-loop system.

This paper is organized as follows. In Section 2, we
formulate the state feedback controller design problem. In
Section 3, the sufficient conditions to guarantee the stochastic
stability are presented, and the fault-tolerant controller is
also given. A simulation example is used to illustrate the
effectiveness of the proposed method in Section 4. The
conclusion remarks are addressed in Section 5.

2. Problem Formulation

Consider the NCSs setup in Figure 1, in which the controllers
are placed in a remote location, and both sensormeasurement
data and control data are transmitted through network.

By adding a buffer to the actuator, the delay 𝜏
sc
𝑘

from
sensor to controller and the delay 𝜏

ca
𝑘

from controller to
actuator can be lumped together, and the new variable
is described as 𝜏𝑘 = 𝜏

sc
𝑘

+ 𝜏
ca
𝑘

which is modeled as a
Markov chain. And 𝜏𝑘 denotes the step difference between
the running step 𝑘 and the time stamp of the used plant state,
and it depends on the random time-delay and the data packet
drops on the random communication delay and the data
packet dropout [16]. Assume that both time-delay and the
data packet dropout are bounded, so 𝜏𝑘 is bounded. The step
delay 𝜏𝑘 takes values in Λ = {1, 2, . . . , 𝑑} and the transition
probability matrix of 𝜏𝑘 is Π = [𝜋𝑖𝑗]. That is, 𝜏𝑘 jumps
from mode 𝑖 to 𝑗 with probability 𝜋𝑖𝑗 which is defined by
𝜋𝑖𝑗 = Pr(𝜏𝑘+1 = 𝑗 | 𝜏𝑘 = 𝑖), where 𝜋𝑖𝑗 ≥ 0, ∀𝑖, 𝑗 ∈ Λ,
∑
𝑑

𝑗=1
𝜋𝑖𝑗 = 1. The set Λ contains 𝑑 modes of 𝜏𝑘, and the

transition probabilities of the jumping process in this paper
are considered to be partly accessed; that is, some elements
in matrixΠ are unknown. For example, for the time-delay 𝜏𝑘
with 3 modes, the transition probabilities matrixΠmay be as
follows:

Π =
[
[

[

? 𝜋12 ?

𝜋21 ? ?

? 𝜋32 ?

]
]

]

, (1)

where “?” represents the inaccessible elements. For notational
clarity, ∀𝑖 ∈ Λ, we denote Λ = Λ

𝑖

𝑘
+ Λ
𝑖

𝑢𝑘
with

Λ
𝑖

𝑘
= {𝑗 : 𝜋𝑖𝑗 is known} ,

Λ
𝑖

𝑢𝑘
= {𝑗 : 𝜋𝑖𝑗 is unknown} .

(2)

Moreover, if Λ𝑖
𝑘

̸= 0, it is further described as Λ𝑖
𝑘
= {𝑘
𝑖

1
, 𝑘
𝑖

2
,

. . . , 𝑘
𝑖

𝜇
}, 1 ≤ 𝜇 ≤ 𝑑, where 𝑘𝑖

𝜇
represents the 𝜇th known

element with the index 𝑘
𝑖

𝜇
in the 𝑖th row of the matrix Π.

Actuator Controlled 
plant Sensor

Buffer

Controller

Network

Figure 1: Structure of networked control system.

And Λ𝑖
𝑢𝑘

is described as Λ𝑖
𝑢𝑘
= {𝑘
𝑖

1
, 𝑘
𝑖

2
, . . . , 𝑘

𝑖

𝑑−𝜇
}, where 𝑘

𝑖

𝑑−𝜇

represents the (𝑑 − 𝜇)th unknown element with the index
(𝑑 − 𝜇)th in the 𝑖th row of the matrix Π.

Assume that the model of the plant is an uncertain
discrete-time system as follows:

𝑥 (𝑘 + 1) = (𝐴0 + Δ𝐴0) 𝑥 (𝑘) + (𝐵0 + Δ𝐵0) 𝑢 (𝑘) , (3)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is state vector and 𝑢(𝑡) ∈ 𝑅

𝑚 is the
control input. 𝐴0 ∈ 𝑅

𝑛×𝑛 and 𝐵0 ∈ 𝑅
𝑛×𝑚 are all real

constantmatrices. [Δ𝐴0 Δ𝐵0] = 𝐷𝐹(𝑘) [𝐸1 𝐸2], where𝐹(𝑘)
is an uncertain time-varying matrix satisfying the bound
𝐹(𝑘)
𝑇
𝐹(𝑘) < 𝐼, where 𝐼 denotes the identity matrix with

appropriate dimension.
Considering the effect of the random communication

delay and the data packet dropout, we describe the state
feedback control law as

𝑢 (𝑘) = 𝐾 (𝜏𝑘) 𝑥 (𝑘 − 𝜏𝑘) ,

𝑥 (0) = 𝑥0 ∈ 𝑅
𝑛
.

(4)

The fault indicator matrix 𝐿 is given by

𝐿 = diag {𝑙1, . . . , 𝑙𝑚} (5)

with 𝑙𝑗 ∈ {0, 1} for 𝑗 = 1, 2, . . . , 𝑚 and 𝑙𝑗 = 0 means the 𝑗th
actuator experiences a total failure, whereas the 𝑗th actuator is
in healthy state when 𝑙𝑗 = 1. Since there are 𝑚 actuators, the
set of possible related failure modes is finite and is denoted
by 𝐿̃ = {𝐿

1
, . . . , 𝐿

𝑁
} with 2

𝑚
− 1 elements, where 𝐿𝑖 (𝑖 =

1, 2, . . . , 𝑁) is a particular pattern of matrix 𝐿.
Consequently, the closed-loop system from (3) and (4)

can be expressed as

𝑥 (𝑘 + 1) = (𝐴0 + Δ𝐴0) 𝑥 (𝑘)

+ (𝐵0 + Δ𝐵0) 𝐿𝐾 (𝜏𝑘) 𝑥 (𝑘 − 𝜏𝑘) .

(6)

At sampling time 𝑘, if we augment the state-variable as 𝛿(𝑘) =
[𝑥(𝑘)
𝑇

𝑥(𝑘 − 1)
𝑇

⋅ ⋅ ⋅ 𝑥(𝑘 − 𝑑)
𝑇
]
𝑇

, the closed-loop system
(6) can be written as

𝛿 (𝑘 + 1) = (𝐴 + 𝐵𝐿𝐾 (𝜏𝑘)𝐻 (𝜏𝑘)) 𝛿 (𝑘) ,

𝛿 (0) = [𝛿(0)
𝑇

𝛿 (−1)
𝑇

⋅ ⋅ ⋅ 𝛿 (−𝑑)
𝑇
]
𝑇

,

(7)
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where

𝐴 =

[
[
[
[
[
[
[
[
[

[

𝐴0 + Δ𝐴0 0 ⋅ ⋅ ⋅ 0 0

𝐼 0 ⋅ ⋅ ⋅ 0 0

0 𝐼 ⋅ ⋅ ⋅ 0 0

.

.

.
.
.
. d 0 0

0 0 ⋅ ⋅ ⋅ 𝐼 0

]
]
]
]
]
]
]
]
]

]

∈ 𝑅
𝑛(1+𝑑)×𝑛(1+𝑑)

,

𝐵 =

[
[
[
[
[
[
[
[
[

[

𝐵0 + Δ𝐵0

0

0

.

.

.

0

]
]
]
]
]
]
]
]
]

]

∈ 𝑅
𝑛(2+1)×𝑚

,

𝐻 (𝜏𝑘) = [0 0 𝐼 ⋅ ⋅ ⋅ 0] ∈ 𝑅
𝑛×𝑛(1+𝑑)

(8)

has all elements being zeros except for the (1 + 𝜏𝑘)th block
being identity.

It can be seen that the closed-loop system (7) is a jump
linear system with 𝑑 different modes.

It is noticed that 𝐴 = 𝐴0 + Δ𝐴0 = 𝐴0 + 𝐷𝐹𝐸1 and 𝐵 =

𝐵0 + Δ𝐵0 = 𝐵0 + 𝐷𝐹𝐸2 where

𝐴0 =

[
[
[
[
[
[
[
[
[

[

𝐴0 0 ⋅ ⋅ ⋅ 0 0

𝐼 0 ⋅ ⋅ ⋅ 0 0

0 𝐼 ⋅ ⋅ ⋅ 0 0

.

.

.
.
.
. d 0 0

0 0 ⋅ ⋅ ⋅ 𝐼 0

]
]
]
]
]
]
]
]
]

]

, Δ𝐴0 =

[
[
[
[
[
[
[
[
[

[

𝐷𝐹𝐸1 0 ⋅ ⋅ ⋅ 0 0

0 0 ⋅ ⋅ ⋅ 0 0

0 0 ⋅ ⋅ ⋅ 0 0

.

.

.
.
.
. d 0 0

0 0 ⋅ ⋅ ⋅ 0 0

]
]
]
]
]
]
]
]
]

]

,

𝐷 =

[
[
[
[
[
[
[
[
[

[

𝐷

0

0

.

.

.

0

]
]
]
]
]
]
]
]
]

]

, 𝐵0 =

[
[
[
[
[
[
[
[
[

[

𝐵0

0

0

.

.

.

0

]
]
]
]
]
]
]
]
]

]

, Δ𝐵0 =

[
[
[
[
[
[
[
[
[

[

𝐷𝐹𝐸2

0

0

.

.

.

0

]
]
]
]
]
]
]
]
]

]

,

𝐸1 = [𝐸1 0 0 ⋅ ⋅ ⋅ 0] .

(9)

Throughout this paper, we use the following definition.

Definition 1. System (7) is stochastically stable if for every
finite 𝛿(0) and initial mode 𝜏0 ∈ Λ there exists a finite𝑊 > 0

such that the following holds:

𝐸{

∞

∑

𝑘=0

‖𝛿 (𝑘)‖
2
| 𝛿0, 𝜏0} < 𝛿

𝑇

0
𝑊𝛿0. (10)

The object of this paper is to construct a fault-tolerant
controller with structure as given by (4) which achieves that
the closed-loop system (7) is stochastically stable under all

actuator failure modes. In the following,𝐾(𝜏𝑘) and𝐻(𝜏𝑘) for
this paper are denoted as 𝐾(𝑖) and 𝐸(𝑖), respectively.

To proceed, we will need the following two lemmas.

Lemma 2 (see [17]). Given matrices 𝑊, 𝑀, and 𝑁 of appro-
priate dimensions and 𝑊 is symmetric, 𝑊 + 𝑁

𝑇
𝐹(𝑘)
𝑇
𝑀
𝑇
+

𝑀𝐹(𝑘)𝑁 < 0 holds for all 𝐹(𝑘) satisfying 𝐹(𝑘)𝑇𝐹(𝑘) ≤ 𝐼 if
and only if there exists a scalar 𝜀 > 0 such that𝑊 + 𝜀𝑀𝑀

𝑇
+

𝜀
−1
𝑁
𝑇
𝑁 < 0.

Lemma 3 (see [18]). The matrix 𝐸(𝑖)
𝑇 is of full-array rank;

then there exist two orthogonal matrices 𝑈𝑖 ∈ 𝑅
𝑛(1+𝑑)×𝑛(1+𝑑)

and 𝑉𝑖 ∈ 𝑅
𝑔×𝑔, such that 𝐸(𝑖)𝑇 = 𝑈

𝑇

𝑖
[
Σ𝑖
0
] 𝑉
𝑇

𝑖
, where Σ𝑖 =

diag(𝜎1, 𝜎2, . . . 𝜎𝑔), where 𝜎𝑖 (𝑖 = 1, 2, . . . , 𝑔) are nonzero
singular values of 𝐸(𝑖)𝑇. If matrix 𝑄(𝑖) ∈ 𝑅𝑛(1+𝑑)×𝑛(1+𝑑) has the
following structure

𝑄 (𝑖) = 𝑈
𝑇

𝑖
[
𝑄𝑖1 0

0 𝑄𝑖2

]𝑈𝑖, (11)

there exists a nonsingular matrix 𝑋𝑖 ∈ 𝑅
𝑛×𝑛 such that

𝑄(𝑖)𝐸(𝑖)
𝑇

= 𝐸(𝑖)
𝑇
𝑋𝑖, where 𝑄𝑖1 ∈ 𝑅

𝑔×𝑔
> 0, 𝑄𝑖2 ∈

𝑅
𝑛(1+𝑑−𝑔)×𝑛(1+𝑑−𝑔)

> 0.

3. Controller Design

With Definition 1, the sufficient conditions on the stochastic
stability of the closed-loop system (7) can be obtained.

Theorem 4. The closed-loop system (7) with partly unknown
transition probabilities (2) is stochastically stable if there exists
matrix 𝑃(𝑖) > 0, 𝑖 ∈ Λ such that

𝐴 (𝑖)
𝑇
∑

𝑗∈Λ𝑖
𝑘

𝜋𝑖𝑗𝑃 (𝑗)𝐴 (𝑖) − ∑

𝑗∈Λ𝑖
𝑘

𝜋𝑖𝑗𝑃 (𝑖) < 0, (12)

𝐴 (𝑖)
𝑇
𝑃 (𝑗)𝐴 (𝑖) − 𝑃 (𝑖) < 0, ∀𝑗 ∈ Λ

𝑖

𝑢𝑘
, (13)

where 𝐴(𝑖) = 𝐴 + 𝐵𝐿𝐾(𝑖)𝐻(𝑖).

Proof. For the closed-loop system (7), consider the quadratic
function which is given by

𝑉 (𝛿 (𝑘) , 𝑘) = 𝛿
𝑇
(𝑘) 𝑃 (𝜏𝑘) 𝛿 (𝑘) . (14)

Then,

𝐸 {Δ𝑉 (𝛿 (𝑘) , 𝑘)}

= 𝐸 {𝛿
𝑇
(𝑘 + 1) 𝑃 (𝜏𝑘+1) 𝛿 (𝑘 + 1) | 𝛿 (𝑘) , 𝜏𝑘 = 𝑖}

− 𝛿
𝑇
(𝑘) 𝑃 (𝜏𝑘) 𝛿 (𝑘)

= 𝛿 (𝑘)
𝑇
(𝐴 + 𝐵𝐿𝐾 (𝑖)𝐻 (𝑖))

𝑇

⋅

𝑑

∑

𝑗=1

𝜋𝑖𝑗𝑃 (𝑗) (𝐴 + 𝐵𝐿𝐾 (𝑖)𝐻 (𝑖))

− 𝛿
𝑇
(𝑘) 𝑃 (𝑖) 𝛿 (𝑘)
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= 𝛿 (𝑘)
𝑇
(𝐴(𝑖)

𝑇
∑

𝑗∈Λ𝑖
𝑘

𝜋𝑖𝑗𝑃 (𝑗)𝐴 (𝑖) − ∑

𝑗∈Λ𝑖
𝑘

𝜋𝑖𝑗𝑃 (𝑖))

⋅ 𝛿 (𝑘) + 𝛿 (𝑘)
𝑇

⋅ (𝐴 (𝑖)
𝑇

∑

𝑗∈Λ𝑖
𝑢𝑘

𝜋𝑖𝑗𝑃 (𝑗)𝐴 (𝑖) − ∑

𝑗∈Λ𝑖
𝑢𝑘

𝜋𝑖𝑗𝑃 (𝑖))𝛿 (𝑘)

= 𝛿 (𝑘)
𝑇
(𝐴(𝑖)

𝑇
∑

𝑗∈Λ𝑖
𝑘

𝜋𝑖𝑗𝑃 (𝑗)𝐴 (𝑖) − ∑

𝑗∈Λ𝑖
𝑘

𝜋𝑖𝑗𝑃 (𝑖))𝛿 (𝑘)

+ 𝛿 (𝑘)
𝑇
( ∑

𝑗∈Λ𝑖
𝑢𝑘

𝜋𝑖𝑗𝐴 (𝑖)
𝑇
𝑃 (𝑗)𝐴 (𝑖) − 𝑃 (𝑖))𝛿 (𝑘) .

(15)

Hence, if (12) and (13) hold, Δ𝑉(𝛿(𝑘), 𝑘) < 0. One has

𝐸 {𝑉 (𝛿 (𝑘) , 𝑘) − 𝑉 (𝛿 (0) , 0)}

= 𝐸{

𝑘

∑

𝑘=0

Δ𝑉 (𝑘)} ≤ 𝛽𝐸{

𝑘

∑

𝑘=0

‖𝛿 (𝑘)‖
2
} ,

(16)

where 𝛽 = 𝜆min(𝐴 + 𝐵𝐿𝐾(𝑖)𝐻(𝑖))
𝑇
∑
𝑑

𝑗=1
𝜋𝑖𝑗𝑃(𝑗)(𝐴 +

𝐵𝐿𝐾(𝑖)𝐻(𝑖)) − 𝑃(𝑖); hence one can get lim𝑘→∞𝐸{∑
𝑘

𝑘=0

‖𝛿(𝑘)‖
2
} ≤ (1/𝛽)𝐸{𝑉(0)}. According to Definition 1, system

(7) is stochastically stable.
Clearly, no knowledge on 𝜋𝑖𝑗, ∀𝑗 ∈ Λ

𝑖

𝑢𝑘
is needed in (12)

and (13), which completes the proof.

Theorem 5. Consider system (7) with partly unknown transi-
tion probabilities (2). If there exist matrices 𝑄(𝑖) > 0, 𝑌(𝑖) and
positive scalars 𝜇1, 𝜇2, 𝜇3, and 𝜇4 such that

[
[
[
[
[
[
[

[

− ∑

𝑗∈Λ𝑖
𝑘

𝜋𝑖𝑗𝑄 (𝑖) ∗ ∗ ∗

Λ
𝑖

𝑘
(𝐴0 + 𝐵0𝐿𝑌 (𝑖)𝐻 (𝑖)) Γ + Ξ

𝑖

𝑘
∗ ∗

𝐸2𝐿𝑌 (𝑖)𝐻 (𝑖) 0 −𝜇1𝐼 ∗

𝐸1 0 0 −𝜇2𝐼

]
]
]
]
]
]
]

]

< 0,

[
[
[

[

−𝑄 (𝑖) ∗ ∗ ∗

𝐴0 + 𝐵0𝐿𝑌 (𝑖)𝐻 (𝑖) −𝑄 (𝑗) + (𝜇3 + 𝜇4)𝐷𝐷
𝑇

∗ ∗

𝐸2𝐿𝑌 (𝑖)𝐻 (𝑖) 0 −𝜇3𝐼 ∗

𝐸1𝑄 (𝑖) 0 0 −𝜇4𝐼

]
]
]

]

< 0, ∀𝑗 ∈ Λ
𝑖

𝑢𝑘
,

(17)

where

Λ
𝑖

𝑘
= [√𝜋𝑖𝑘𝑖

1

𝐼 √𝜋𝑖𝑘𝑖
2

𝐼 ⋅ ⋅ ⋅ √𝜋𝑖𝑘𝑖
𝜇

𝐼]
𝑇

,

Ξ
𝑖

𝑘
= − diag {𝑄 (𝑘

𝑖

1
) 𝑄 (𝑘

𝑖

2
) ⋅ ⋅ ⋅ 𝑄 (𝑘

𝑖

𝜇
)} ,

Γ =

[
[
[
[
[
[
[

[

(𝜇1 + 𝜇2)𝐷𝐷
𝑇

∗ ∗ ∗

(𝜇1 + 𝜇2)𝐷𝐷
𝑇

(𝜇1 + 𝜇2)𝐷𝐷
𝑇

∗ ∗

.

.

.
.
.
. d ∗

(𝜇1 + 𝜇2)𝐷𝐷
𝑇

(𝜇1 + 𝜇2)𝐷𝐷
𝑇

⋅ ⋅ ⋅ (𝜇1 + 𝜇2)𝐷𝐷
𝑇

]
]
]
]
]
]
]

]

,

(18)

then there exists a mode-dependent controller of the form
(4) such that the resulting system (7) is stochastically stable.
Furthermore, an admissible controller is given by

𝐾 (𝑖) = 𝑌 (𝑖) 𝑉𝑖Σ
−1

𝑖
𝑄
−1

𝑖1
Σ𝑖𝑉
𝑇

𝑖
. (19)

Proof. According toTheorem 4, we know that the system (7)
is stochastically stable with the partly unknown transition
probabilities (2) if inequalities (12) and (13) hold. By Schur
complement, inequality (12) is equivalent to

[
[

[

− ∑

𝑗∈Λ𝑖
𝑘

𝜋𝑖𝑗𝑃 (𝑖) ∗

Λ
𝑖

𝑘
(𝐴 + 𝐵0𝐿𝐾 (𝑖)𝐻 (𝑖)) Ω

𝑖

𝑘

]
]

]

+ Ψ𝐹Θ + Ψ
𝑇
𝐹
𝑇
Θ
𝑇
< 0,

(20)

where Ψ = [0 𝐷
𝑇

⋅ ⋅ ⋅ 𝐷
𝑇

𝐷
𝑇
]
𝑇

, Θ =

[𝐸2𝐿𝐾(𝑖) 0 ⋅ ⋅ ⋅ 0 0]
𝑇.

By Lemma 2, there exists a scalar 𝜇1 > 0 such that

[
[
[
[

[

− ∑

𝑗∈Λ𝑖
𝑘

𝜋𝑖𝑗𝑃 (𝑖) ∗ ∗

Λ
𝑖

𝑘
(𝐴0 + 𝐵𝐿𝐾 (𝑖)𝐻 (𝑖)) Γ̃ + Ξ̃

𝑖

𝑘
∗

𝐸2𝐿𝐾 (𝑖)𝐻 (𝑖) 0 −𝜇1

]
]
]
]

]

< 0, (21)

where

Ξ̃
𝑖

𝑘
= − diag {𝑃 (𝑘𝑖

1
)
−1

𝑃 (𝑘
𝑖

2
)
−1

⋅ ⋅ ⋅ 𝑃 (𝑘
𝑖

𝜇
)
−1
} ,

Γ̃ =

[
[
[
[
[
[
[

[

𝜇1𝐷𝐷
𝑇

∗ ∗ ∗

𝜇1𝐷𝐷
𝑇

𝜇1𝐷𝐷
𝑇

∗ ∗

.

.

.
.
.
. d ∗

𝜇1𝐷𝐷
𝑇

𝜇1𝐷𝐷
𝑇

⋅ ⋅ ⋅ 𝜇1𝐷𝐷
𝑇

]
]
]
]
]
]
]

]

.

(22)

Using Schur complement and Lemma 2 again, one can get

[
[
[
[
[
[
[

[

− ∑

𝑗∈Λ𝑖
𝑘

𝜋𝑖𝑗𝑃 (𝑖) ∗ ∗ ∗

Λ
𝑖

𝑘
(𝐴0 + 𝐵0𝐿𝐾 (𝑖)𝐻 (𝑖)) Γ + Ξ̃

𝑖

𝑘
∗ ∗

𝐸2𝐿𝐾 (𝑖)𝐻 (𝑖) 0 −𝜇1𝐼 ∗

𝐸1 0 0 −𝜇2𝐼

]
]
]
]
]
]
]

]

< 0.

(23)
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Similarly, from (13) one can obtain

[
[
[

[

−𝑃 (𝑖) ∗ ∗ ∗

𝐴0 + 𝐵0𝐿𝐾 (𝑖)𝐻 (𝑖) −𝑃 (𝑗) + (𝜇3 + 𝜇4)𝐷𝐷
𝑇

∗ ∗

𝐸2𝐿𝐾 (𝑖)𝐻 (𝑖) 0 −𝜇3𝐼 ∗

𝐸
1

0 0 −𝜇
4
𝐼

]
]
]

]

< 0, ∀𝑗 ∈ Λ
𝑖

𝑢𝑘
.

(24)

Performing a congruence transformation to (23) and (24) by
diag {𝑃(𝑖)−1 𝐼 𝐼 𝐼}, setting 𝑄(𝑖) = 𝑃(𝑖)

−1, one can obtain
(25) and (26), respectively. One has

[
[
[
[
[
[
[

[

− ∑

𝑗∈Λ𝑖
𝑘

𝜋𝑖𝑗𝑄 (𝑖) ∗ ∗ ∗

Λ
𝑖

𝑘
(𝐴0 + 𝐵0𝐿𝐾 (𝑖)𝐻 (𝑖))𝑄 (𝑖) Γ + Ξ

𝑖

𝑘
∗ ∗

𝐸2𝐿𝐾 (𝑖)𝐻 (𝑖) 𝑄 (𝑖) 0 −𝜇1𝐼 ∗

𝐸1𝑄 (𝑖) 0 0 −𝜇2𝐼

]
]
]
]
]
]
]

]

< 0,

(25)

[
[
[

[

−𝑄 (𝑖) ∗ ∗ ∗

(𝐴
0
+ 𝐵
0
𝐿𝐾 (𝑖)𝐻 (𝑖))𝑄 (𝑖) −𝑄 (𝑗) + (𝜇

3
+ 𝜇
4
)𝐷𝐷
𝑇

∗ ∗

𝐸
2
𝐿𝐾 (𝑖)𝐻 (𝑖) 𝑄 (𝑖) 0 −𝜇

3
𝐼 ∗

𝐸
1
𝑄 (𝑖) 0 0 −𝜇

4
𝐼

]
]
]

]

< 0, ∀𝑗 ∈ Λ
𝑖

𝑢𝑘
.

(26)

For the matrix 𝐸(𝑖)𝑇 of full-column rank, there always exist
two orthogonal matrices 𝑈𝑖 ∈ 𝑅

𝑛(1+𝑑)×𝑛(1+𝑑) and 𝑉𝑖 ∈ 𝑅
𝑔×𝑔

such that

𝐸 (𝑖)
𝑇
= 𝑈
𝑇

𝑖
[
Σ𝑖

0
]𝑉
𝑇

𝑖
, (27)

where Σ𝑖 = diag(𝜎1, 𝜎2, . . . 𝜎𝑔), 𝜎𝑖 (𝑖 = 1, 2, . . . , 𝑔) are
nonzero singular values of𝐸(𝑖)𝑇. Assume that thematrix𝑄(𝑖)
has the following structure:

𝑄 (𝑖) = 𝑈
𝑇

𝑖
[
𝑄𝑖1 0

0 𝑄𝑖2

]𝑈𝑖; (28)

according to Lemma 3, there exists matrix 𝑋𝑖 ∈ 𝑅
𝑛×𝑛 such

that 𝐹(𝑖)𝐸(𝑖)𝑇 = 𝐸(𝑖)
𝑇
𝑋𝑖, setting

𝑋𝑖𝐾 (𝑖)
𝑇
= 𝑌 (𝑖)

𝑇
. (29)

Since 𝐹(𝑖)𝐸(𝑖)𝑇 = 𝐸(𝑖)
𝑇
𝑋𝑖, one can get

[
Σ𝑖

0
]𝑉
𝑇

𝑖
= 𝑈
𝑇

𝑖
[
Σ𝑖

0
]𝑉
𝑇

𝑖
𝑋𝑖, (30)

which implies that

𝑋𝑖 = 𝑉𝑖Σ
−1

𝑖
𝐹𝑖1Σ𝑖𝑉

𝑇

𝑖
. (31)

Thus, (19) is obtained from (29) and (31), which completes the
proof.

4. Numerical Example

In this section, a numerical example is given to show the
validity andpotential of our developed theoretical results.The
dynamics are described as follows:

𝐴0 = [
0.7 −0.1

0.1 0.3
] , 𝐵0 = [

0.9 0.6

0.7 1
] ,

𝐷 = [
0.01 0

0 0.02
] , 𝐸1 = [

0.02 0

0 0.03
] ,

𝐸2 = [
0.01 0

0 0.03
] .

(32)

Assume the time-delay 𝜏𝑘 takes values from Λ = {1, 2, 3}

and the transition probabilities matrix is Π = [
0.6 ? ?
? ? 0.7
? 0.8 ?

].
When the first actuator experiences a total failure, that is,
the fault indicator matrix 𝐿 = [ 0 0

0 1
], the fault-tolerant and

delay-dependent controller gain is solved fromTheorem 5 as
follows:

𝐾1 = [
0.0109 −0.002

0 0
] , 𝐾2 = [

0.0026 −0.004

0 0
] ,

𝐾3 = [
0.0100 −0.0020

0 0
] .

(33)

When the second actuator experiences a total failure while
the first actuator works normally, that is, the fault indicator
matrix 𝐿 = [ 1 0

0 0
], the controller gain is solved as follows:

𝐾1 = [
0 0

0.0091 0.0013
] , 𝐾2 = [

0 0

0.0022 −0.0010
] ,

𝐾3 = [
0 0

0.0080 −0.0010
] .

(34)

When both actuators work normally, that is, the fault indica-
tor matrix 𝐿 = [ 1 0

0 1
], the controller gain is solved as

𝐾1 = [
0.0204 −0.0098

−0.0108 0.0108
] , 𝐾2 = [

0.0048 −0.0020

−0.0024 0.0018
] ,

𝐾3 = [
0.0018 −0.0007

−0.0009 −0.0005
] .

(35)

Zero-input responses of states 𝑥1, 𝑥2 are shown in Figures 2
and 3 when 𝑥(0) = [−0.02 0.01]

𝑇.
The curves of zero-input response states 𝑥1, 𝑥2 show

that the NCS with partly unknown transition probabilities is
stochastically stable against actuator possible fault.
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Figure 2: Zero-input response of 𝑥1.
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Figure 3: Zero-input response of 𝑥2.

5. Conclusions

This paper is concerned with the problem of fault-tolerant
control for uncertain discrete-time networked systems
against actuator possible fault. The time-delay is modeled
as a finite state Markov chain and the Markov chain’s
transition probabilities the information is limited.The closed-
loop system is established through the state augmentation
technique and the state feedback controller is designed
which guarantees the stability of the resulting closed-loop
systems. It is shown that the controller design problem under
consideration is solvable if a set of LMIs is feasible. Simulation
results show that the closed-loop systems are stochastically
stable against actuator fault.
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