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Gene-gene interaction studies focus on the investigation of the association between the single nucleotide polymorphisms (SNPs) of
genes for disease susceptibility. Statistical methods are widely used to search for a good model of gene-gene interaction for disease
analysis, and the previously determined models have successfully explained the effects between SNPs and diseases. However, the
huge numbers of potential combinations of SNP genotypes limit the use of statistical methods for analysing high-order interaction,
and finding an available high-order model of gene-gene interaction remains a challenge. In this study, an improved particle swarm
optimization with double-bottom chaotic maps (DBM-PSO) was applied to assist statistical methods in the analysis of associated
variations to disease susceptibility. A big data set was simulated using the published genotype frequencies of 26 SNPs amongst eight
genes for breast cancer. Results showed that the proposed DBM-PSO successfully determined two- to six-order models of gene-
gene interaction for the risk association with breast cancer (odds ratio > 1.0; 𝑃 value < 0.05). Analysis results supported that the
proposed DBM-PSO can identify good models and provide higher chi-square values than conventional PSO. This study indicates
that DBM-PSO is a robust and precise algorithm for determination of gene-gene interaction models for breast cancer.

1. Introduction

Genome-wide association studies (GWAS) for the analysis of
gene-gene interaction are important fields for detecting the
effects of cancer and disease [1–4]. Such studies usually entail
the collection of a vast number of samples and SNPs selected
from several related genes of disease in order to identify
the association amongst genes. Disease effect, in general,
is influenced by the best association between SNPs from
several genes; these SNPs could have a potential association to
provide information for disease analysis.Therefore, amethod
for searching high-order interactions is needed to determine
the potential association between several loci.

Good models of the association between SNPs from
several genes are usually hidden in the large number of

possiblemodels.The sumof all possiblemodels of association
between case data and control data can be computed by
𝐶(𝑛,𝑚) × 𝑔

𝑚, where 𝑛 represents a total number of SNPs,
𝑚 is a selected number of SNPs, and 𝑔 is the number of
genotypes. Data mining and machine learning methods have
been proposed for use in GWAS data analysis. These com-
putational approaches were developed to examine epistasis
in family-based and case-control association studies [5–12].
The genetic algorithm (GA), particle swarm optimization
(PSO), and chaotic particle swarm (CPSO) methods were
proposed to identify the models of gene-gene interaction.
However, the ability to determine the relative model quality
needs to be improved. In mathematics, the problem space
for identifying good models is not linear and the algorithm
converges easily to a local optima, since no better models are
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found near the best model in that region. PSO often leads
to premature convergence, especially in complex multipeak
search problems. Therefore, the use of chaotic sequences to
improve the PSO has been proposed to identify models of
gene-gene interaction [7]. An improved PSO using a double-
bottom chaotic maps (DBM-PSO) [13] has been shown to
overcome the respective disadvantages of PSO and CPSO. In
this study,DBM-PSO is applied to assist statisticalmethods in
the analysis of associated variations to disease susceptibility.

A total of 26 SNPs obtained from eight related genes
of breast cancer (EGF, IGF1, IGF1R, IGF2, IGFBP3, IL10,
TGFB1, and VEGF) were used to test the various methods for
comparison of the association models. It is proposed that the
interactions between polymorphisms of breast cancer-related
genes may have synergistic effects on the pathogenesis of
cancer and disease; this would explain differences in disease
susceptibility.The quality of amodel of gene-gene interaction
can be assessed by determining its odds ratio (OR), confi-
dence intervals, and 𝑃 value. We systematically evaluate the
model effects from two- to five-order interactions to compare
the DBM-PSO with other PSOs methods.

2. Methods

2.1. Problem Description. To identify the quality of the mod-
els of gene-gene interaction problem, the model includes
SNPs and their corresponding genotypes. The set 𝑋 =

{𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝐷
} represents a possible model as a solution

in the problem space; each parameter 𝑥 is a real number.
The chi-square test is used to design the PSO and DBM-
PSO fitness functions. The objective is to search for a vector
𝑋
∗ which has its own best fitness value according to the

evaluation of fitness function 𝑓(𝑋)(𝑓 : 𝛿 ⊆ 𝑅𝐷 → 𝑅); that
is, 𝑓(𝑋∗) > 𝑓(𝑋), for all 𝑋 ∈ 𝛿, where 𝛿 is a nonempty large
finite set serving as the search space and 𝛿 = 𝑅𝐷.

2.2. Particle Swarm Optimization. Particle swarm optimiza-
tion (PSO) is a population-based stochastic optimization
technique [14]. The conception of PSO is based on a robust
theory of swarm intelligence to search for an optimal res-
olution of complex problems. Swarm intelligence describes
an automatically evolving system based on simulating the
social behaviour of organisms, for example, knowledge shar-
ing. Therefore, valuable information can be shared amongst
swarm members to suggest a common objective which leads
individuals toward an optimal direction. PSO has been used
to solve several types of optimization problems [15], including
function optimization and parameter optimization [16] and
shows promise for nonlinear function optimization [17–22].
In PSO, possible solutions are represented as the particles.
During generation, particle positions are adjusted according
to the updated velocity toward a significant objective. The
objective of each particle is defined based on the particle’s
previous experience (𝑝𝑏𝑒𝑠𝑡) and knowledge commonly held
by the population (𝑔𝑏𝑒𝑠𝑡). Thus, particles can effectively
converge into a solution-rich area to find the better solution.
Finally, the particles follow the current best particle in the
search space until a predefined number of generations are

reached. The PSO procedure entails (1) population initial-
ization, (2) objective function evaluation, (3) identification
of 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡, (4) particle updating, and (5) the
termination condition. These steps are described in detail in
the following section.

2.3. Double-Bottom Map Particle Swarm Optimization.
Double-bottom map particle swarm optimization (DBM-
PSO) was proposed by Yang et al. in 2012 [13]. While PSO
is easily complicated by the existence of nonlinear fitness
function with multiple local optima, this is not an issue for
DBM-PSO. A local optima, 𝑓

𝑖
= 𝑓(𝑋

𝑖
), can be described

as ∃𝜀 > 0 ∀𝑋 ∈ 𝛿 : ‖𝑋 − 𝑋
𝑖
‖ < 𝜀 ⇒ 𝑓(𝑋) ≤ 𝑓

𝑖
≤ 𝑓(𝑋

∗

),
where ‖ ⋅ ‖ represents any 𝑝-norm distance measure. In PSO,
the flexibilities of given constraints and vector space in the
problem influence the determination of the best solution.
Generally speaking, 𝑟

1
and 𝑟
2
independently influence search

exploitation and exploration, and the effect of 𝑟
1
and 𝑟

2

on the convergence behaviour is very important in PSO.
Recently, chaos approaches have been proposed to overcome
the inherent disadvantages of PSO. Chaotic maps are easily
applied in PSO to prevent entrapment of the population
in a local optima [23]. DBM-PSO proposes a new type of
chaotic map, called double-bottom maps, to improve the
search ability of PSO. Double-bottom maps are used to
design an updating function to balance the exploration and
exploitation for PSO search capability. The superiority of the
double-bottom map over other chaotic maps lies in the fact
that it provides high frequencies in the three regions over
time, that is, 0.0, 0.5, and 1.0. Ideally, the distribution ratios
of 0.0, 0.5, and 1.0 can be effective in balancing the search
behaviour; however, the double-bottom map is designed to
satisfy this PSO property.

Algorithm 1 shows the DBM-PSO pseudocode and
explains all processes in DBM-PSO to identify the best
model of gene-gene interaction. The difference between PSO
and DBM-PSO is that the proposed double-bottom map is
applied in the updating function of the PSO process (symbol
14 of Algorithm 1). All steps in DBM-PSO for identifying
the models of gene-gene interaction problems are explained
below.

2.4. Initializing Particles and DBMr. In DBM-PSO, a point
in the search space is a set which includes the real element
𝑥, 𝑥 ∈ 𝑅. Each particle is a possible solution to the
corresponding problem. The subsequent iteration is denoted
by 𝑖 = 0, 1, . . . , Iterationmax. Since the elements in a set are
likely to change over a sequence of iterations, (1) represents
the 𝑗th particle in the population of 𝑖th iteration as

𝑋
𝑗,𝑖
= {𝑥
𝑗,𝑖,1
, 𝑥
𝑗,𝑖,2
, . . . , 𝑥

𝑗,𝑖,𝐷
| 𝑥 ∈ 𝑅} . (1)

In this study, a particle in the population represents a
solution, that is, a model of gene-gene interaction. A particle
contains two separate sets: a set of selected SNPs and a set
of genotypes. For each element in 𝑋

𝑗
, a certain range within

the value is restricted.The values are related to physical com-
ponents or measurement, that is, natural bounds. The initial
population (at 𝑖 = 0) process covers a certain range as much
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(01) begin
(02) Randomly initialize particles swarm and DBMr
(03) for 𝑖 = 1 to the number of iteration
(04) Evaluate fitness values of particles by FITNESS(𝑋

𝑗
, 𝑃,𝑁)

(05) for 𝑗 = 1 to number of particles
(06) Find pbest by (13)
(07) Find gbest by (14)
(08) for 𝑑 = 1 to the number of dimension of particle
(09) Update the velocities of particles by (15)
(10) Update the positions of particles by (16)
(11) next 𝑑
(12) next 𝑛
(13) Update the inertia weight value by (17)
(14) Update the value of DBMr by (18)
(15) next 𝑖
(16) end

Algorithm 1: DBMPSO pseudocode.

(01) FITNESS(𝑋
𝑗
, 𝑃,𝑁)

(02) Compute 𝑎 using (4)
(03) Compute 𝑏 using (5)
(04) Compute 𝑐 using (6)
(05) Compute 𝑑 using (7)
(06) Compute RorP using (9)
(07) if the objective is search of risk association model
(08) Compute fitness value using (10)
(09) else if the objective is search of protection association model
(10) Compute fitness value using (11)
(11) End if
(12) Return fitness value
(13) End

Algorithm 2: Fitness value computation pseudocode.

as possible by uniformly randomizing individuals within
the search space constrained according to the minimum
and maximum bounds, which are represented by 𝑆𝑁𝑃min
and 𝑆𝑁𝑃max and𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒min and𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒max, respectively.
Equation (2) shows all genotypes.The homozygous reference
genotype is represented as 1, while the heterozygous genotype
is represented as 2, and the homozygous variant genotype is
represented as 3:

Genotype =
{
{

{
{

{

1, AA type,
2, Aa type,
3, aa type.

(2)

The particles are generated by (3). Particles are initialized
by generating the random set in a particle:

𝑥
𝑗,𝑑
=

{
{

{
{

{

Random (𝑆𝑁𝑃min, 𝑆𝑁𝑃max) , 𝑑 ≤

𝐷

2

Random (𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒min, 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒max) , 𝑑 >
𝐷

2

,

(3)

where 𝑆𝑁𝑃max and 𝑆𝑁𝑃min represent a limited SNP, while
𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒max and 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒min represent the limited possible
genotypes. For example, let 𝑋

𝑗,0
= (1, 3, 4, 2, 1, 2); thus

𝑋
𝑗,0

represents the 𝑗th 𝑋 in the first generation (at 𝑖 = 0)
of selected SNPs (1, 3, 4) and genotypes (2, 1, 2) and can
be described by the SNPs associated with the genotypes as
follows: (1, 2), (3, 1), and (4, 2).

All random values (DBMr) in the particles are generated
with a random value between 0.0 and 1.0 for each indepen-
dent run.

2.5. Evaluating the Qualities of Particles Using Fitness Func-
tion. In theDBM-PSOprocess, the fitness functionmeasures
the quality of particles in the population.The studies of gene-
gene interaction focus on the combinations of SNP genotypes
to identify the highest chi-square (𝜒2) value between breast
cancer cases and noncancer cases; the value is called the
fitness value in DBM-PSO. Algorithm 2 shows the fitness
value computation pseudocode. In (4) and (5), symbols 𝑝
and 𝑛 are, respectively, the sizes of case data and control data,
while in (4), (5), (6), and (7),𝑃 and𝑁 are, respectively, the sets
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of case data and control data.The 𝑎 in (4) is used to count the
number of 𝑃 including the𝑋

𝑗
; that is,𝑋

𝑗
⊆ 𝑃
𝑘
. The 𝑏 in (5) is

used to count the number of𝑁 including the𝑋
𝑖
; that is,𝑋

𝑗
⊆

𝑁
𝑘
. The 𝑐 in (6) represents the total number of unmatched

𝑋
𝑗
in the 𝑃; that is, 𝑋

𝑗
̸⊂ 𝑃
𝑘
. The 𝑑 in (7) represents the total

number of unmatched𝑋
𝑗
in the𝑁; that is,𝑋

𝑗
̸⊂ 𝑁
𝑘
. Equation

(9) computes the difference between case data and control
data and is used to determinewhether themodel is associated
with risk or protection. Equation (10) is used to compute the
fitness value if the objective is to search the risk association
model. Equation (11) is used to compute the fitness value if
the objective is to search the protection association model.
Equation (12) is the chi-square (𝜒2) function and is used
to compute the 𝜒2 value between breast cancer cases and
noncancer cases in this study. Consider

𝑎 = 𝑓 (𝑋
𝑗
) =

𝑝

∑

𝑘=1

𝑢 (𝑋
𝑗
, 𝑃
𝑘
) , (4)

𝑏 = 𝑓 (𝑋
𝑗
) =

𝑛

∑

𝑘=1

𝑢 (𝑋
𝑗
, 𝑁
𝑘
) , (5)

𝑐 = 𝑝 − 𝑎, (6)

𝑑 = 𝑛 − 𝑏, (7)

where

𝑢 (𝑋
𝑗
, 𝐴) = {

1, ∀𝑥 ⊆ 𝐴,

0, ∀𝑥 ̸⊂ 𝐴,

∀𝑥 ∈ 𝑋
𝑗

(8)

𝑅𝑜𝑟𝑃 =

100

(𝑝 × 𝑛) (𝑛 × 𝑎 − 𝑝 × 𝑏)

, (9)

fitness risk = {0, 𝑅𝑜𝑟𝑃 < 1,

𝜒
2

, 𝑅𝑜𝑟𝑃 > 1,

(10)

fitness protection = {0, 𝑅𝑜𝑟𝑃 > 1,

𝜒
2

, 𝑅𝑜𝑟𝑃 < 1,

(11)

𝜒
2

=
(𝑎 + 𝑏 + 𝑐 + 𝑑) (𝑎 × 𝑑 − 𝑏 × 𝑐)

2

(𝑎 + 𝑏) (𝑐 + 𝑑) (𝑎 + 𝑐) (𝑏 + 𝑑)

. (12)

2.6. Updating the pbests of Particles and 𝑔𝑏𝑒𝑠𝑡 of Popula-
tion. Each particle can be improved according to the two
objectives, 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡, to search for a better solution.
𝑝𝑏𝑒𝑠𝑡
𝑗
indicates the best value of a position previously visited

by the 𝑗th particle, and its position is denoted by 𝑃
𝑗
=

(𝑝
𝑗,1
, 𝑝
𝑗,2
, . . . , 𝑝

𝑗,𝑑
). Equations (13) are the updating functions

for a particle’s 𝑝𝑏𝑒𝑠𝑡 position and 𝑝𝑏𝑒𝑠𝑡 value, respectively, as
follows:

𝑃
𝑗
= {

𝑋
𝑗
, 𝑓 (𝑋

𝑗
) ≥ 𝑝𝑏𝑒𝑠𝑡

𝑗
,

𝑃
𝑗
, 𝑓 (𝑋

𝑗
) < 𝑝𝑏𝑒𝑠𝑡

𝑗
,

𝑝best
𝑗
= {

𝑓 (𝑋
𝑗
) , 𝑓 (𝑋

𝑗
) ≥ 𝑝𝑏𝑒𝑠𝑡

𝑗
,

𝑝𝑏𝑒𝑠𝑡
𝑗
, 𝑓 (𝑋

𝑗
) < 𝑝𝑏𝑒𝑠𝑡

𝑗
,

(13)

where 𝑔𝑏𝑒𝑠𝑡 indicates the best value of all 𝑝𝑏𝑒𝑠𝑡 values for a
particle and its position is denoted by 𝐺 = (𝑔

1
, 𝑔
2
, . . . , 𝑔

𝑑
).

Equations (14) provide the updating function for 𝑔𝑏𝑒𝑠𝑡
position and 𝑔𝑏𝑒𝑠𝑡 value, respectively, as follows:

𝐺 = {

𝑃
𝑗
, 𝑝𝑏𝑒𝑠𝑡

𝑗
≥ 𝑔𝑏𝑒𝑠𝑡,

𝐺, 𝑝𝑏𝑒𝑠𝑡
𝑗
< 𝑔𝑏𝑒𝑠𝑡,

𝑔𝑏𝑒𝑠𝑡 = {

𝑝𝑏𝑒𝑠𝑡
𝑗
, 𝑝𝑏𝑒𝑠𝑡

𝑗
≥ 𝑔𝑏𝑒𝑠𝑡,

𝑔𝑏𝑒𝑠𝑡, 𝑝𝑏𝑒𝑠𝑡
𝑗
< 𝑔𝑏𝑒𝑠𝑡.

(14)

2.7. Updating Particle Velocities and Positions. DBM-PSO
executes a search for optimal solutions by continuously
updating particle positions in all iterations. Equations (15)
and (16) are used to update the velocity and a position of the
𝑗th particle, respectively, as follows:

Vnew
𝑗,𝑑
= 𝑤 × Vold

𝑗,𝑑
+ 𝑐
1
× DBM𝑟

𝑗,1
× (𝑝
𝑗,𝑑
− 𝑥

old
𝑗,𝑑
)

+ 𝑐
2
× DBM𝑟

𝑗,2
× (𝑔
𝑑
− 𝑥

old
𝑗,𝑑
) ,

(15)

𝑥
new
𝑗,𝑑
= 𝑥

old
𝑗,𝑑
+ Vnew
𝑗,𝑑
, (16)

where 𝑐
1
and 𝑐
2
are acceleration constants that control how far

a particlemoves in a given iteration. Randomvalues,DBM𝑟
𝑗,1

andDBM𝑟
𝑗,2
, in (15) are generated by a function based on the

results of the double-bottommapwith values between 0.0 and
1.0; they are described in the following section. Velocities Vnew

𝑗,𝑑

and Vold
𝑗,𝑑

are a particle’s new and old velocities, respectively.
Positions 𝑥old

𝑗,𝑑
and 𝑥new

𝑗,𝑑
are the particle’s current and updated

positions, respectively. Variable 𝑤 is the inertia weight and is
described in the following section.

2.8. Updating Particle Inertia Weight Values. Variable 𝑤 in
DBM-PSO is called the inertia weightwhich is used to control
the impact of a particle’s previous velocity. Throughout all
iterations, 𝑤 decreases linearly from 0.9 to 0.4 [24], and the
equation can be written as

𝑤 = (𝑤max − 𝑤min) ×
Iterationmax − Iteration𝑖

Iterationmax
+ 𝑤min, (17)

where Iteration
𝑖
represents the 𝑖th iteration and Iterationmax

represents the iteration size. Values 𝑤max and 𝑤min represent
the maximal and minimal values of 𝑤, respectively.

2.9. Updating Particle DBMr Values. In DBM-PSO, two
random values in the updating function are generated by the
following double-bottom map function:

DBM𝑟
𝑗,𝑡+1

=

[sin (4𝜋DBMr
𝑗,𝑡
) + 1]

2

.
(18)

2.10. Parameter Settings. In this study, all methods used the
same parameters to test the search ability for the identifica-
tion of the models of gene-gene interaction. The population
size is 100 and the maximal iteration is 100. The value of
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(01) begin
(02) for 𝑛 = 1 to the number of SNP
(03) compute size of “AA” genotype in n-SNP
(04) compute size of “Aa” genotype in n-SNP
(05) compute size of “aa” genotype in n-SNP
(06) generate three genotypes into a set 𝐴

𝑛
according each size

(07) randomly sort the elements of 𝐴
𝑛

(08) next 𝑛
(09) set dataset = {𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑚
/𝑚 is the number of SNP}

(10) end

Algorithm 3: Genotype generator pseudocode.

inertia weight 𝑤 is set from 0.9 to 0.4 [25]. Both learning
factors, 𝑐

1
and 𝑐
2
, are equal to 2 [26]. All tests are implemented

in Java as a single thread in a PC environment running 32-
bit Windows 7 with an Intel coreTM2 Quad CPU Q6600 at
2.4GHz and 4GB of RAM.

2.11. Statistical Analysis. The model of associations between
SNPs can be evaluated by odds ratio (OR) and its 95% CI and
𝑃 value [27]. OR can evaluate the models to quantitatively
measure the risk of disease; 𝑃 value can evaluate whether the
results are statistically significant for the difference between
the case data and control data. All statistical analyses are
implemented using SPSS version 19.0 (SPSS Inc., Chicago, IL).

3. Results and Discussion

3.1. Data Set. The growth factor-related genes of breast can-
cer, including genes of EGF, IGF1, IGF1R, IGF2, IGFBP3, IL10,
TGFB1, and VEGF with 26 SNPs, were tested in this study.
A genotype generator is used to generate a large simulated
data set according to the genotype frequencies. Algorithm 3
shows the genotype generator pseudocode to explain how the
data set was generated.The genotype frequencies of SNPs are
collected from Pharoah et al.’s breast cancer association study
[39], which explains the significance of these SNPs of genes
in breast cancer.

3.2. Evaluation of Breast Cancer Susceptibility Using 26 SNPs
from Eight Growth Factor-Related Genes. Table 1 shows the
performance (OR and 95% CI) for estimating the effect
of a single SNP from eight growth factor-related genes
(EGF, IGF1, IGF1R, IGF2, IGFBP3, IL10, TGFB1, and VEGF).
Amongst the 26 SNPs in the eight genes, eight SNPs in four
genes display a statistically significant OR (𝑃 < 0.05) for
breast cancer. Six SNPs have a risk (OR > 1.0) associa-
tion for breast cancer, including rs5742678-GG, rs1549593-
AA, rs6220-GG, IGFIR-10-aa, rs2132572-GA and -AA, and
rs1800470-CC.The highest and lowest OR values are 1.33 and
1.09, respectively. Two SNPs have a protection (OR < 1.0)
association for breast cancer, including rs2229765-AA and
rs2854744-CC. The highest and lowest OR values are 0.88
and 0.82, respectively. The other SNPs show no statistically
significant OR for breast cancer.

3.3. Analysis of Models for Gene-Gene Interaction with Risk
Association between the Case and Control Data Sets Using
PSO, CPSO, and DBM-PSO. Table 2 shows the 2- to 7-
order risk association models for gene-gene interaction. The
results are compared with the 𝜒2 value, with a high value
indicating a good result. The model of 2-SNPs with their
corresponding genotypes, SNPs (1, 7) with genotypes 1-3,
[rs5742678-CC]-[IGF1R-10-aa], is identified as having 9.451
𝜒
2 value to explain the difference between the case and

control data sets for three methods. However, the results of
3- to 7-SNPs clearly indicate that the DBM-PSO algorithm
exhibited an improved search ability over PSO and CPSO in
terms of the comparison with the 𝜒2 value. For example, in
3-SNPs, DBM-PSO is identified as having a 𝜒2 value of 8.772,
but those of PSO and CPSO are 3.364 and 3.997, respectively.
Table 2 shows the (OR) and its 95% CI, which estimate the
impact of the risk association model on the occurrence of
breast cancer. A bigger OR value (>1) indicates a stronger
risk association between the SNPs with combined genotypes
and the disease. DBM-PSO shows high OR (1.346–10.018)
values formodels with a high association for the risk of breast
cancer, and the 𝑃 value (<0.05) indicates that the models
have a statistically significant difference between patients and
nonpatients. Aside from a 3-SNP model of CPSO, the 𝑃
values of models in 3- to 7-SNPs of PSO and CPSO show
no statistical significance, indicating that PSO and CPSO
have difficulty in identifying statistically significant models
for risk association for breast cancer. However, DBM-PSO
successfully identifies good models for risk association for
breast cancer.

3.4. Analysis of Models of Gene-Gene Interaction with Pro-
tection Association between Case and Control Data Sets
Using PSO, CPSO, and DBMPSO. Table 3 shows the 2- to
7-order protection association models. The OR values (<1)
estimate the impact of the protection association model on
the occurrence of breast cancer. High 𝜒2 values in the models
indicate good results, and the 𝑃 value (<0.05) indicates that
the model has a statistically significant difference between
patients and nonpatients. The results of 3- to 7-SNPs show
that DBM-PSO possesses higher 𝜒2 values than PSO and
CPSO, indicating that DBM-PSO is better to search for good
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Table 1: Estimated effect (odds ratio and 95% CI) from individual
SNPs of 26 growth factor-related genes on the occurrence of breast
cancer patients.

SNP
(Genes)a

SNP
type

Case
number/
normal
numbera

Odds
ratio 95% CI

1. rs2237054
(EGF)

1-TT 4408/4418
2-TA 570/569 1.00 0.89–1.14
3-AA 22/13 1.70 0.85–3.37

2. rs5742678
(IGF1)

1-CC 2797/2866
2-CG 1844/1837 1.03 0.95–1.12
3-GG 359/297 1.24 1.05–1.46

3. rs1549593
(IGF1)

1-CC 2924/2970
2-CA 1753/1771 1.01 0.93–1.09
3-AA 323/259 1.27 1.07–1.50

4. rs6220
(IGF1)

1-AA 2643/2698
2-AG 1933/1951 1.01 0.93–1.10
3-GG 424/351 1.23 1.06–1.44

5. rs2946834
(IGF1)

1-CC 2295/2336
2-CT 2171/2150 1.03 0.95–1.12
3-TT 534/514 1.06 0.93–1.21

6. rs1568502
(IGF1R)

1-AA 2914/2955
2-AG 1840/1807 1.03 0.95–1.12
3-GG 246/238 1.05 0.87–1.26

7. IGF1R-10
(IGF1R)

1-AA 3169/3201
2-Aa 1545/1582 0.99 0.91–1.08
3-aa 286/217 1.33 1.11–1.60

8. rs2229765
(IGF1R)

1-GG 1523/1429
2-GA 2533/2489 0.96 0.87–1.05
3-AA 944/1082 0.82 0.73–0.92

9. rs8030950
(IGF1R)

1-CC 2737/2745
2-CA 1902/1917 1.00 0.92–1.08
3-AA 361/338 1.07 0.92–1.25

10. rs680
(IGF2)

1-GG 2538/2451
2-GA 2074/2183 0.92 0.85–1.00
3-AA 388/366 1.02 0.88–1.19

11. rs3741211
(IGF2)

1-TT 1936/1971
2-TC 2367/2269 1.06 0.98–1.16
3-CC 697/760 0.93 0.83–1.05

12. IGF2-05
(IGF2)

1-AA 2651/2694
2-Aa 1955/1952 1.02 0.94–1.11
3-aa 394/354 1.13 0.97–1.32

13. IGF2-06
(IGF2)

1-AA 2160/2162
2-Aa 2237/2284 0.98 0.90–1.07
3-aa 603/554 1.09 0.96–1.24

14. rs2132571
(IGFBP3)

1-GG 2415/2407
2-GA 2163/2157 1.00 0.92–1.09
3-AA 422/436 0.97 0.83–1.12

15. rs2471551
(IGFBP3)

1-GG 3225/3284
2-GC 1591/1515 1.07 0.98–1.17
3-CC 184/201 0.93 0.76–1.15

Table 1: Continued.

SNP
(Genes)a

SNP
type

Case
number/
normal
numbera

Odds
ratio 95% CI

16. rs2854744
(IGFBP3)

1-AA 1538/1469
2-AC 2487/2475 0.96 0.88–1.05
3-CC 975/1056 0.88 0.79–0.99

17. rs2132572
(IGFBP3)

1-GG 2908/3027
2-GA 1805/1728 1.09 1.00–1.18
3-AA 287/245 1.22 1.02–1.46

18. rs3024496
(IL10)

1-TT 1218/1235
2-TC 2533/2549 1.01 0.92–1.11
3-CC 1249/1216 1.04 0.93–1.17

19. rs1800872
(IL10)

1-CC 3059/3017
2-CA 1660/1722 0.95 0.87–1.03
3-AA 281/261 1.06 0.89–1.27

20. rs1800890
(IL10)

1-TT 1703/1701
2-TA 2455/2508 0.98 0.90–1.07
3-AA 842/791 1.06 0.95–1.20

21. rs1554286
(IL10)

1-CC 3400/3446
2-CT 1431/1410 1.03 0.94–1.12
3-TT 169/144 1.19 0.95–1.49

22. rs1800470
(TGFB1)

1-TT 1850/1914
2-TC 2372/2399 1.02 0.94–1.11
3-CC 778/687 1.17 1.04–1.32

23. rs699947
(VEGF)

1-CC 1236/1273
2-CA 2511/2463 1.05 0.95–1.16
3-AA 1253/1264 1.02 0.91–1.14

24. rs1570360
(VEGF)

1-GG 2278/2341
2-GA 2214/2132 1.07 0.98–1.16
3-AA 508/527 0.99 0.87–1.13

25. rs2010963
(VEGF)

1-GG 2354/2279
2-GC 2133/2157 0.96 0.88–1.04
3-CC 513/564 0.88 0.77–1.01

26. rs3025039
(VEGF)

1-CC 3744/3741
2-CT 1160/1174 0.99 0.90–1.08
3-TT 96/85 1.13 0.84–1.52

aData collected from the literature [39].

protection association models than other methods. DBM-
PSOhasORvalues ranging from0.755 to 0.850, with a𝑃 value
of <0.05 for protection with breast cancer. The 2-SNP and 3-
SNPmodels in PSO and CPSO show a statistically significant
difference between patients and nonpatients (𝑃 < 0.05), and
the 4-SNPmodel inCPSOalso shows a statistically significant
difference. Although CPSO provides better OR values than
DBM-PSO in the 5-, 6-, and 7-SNP models, the 𝑃 values
indicate that these models are not statistically significant.
DBM-PSO successfully identifies goodmodels for protection
association for breast cancer.

3.5. Discussion. Effects between SNPs from several genes
could contribute to disease development. Case-control
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Table 2: Estimation of the best risk model of gene-gene interaction on the occurrence of breast cancer as determined by PSO, CPSO, and
DBMPSO.

Combined SNP SNP genotypes Cases number Controls number 𝜒
2 value Odds ratio 95% CI 𝑃 value

2-SNP
PSO 1, 7 1-3 259 195 9.451 1.346 1.11–1.63 0.002

Other 4741 4805
CPSO 1, 7 1-3 259 195 9.451 1.346 1.11–1.63 0.002

Other 4741 4805
DBMPSO 1, 7 1-3 259 195 9.451 1.346 1.11–1.63 0.002

Other 4741 4805
3-SNP

PSO 2, 14, 25 3-1-1 84 62 3.364 1.361 0.98–1.89 0.068
Other 4916 4938

CPSO 1, 6, 7 1-1-3 148 116 3.997 1.285 1.00–1.64 0.046
Other 4850 4884

DBMPSO 7, 11, 21 3-2-1 93 57 8.772 1.644 1.18–2.29 0.003
Other 4907 4943

4-SNP
PSO 1, 14, 20, 23 3-3-1-2 2 0 1.000 3.001 0.31–28.86 0.341

Other 4998 5000
CPSO 1, 4, 11, 14 1-3-2-1 86 67 2.396 1.289 0.93–1.78 0.123

Other 4914 4933
DBMPSO 1, 7, 11, 21 1-3-2-1 87 53 8.374 1.653 1.17–2.33 0.004

Other 4913 4947
5-SNP

PSO 2, 7, 15, 18, 24 1-3-1-3-2 15 8 2.135 1.878 0.80–4.43 0.151
Other 4985 4992

CPSO 3, 10, 17, 24, 26 3-1-1-3-1 9 3 3.004 3.004 0.81–11.10 0.099
Other 4991 4997

DBMPSO 1, 2, 7, 11, 21 1-1-3-2-1 49 27 6.417 1.823 1.14–2.92 0.013
Other 4951 4973

6-SNP
PSO 2, 6, 8, 16, 18, 25 3-1-1-2-3-2 3 1 1.000 3.001 0.31–28.86 0.341

Other 4997 4999
CPSO 2, 11, 16, 18, 22, 23 1-2-1-2-3-2 14 9 1.089 1.557 0.67–3.60 0.301

Other 4986 4991
DBMPSO 1, 2, 7, 10, 11, 21 1-1-3-1-2-1 27 12 6.417 2.257 1.14–4.46 0.019

Other 4973 4988
7-SNP

PSO 1, 3, 6, 12, 21, 24, 26 1-3-2-1-3-1-1 2 0 1.000 3.001 0.31–28.86 0.341
Other 4998 5000

CPSO 1, 2, 3, 9, 19, 21, 24 1-1-3-1-1-2-3 4 1 1.801 4.002 0.45–35.82 0.215
Other 4996 4999

DBMPSO 1, 3, 5, 9, 17, 23, 24 1-3-2-1-2-2-1 10 1 7.372 10.018 1.28–78.29 0.028
Other 4990 4999

studies are the main method to determine the association
between SNPs. Many breast cancer studies have analysed
the associations between important related genes [28–34],
hypothesizing that disease risk may be associated with the
cooccurrence of SNPs displaying a jointed effect, including
genes related to DNA repair [35, 36], chemokine ligand-
receptor interactions [37], and estrogen-response genes [4].

Evolutionary algorithms are applied to identify good
models of gene-gene interaction [7, 9]. Previous studies have
used the difference between case and control data sets to
design the fitness function, allowing for the identification
of models with high difference values for all SNP combi-
nations. However, the highest difference between the case
and control data sets is not necessarily statistically significant
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Table 3: Estimation of the best protection model of gene-gene interaction on the occurrence of breast cancer as determined by PSO, CPSO,
and DBMPSO.

Combined SNP SNP genotypes Cases number Controls number 𝜒
2 value Odds ratio 95% CI 𝑃 value

2-SNP
PSO 1, 8 1-3 816 941 10.789 0.841 0.76–0.93 0.001

Other 4184 4059
CPSO 1, 8 1-3 816 941 10.789 0.841 0.76–0.93 0.001

Other 4184 4059
DBMPSO 1, 8 1-3 816 941 10.789 0.841 0.76–0.93 0.001

Other 4184 4059
3-SNP

PSO 8, 9, 22 3-1-2 225 269 4.123 0.829 0.69–0.99 0.043
Other 4775 4731

CPSO 3, 8, 9 1-3-1 319 371 4.209 0.850 0.73–0.99 0.040
Other 4681 4629

DBMPSO 1, 8, 15 1-3-1 527 624 9.238 0.826 0.73–0.94 0.002
Other 4473 4376

4-SNP
PSO 4, 8, 14, 22 2-3-1-2 76 99 3.077 0.764 0.57–1.03 0.080

Other 4924 4901
CPSO 10, 17, 21, 23 2-1-1-1 223 268 4.337 0.824 0.69–0.99 0.038

Other 4777 4732
DBMPSO 1, 10, 17, 21 1-2-1-1 692 795 8.381 0.850 0.76–0.95 0.004

Other 4308 4205
5-SNP

PSO 5, 6, 8, 9, 26 1-1-3-2-1 75 91 1.568 0.821 0.60–1.12 0.211
Other 4925 4909

CPSO 2, 4, 8, 11, 18 1-2-3-1-2 32 44 1.909 0.726 0.46–1.15 0.169
Other 4968 4956

DBMPSO 1, 2, 6, 8, 15 1-1-1-3-1 167 218 7.026 0.758 0.62–0.93 0.008
Other 4833 4782

6-SNP
PSO 4, 8, 15, 19, 22, 24 1-3-2-2-1-3 0 2 1.000 0.333 0.04–3.20 0.341

Other 5000 4998
CPSO 3, 4, 12, 16, 20, 24 1-1-1-2-2-3 21 28 1.005 0.749 0.43–1.32 0.318

Other 4979 4972
DBMPSO 1, 10, 15, 17, 21, 26 1-2-1-1-1-1 327 394 6.710 0.818 0.70–0.95 0.010

Other 4673 4606
7-SNP

PSO 5, 8, 11, 13, 14, 24, 25 1-1-3-1-1-2-1 3 6 1.001 0.500 0.13–2.00 0.327
Other 4997 4994

CPSO 10, 12, 16, 17, 19, 22, 26 2-2-2-1-2-2-1 20 27 1.047 0.740 0.41–1.32 0.308
Other 4980 4973

DBMPSO 1, 10, 13, 15, 17, 21, 26 1-2-2-1-1-1-1 141 185 6.139 0.755 0.60–0.94 0.014
Other 4859 4815

(𝑃 < 0.05). The chi-square test is a statistical tool to
evaluate the difference between the observed and expected
data sets under specific hypothetical conditions. A property
of the chi-square test is that the chi-square value is inversely
proportional to 𝑃 value.Therefore, the chi-square test is used
to design the fitness function in this study. PSO andCPSO [7]
were used to search for goodmodels based on the new fitness
function, but the results (Tables 2 and 3) fail to identify high-
order associations. However, DBM-PSO effectively identified

good risk and protection association models of gene-gene
interactions for breast cancer. Statistical methods, such as 𝑃
value, OR, and its 95% CI, provide strong validation of the
search ability of DBM-PSO.

PSO and DBM-PSO use the fitness functional compu-
tation to calculate complexity. DBM-PSO can be observed
in (15) and (18). Equation (18) is only used to amend the
original PSO updating equation (15). Therefore, DBM-PSO
does not increase the complexity of the PSO search process.
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The computational complexity of DBM-PSO is big-O(𝑛𝑚),
where 𝑛 is the number of iterations and 𝑚 is the number of
particles.

The results of DBM-PSO are influenced by its parameters,
including double-bottom chaotic maps (18), population size,
iteration size, and 𝑐

1
and 𝑐
2
in the updating function (15). Yang

et al. [13] tested the 22 most commonly used representative
benchmark functions, selecting the optimal parameters (4𝜋)
in the proposed double-bottom chaotic maps. Therefore, the
parameter is suggested as 4𝜋 in (18). The population and
iteration sizes could be adjusted according to the size of the
data set. Population size suggested a setting from 50 to 200
and the suggested number of iterations ranges from 100 to
1000. 𝑐

1
and 𝑐
2
are both suggested to be 2 [38].

4. Conclusion

We proposed a new fitness function to identify good models
of gene-gene interaction for the investigation of polygenic
diseases and cancers.Thefitness function based on chi-square
test addresses the disadvantage of previously proposed fitness
functions, in that the highest difference between the case
and control data sets is not necessarily statistically significant
(𝑃 < 0.05). Our proposed DBM-PSO showed to be able to
successfully determine the 26 SNP cross interactions for risk
and protection models of gene-gene interactions in breast
cancer. The results indicate that DBM-PSO can successfully
use the chi-square test to identify good models by evaluating
the difference between the observed and expected data sets
under specific hypothetical conditions.
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