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Let {𝑋
𝑛𝑖
; 𝑖 ≥ 1, 𝑛 ≥ 1} be an array of rowwise negatively orthant dependent (NOD) random variables. The authors discuss the rate

of strong convergence for weighted sums of arrays of rowwise NOD random variables and solve an open problem posed by Huang
and Wang (2012).

1. Introduction

Firstly, let us recall the definitions of negatively associated
(NA) random variables and NOD random variables as fol-
lows.

Definition 1. A finite collection of random variables {𝑋
𝑖
; 1 ≤

𝑖 ≤ 𝑛} is said to be NA if for every pair of disjoint subsets 𝐴
1

and 𝐴
2
of {1, 2, . . . , 𝑛},

Cov (𝑓
1
(𝑋
𝑖
, 𝑖 ∈ 𝐴

1
) , 𝑓
2
(𝑋
𝑗
, 𝑗 ∈ 𝐴

2
)) ≤ 0, (1)

whenever𝑓
1
and𝑓
2
are nondecreasing functions such that the

covariance exists. An infinite collection of random variables
{𝑋
𝑖
; 𝑖 ≥ 1} is NA if every finite subcollection is NA.

An array of random variables {𝑋
𝑛𝑖
; 𝑖 ≥ 1, 𝑛 ≥ 1} is called

rowwise NA random variables if for every 𝑛 ≥ 1, {𝑋
𝑛𝑖
; 𝑖 ≥ 1}

is a sequence of NA random variables.

Definition 2. A finite collection of random variables {𝑋
𝑖
; 1 ≤

𝑖 ≤ 𝑛} is said to be NOD if

𝑃 (𝑋
1
≤ 𝑥
1
, 𝑋
2
≤ 𝑥
2
, . . . , 𝑋

𝑛
≤ 𝑥
𝑛
) ≤

𝑛

∏
𝑗=1

𝑃 (𝑋
𝑗
≤ 𝑥
𝑗
) ,

𝑃 (𝑋
1
> 𝑥
1
, 𝑋
2
> 𝑥
2
, . . . , 𝑋

𝑛
> 𝑥
𝑛
) ≤

𝑛

∏
𝑗=1

𝑃 (𝑋
𝑗
> 𝑥
𝑗
) ,

(2)

for all 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ R. An infinite collection of random

variables {𝑋
𝑖
; 𝑖 ≥ 1} is said to be NOD if every finite

subcollection is NOD.

An array of random variables {𝑋
𝑛𝑖
; 𝑖 ≥ 1, 𝑛 ≥ 1} is called

rowwiseNODrandomvariables if for every 𝑛 ≥ 1, {𝑋
𝑛𝑖
; 𝑖 ≥ 1}

is a sequence of NOD random variables.
The concepts of NA and NOD random variables were

introduced by Joag-Dev and Proschan [1]. Obviously, inde-
pendent random variables are NOD, and NA implies NOD
from the definition of NA and NOD, but NOD does not
imply NA. So, NOD is much weaker than NA. Because of
the wide applications of NOD random variables, the notion
of NOD random variables has been received more and more
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attention recently. Many applications have been found. We
can refer to Volodin [2], Asadian et al. [3], Amini et al. [4, 5],
Kuczmaszewska [6], Zarei and Jabbari [7], Wu and Zhu [8],
Wu [9], Sung [10],Wang et al. [11], Huang andWang [12], and
so forth. Hence, it is very significant to study limit properties
of this wider NOD random variables in probability theory
and practical applications.

Let {𝑋
𝑛
; 𝑛 ≥ 1} be a sequence of independent and iden-

tically distributed (i.i.d.) random variables and let {𝑎
𝑛𝑖
; 𝑖 ≥

1, 𝑛 ≥ 1} be an array of real constants. As Bai and Cheng
[13] remarked, many useful linear statistics, for example,
least-squares estimators, nonparametric regression function
estimators, and jackknife estimates, are based on weighted
sums of i.i.d. random variables. In this respect, the strong
convergence for weighted sums ∑𝑛

𝑖=1
𝑎
𝑛𝑖
𝑋
𝑖
has been studied

by many authors (see, e.g., Bai and Cheng [13]; Cuzick [14];
Sung [15]; Tang [16]; etc.).

Cai [17] proved the following complete convergence result
for weighted sums of NA random variables.

Theorem A. Let {𝑋,𝑋
𝑛
; 𝑛 ≥ 1} be a sequence of identically

distributed NA random variables, and let {𝑎
𝑛𝑖
; 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥

1} be an array of real constants satisfying

𝐴
𝛼
= lim sup
𝑛󳨀→∞

𝐴
𝛼,𝑛
< ∞, 𝐴

𝛼,𝑛
=
1

𝑛

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑛𝑖
󵄨󵄨󵄨󵄨
𝛼

, (3)

for some 0 < 𝛼 ≤ 2. Suppose that 𝐸𝑋 = 0 when 1 < 𝛼 ≤ 2. If

𝐸 {exp (ℎ|𝑋|𝛾)} < ∞ for some ℎ > 0, 𝛾 > 0, (4)

then, for 𝑏
𝑛
= 𝑛
1/𝛼

(log 𝑛)1/𝛾,

∞

∑
𝑛=1

1

𝑛
𝑃(max
1≤𝑗≤𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑗

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀𝑏
𝑛
) < ∞ ∀𝜀 > 0. (5)

Wang et al. [11] extended the above result of Cai [17] to
arrays of rowwise NOD random variables as follows.

Theorem B. Let {𝑋
𝑛𝑖
; 𝑖 ≥ 1, 𝑛 ≥ 1} be an array of rowwise

NOD random variables which is stochastically dominated by a
random variable 𝑋 and let {𝑎

𝑛𝑖
; 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 1} be an array

of real constants. Assume that there exist some 𝛿with 0 < 𝛿 < 1
and some 𝛼 with 0 < 𝛼 < 2 such that ∑𝑛

𝑖=1
|𝑎
𝑛𝑖
|
𝛼

= 𝑂(𝑛
𝛿

) and
assume further that 𝐸𝑋

𝑛𝑖
= 0 if 1 < 𝛼 < 2. If for some ℎ > 0

and 𝛾 > 0 such that (4), then

∞

∑
𝑛=1

𝑛
𝛼𝑝−2

𝑃(max
1≤𝑗≤𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑗

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑛𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀𝑏
𝑛
) < ∞ ∀𝜀 > 0, (6)

where 𝑝 ≥ 1/𝛼 and 𝑏
𝑛
= 𝑛
1/𝛼

(log 𝑛)1/𝛾.

Recently, Huang and Wang [12] partially extended the
corresponding theorems of Cai [17] and Wang et al. [11] to
NOD random variables under a mild moment condition.

Theorem C. Let {𝑋
𝑛
; 𝑛 ≥ 1} be a sequence of NOD random

variables which is stochastically dominated by a random

variable 𝑋 and let {𝑎
𝑛𝑖
; 𝑖 ≥ 1, 𝑛 ≥ 1} be a triangular array

of real constants such that 𝑎
𝑛𝑖
= 0 for 𝑖 > 𝑛. Let

𝐴
𝛽
= lim sup
𝑛󳨀→∞

𝐴
𝛽,𝑛
< ∞; 𝐴

𝛽,𝑛
= 𝑛
−1

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑛𝑖
󵄨󵄨󵄨󵄨
𝛽

, (7)

where 𝛽 = max(𝛼, 𝛾) for some 0 < 𝛼 ≤ 2, 𝛾 > 0, and 𝛼 ̸= 𝛾.
Assume that 𝐸𝑋

𝑛
= 0 for 1 < 𝛼 ≤ 2 and 𝐸|𝑋|𝛽 < ∞. Then,

∞

∑
𝑛=1

1

𝑛
𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀𝑏
𝑛
) < ∞, (8)

where 𝑏
𝑛
= 𝑛
1/𝛼

(log 𝑛)1/𝛾.

As Huang and Wang [12] pointed out, Theorem C par-
tially extends only the case of 𝛼 > 𝛾 of Theorems A and
B. They left an open problem whether the case of 𝛼 = 𝛾 of
Theorem C holds for NOD random variables.

The main purpose of this paper is to further study strong
convergence for weighted sums of NOD random variables
and to obtain the rate of strong convergence for weighted
sums of arrays of rowwise NOD random variables under
a suitable moment condition. We solve the above problem
posed by Huang and Wang [12].

We will use the following concept in this paper.

Definition 3. An array of random variables {𝑋
𝑛𝑖
; 𝑖 ≥ 1, 𝑛 ≥ 1}

is said to be stochastically dominated by a random variable𝑋
if there exists a positive constant 𝐶 such that

𝑃 (
󵄨󵄨󵄨󵄨𝑋𝑛𝑖

󵄨󵄨󵄨󵄨 > 𝑡) ≤ 𝐶𝑃 (|𝑋| > 𝑡) , (9)

for all 𝑡 ≥ 0, 𝑖 ≥ 1, and 𝑛 ≥ 1.

2. Main Results

Now, we will present the main results of this paper; the
detailed proofs will be given in the next section.

Theorem 4. Let {𝑋
𝑛𝑖
; 𝑖 ≥ 1, 𝑛 ≥ 1} be an array of rowwise

NOD random variables which is stochastically dominated by
a random variable 𝑋 and let {𝑎

𝑛𝑖
; 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 1} be an

array of real constants satisfying ∑𝑛
𝑖=1
|𝑎
𝑛𝑖
|
𝛼

= 𝑂(𝑛) for some
0 < 𝛼 ≤ 2. Assume further that 𝐸𝑋

𝑛𝑖
= 0 for 1 < 𝛼 ≤ 2 and

𝐸|𝑋|
𝛼 log(1 + |𝑋|) < ∞. Then,

∞

∑
𝑛=1

𝑛
−1

𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑛𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀𝑏
𝑛
) < ∞ ∀𝜀 > 0, (10)

where 𝑏
𝑛
= 𝑛
1/𝛼

(log 𝑛)1/𝛼.

Similar to the proof of Theorem 4, we can obtain the
following result for NOD random variable sequences.

Corollary 5. Let {𝑋
𝑛
; 𝑛 ≥ 1} be a sequence of NOD random

variables which is stochastically dominated by a random
variable 𝑋 and let {𝑎

𝑛𝑖
; 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 1} be an

array of real constants satisfying ∑𝑛
𝑖=1
|𝑎
𝑛𝑖
|
𝛼

= 𝑂(𝑛) for some
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0 < 𝛼 ≤ 2. Assume further that 𝐸𝑋
𝑛
= 0 for 1 < 𝛼 ≤ 2 and

𝐸|𝑋|
𝛼 log(1 + |𝑋|) < ∞. Then,

∞

∑
𝑛=1

𝑛
−1

𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀𝑏
𝑛
) < ∞ ∀𝜀 > 0, (11)

where 𝑏
𝑛
= 𝑛
1/𝛼

(log 𝑛)1/𝛼.

Remark 6. In Theorem 4 and Corollary 5, we consider the
case of 𝛼 = 𝛾 for 0 < 𝛼 ≤ 2 and obtain some strong conver-
gence results for arrays of rowwise NOD random variables
and NOD random variable sequences without assumption
of identical distribution. The main result settles the open
problem posed by Huang andWang [12]. In addition, it is still
an open problem whether

∞

∑
𝑛=1

𝑛
−1

𝑃(max
1≤𝑗≤𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑗

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑛𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀𝑏
𝑛
) < ∞ ∀𝜀 > 0 (12)

holds true under the same moment condition of Theorem 4.

3. Proofs

In order to prove our main results, the following lemmas are
needed.

Lemma 7 (see Bozorgnia et al. [18]). Let {𝑋
𝑖
; 1 ≤ 𝑖 ≤ 𝑛}

be a sequence of NOD random variables, and let {𝑓
𝑖
; 1 ≤

𝑖 ≤ 𝑛} be a sequence of Borel functions all of which are
monotone nondecreasing (or all are monotone nonincreasing).
Then, {𝑓

𝑖
(𝑋
𝑖
); 1 ≤ 𝑖 ≤ 𝑛} is a sequence of NOD random

variables.

Lemma 8 (see Asadian et al. [3]). Let𝑀 ≥ 2 and let {𝑋
𝑛
; 𝑛 ≥

1} be a sequence of NOD random variables with 𝐸𝑋
𝑛
= 0 and

𝐸|𝑋
𝑛
|
𝑀

< ∞ for all 𝑛 ≥ 1.Then, there exists a positive constant
𝐶 = 𝐶(𝑀) depending only on𝑀 such that, for all 𝑛 ≥ 1,

𝐸(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝑋
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑀

) ≤ 𝐶[

[

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨𝑋𝑖
󵄨󵄨󵄨󵄨
𝑀

+ (

𝑛

∑
𝑖=1

𝐸𝑋
2

𝑖
)

𝑀/2

]

]

. (13)

Lemma 9. Let {𝑋
𝑛
; 𝑛 ≥ 1} be a sequence of random variables

which is stochastically dominated by a random variable𝑋. For
any 𝑢 > 0 and 𝑡 > 0, the following two statements hold:

𝐸
󵄨󵄨󵄨󵄨𝑋𝑛𝑖

󵄨󵄨󵄨󵄨
𝑢

𝐼 (
󵄨󵄨󵄨󵄨𝑋𝑛𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑡) ≤ 𝐶1 (𝐸|𝑋|
𝑢

𝐼 (|𝑋| ≤ 𝑡) + 𝑡
𝑢

𝑃 (|𝑋| > 𝑡)) ,

(14)

𝐸
󵄨󵄨󵄨󵄨𝑋𝑛𝑖

󵄨󵄨󵄨󵄨
𝑢

𝐼 (
󵄨󵄨󵄨󵄨𝑋𝑛𝑖

󵄨󵄨󵄨󵄨 > 𝑡) ≤ 𝐶2𝐸|𝑋|
𝑢

𝐼 (|𝑋| > 𝑡) , (15)

where 𝐶
1
and 𝐶

2
are positive constants.

Lemma 10 (see Sung [15]). Let𝑋 be a random variable and let
{𝑎
𝑛𝑖
; 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 1} be an array of real constants satisfying

∑
𝑛

𝑖=1
|𝑎
𝑛𝑖
|
𝛼

= 𝑂(𝑛) for some 𝛼 > 0. Let 𝑏
𝑛
= 𝑛
1/𝛼

(log 𝑛)1/𝛾 for
some 𝛾 > 0. Then,

∞

∑
𝑛=1

𝑛
−1

𝑛

∑
𝑖=1

𝑃 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨 > 𝑏𝑛)

≤

{{{{{{{

{{{{{{{

{

𝐶𝐸|𝑋|
𝛼

, for 𝛼 > 𝛾,

𝐶𝐸|𝑋|
𝛼 log (1 + |𝑋|) , for 𝛼 = 𝛾,

𝐶𝐸|𝑋|
𝛾

, for 𝛼 < 𝛾.

(16)

Lemma 11 (see Sung [19]). Let𝑋 be a random variable and let
{𝑎
𝑛𝑖
; 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 1} be an array of real constants satisfying

𝑎
𝑛𝑖
= 0 or |𝑎

𝑛𝑖
| > 1 and ∑𝑛

𝑖=1
|𝑎
𝑛𝑖
|
𝛼

= 𝑂(𝑛) for some 𝛼 > 0. Let
𝑏
𝑛
= 𝑛
1/𝛼

(log 𝑛)1/𝛼. If 𝑞 > 𝛼, then
∞

∑
𝑛=1

𝑛
−1

𝑏
−𝑞

𝑛

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨
𝑞

𝐼 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨 ≤ 𝑏𝑛)

≤ 𝐶𝐸|𝑋|
𝛼 log (1 + |𝑋|) .

(17)

Throughout this paper, let 𝐼(𝐴) be the indicator function
of the set 𝐴. 𝐶 denotes a positive constant, which may be
different in various places and 𝑎

𝑛
= 𝑂(𝑏

𝑛
) stands for 𝑎

𝑛
≤ 𝐶𝑏
𝑛
.

Proof of Theorem 4. Without loss of generality, suppose that
∑
𝑛

𝑖=1
|𝑎
𝑛𝑖
|
𝛼

≤ 𝐶𝑛 and 𝑎
𝑛𝑖
≥ 0, for all 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 1. For

fixed 𝑛 ≥ 1, define

𝑋
(𝑛)

𝑖
= −𝑏
𝑛
𝐼 (𝑎
𝑛𝑖
𝑋
𝑛𝑖
< −𝑏
𝑛
) + 𝑎
𝑛𝑖
𝑋
𝑛𝑖
𝐼 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑛𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑏𝑛)

+ 𝑏
𝑛
𝐼 (𝑎
𝑛𝑖
𝑋
𝑛𝑖
> 𝑏
𝑛
) , 𝑖 ≥ 1,

𝑇
(𝑛)

𝑛
=

𝑛

∑
𝑖=1

(𝑋
(𝑛)

𝑖
− 𝐸𝑋
(𝑛)

𝑖
) .

(18)

Denote

𝐴 =

𝑛

⋂
𝑖=1

(𝑎
𝑛𝑖
𝑋
𝑛𝑖
= 𝑋
(𝑛)

𝑖
) ,

𝐵 = 𝐴 =

𝑛

⋃
𝑖=1

(𝑎
𝑛𝑖
𝑋
𝑛𝑖
̸= 𝑋
(𝑛)

𝑖
)

=

𝑛

⋃
𝑖=1

(
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑛𝑖

󵄨󵄨󵄨󵄨 > 𝑏𝑛) ,

𝐸
𝑛
= (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑛𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀𝑏
𝑛
) .

(19)

It is easily seen that, for all 𝜀 > 0,

𝐸
𝑛
= 𝐸
𝑛
𝐴⋃𝐸

𝑛
𝐵 ⊂ (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝑋
(𝑛)

𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀𝑏
𝑛
)

⋃(

𝑛

⋃
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑛𝑖
󵄨󵄨󵄨󵄨 > 𝑏𝑛) ,

(20)
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which implies that

𝑃 (𝐸
𝑛
) ≤ 𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝑋
(𝑛)

𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀𝑏
𝑛
) + 𝑃(

𝑛

⋃
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑛𝑖
󵄨󵄨󵄨󵄨 > 𝑏𝑛)

≤ 𝑃(
󵄨󵄨󵄨󵄨󵄨
𝑇
(𝑛)

𝑛

󵄨󵄨󵄨󵄨󵄨
> 𝜀𝑏
𝑛
−

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝐸𝑋
(𝑛)

𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

) +

𝑛

∑
𝑖=1

𝑃 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑛𝑖

󵄨󵄨󵄨󵄨 > 𝑏𝑛) .

(21)

First, we will prove that

𝑏
−1

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝐸𝑋
(𝑛)

𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󳨀→ 0, as 𝑛 󳨀→ ∞. (22)

Actually, for 0 < 𝛼 ≤ 1, by (14) of Lemma 9, Markov
inequality, and 𝐸|𝑋|𝛼 log(1 + |𝑋|) < ∞, we have that

𝑏
−1

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝐸𝑋
(𝑛)

𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶𝑏
−1

𝑛

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝐸𝑋
(𝑛)

𝑖

󵄨󵄨󵄨󵄨󵄨

≤ 𝐶𝑏
−1

𝑛

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑛𝑖

󵄨󵄨󵄨󵄨 𝐼 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑛𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑏𝑛)

+ 𝐶

𝑛

∑
𝑖=1

𝑃 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑛𝑖

󵄨󵄨󵄨󵄨 > 𝑏𝑛)

≤ 𝐶𝑏
−1

𝑛

𝑛

∑
𝑖=1

(𝐸
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨 𝐼 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨 ≤ 𝑏𝑛)

+𝑏
𝑛
𝑃 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨 > 𝑏𝑛))

+ 𝐶

𝑛

∑
𝑖=1

𝑃 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨 > 𝑏𝑛)

≤ 𝐶𝑏
−1

𝑛

𝑛

∑
𝑖=1

(𝐸
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨 𝐼 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨 ≤ 𝑏𝑛))

+ 𝐶

𝑛

∑
𝑖=1

𝑃 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨 > 𝑏𝑛)

≤ 𝐶𝑏
−𝛼

𝑛

𝑛

∑
𝑖=1

(𝐸
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨
𝛼

𝐼 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨 ≤ 𝑏𝑛))

+ 𝐶𝑏
−𝛼

𝑛

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨
𝛼

≤ 𝐶𝑏
−𝛼

𝑛

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑛𝑖
󵄨󵄨󵄨󵄨
𝛼

𝐸|𝑋|
𝛼

+ 𝐶𝑏
−𝛼

𝑛

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑛𝑖
󵄨󵄨󵄨󵄨
𝛼

𝐸|𝑋|
𝛼

≤ 𝐶(log 𝑛)−1𝐸|𝑋|𝛼 󳨀→ 0 as 𝑛 󳨀→ ∞.

(23)

Next, for 1 < 𝛼 ≤ 2, by 𝐸𝑋
𝑛𝑖
= 0, (15) of Lemmas 9 and 10,

Markov inequality, and 𝐸|𝑋|𝛼 log(1 + |𝑋|) < ∞, we also have
that

𝑏
−1

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝐸𝑋
(𝑛)

𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶

𝑛

∑
𝑖=1

𝑃 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑛𝑖

󵄨󵄨󵄨󵄨 > 𝑏𝑛)

+ 𝐶𝑏
−1

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝐸𝑎
𝑛𝑖
𝑋
𝑛𝑖
𝐼 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑛𝑖

󵄨󵄨󵄨󵄨 > 𝑏𝑛)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶

𝑛

∑
𝑖=1

𝑃 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨 > 𝑏𝑛)

+ 𝐶𝑏
−1

𝑛

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑛𝑖

󵄨󵄨󵄨󵄨 𝐼 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑛𝑖

󵄨󵄨󵄨󵄨 > 𝑏𝑛)

≤ 𝐶𝑏
−𝛼

𝑛

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨
𝛼

+ 𝐶𝑏
−1

𝑛

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨 𝐼 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨 > 𝑏𝑛)

≤ 𝐶𝑏
−𝛼

𝑛

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨
𝛼

+ 𝐶𝑏
−𝛼

𝑛

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨
𝛼

𝐼 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨 > 𝑏𝑛)

≤ 𝐶𝑏
−𝛼

𝑛

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨
𝛼

+ 𝐶𝑏
−𝛼

𝑛

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨
𝛼

≤ 𝐶(log 𝑛)−1𝐸|𝑋|𝛼 󳨀→ 0 as 𝑛 󳨀→ ∞.

(24)

From the above statements, we can get (22) immediately.
Hence, for 𝑛 large enough,

𝑃 (𝐸
𝑛
) ≤ 𝑃(

󵄨󵄨󵄨󵄨󵄨
𝑇
(𝑛)

𝑛

󵄨󵄨󵄨󵄨󵄨
>
𝜀𝑏
𝑛

2
) . (25)

To prove (10), it is sufficient to show that

𝐼 ≜

∞

∑
𝑛=1

𝑛
−1

𝑃(
󵄨󵄨󵄨󵄨󵄨
𝑇
(𝑛)

𝑛

󵄨󵄨󵄨󵄨󵄨
>
𝜀𝑏
𝑛

2
) < ∞,

𝐽 ≜

∞

∑
𝑛=1

𝑛
−1

𝑛

∑
𝑖=1

𝑃 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑛𝑖

󵄨󵄨󵄨󵄨 > 𝑏𝑛) < ∞.

(26)

It follows from Lemma 10 and 𝐸|𝑋|𝛼 log(1 + |𝑋|) < ∞ that

𝐽 ≜

∞

∑
𝑛=1

𝑛
−1

𝑛

∑
𝑖=1

𝑃 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑛𝑖

󵄨󵄨󵄨󵄨 > 𝑏𝑛)

≤ 𝐶

∞

∑
𝑛=1

𝑛
−1

𝑛

∑
𝑖=1

𝑃 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨 > 𝑏𝑛)

≤ 𝐸|𝑋|
𝛼 log (1 + |𝑋|) < ∞.

(27)

For fixed 𝑛 ≥ 1, it is easily seen that {𝑋(𝑛)
𝑖
−𝐸𝑋
(𝑛)

𝑖
, 𝑖 ≥ 1, 𝑛 ≥ 1}

is still a sequence of NOD random variables with mean zero
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by Lemma 7. Hence, it follows from (14) of Lemmas 9 and 8
and Markov inequality (for𝑀 > 2) that

𝐼 ≜

∞

∑
𝑛=1

𝑛
−1

𝑃(
󵄨󵄨󵄨󵄨󵄨
𝑇
(𝑛)

𝑛

󵄨󵄨󵄨󵄨󵄨
>
𝜀𝑏
𝑛

2
)

≤ 𝐶

∞

∑
𝑛=1

𝑛
−1

𝑏
−𝑀

𝑛
𝐸(
󵄨󵄨󵄨󵄨󵄨
𝑇
(𝑛)

𝑛

󵄨󵄨󵄨󵄨󵄨

𝑀

)

≤ 𝐶

∞

∑
𝑛=1

𝑛
−1

𝑏
−𝑀

𝑛

[

[

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨󵄨
𝑋
(𝑛)

𝑖

󵄨󵄨󵄨󵄨󵄨

𝑀

+ (

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨󵄨
𝑋
(𝑛)

𝑖

󵄨󵄨󵄨󵄨󵄨

2

)

𝑀/2

]

]

≤ 𝐶

∞

∑
𝑛=1

𝑛
−1

𝑏
−𝑀

𝑛

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨󵄨
𝑋
(𝑛)

𝑖

󵄨󵄨󵄨󵄨󵄨

𝑀

+ 𝐶

∞

∑
𝑛=1

𝑛
−1

𝑏
−𝑀

𝑛
(

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨󵄨
𝑋
(𝑛)

𝑖

󵄨󵄨󵄨󵄨󵄨

2

)

𝑀/2

≜ 𝐼
1
+ 𝐼
2
.

(28)

It follows from Lemma 10, (14) of Lemma 9, and Markov
inequality that

𝐼
1
≜ 𝐶

∞

∑
𝑛=1

𝑛
−1

𝑏
−𝑀

𝑛

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨󵄨
𝑋
(𝑛)

𝑖

󵄨󵄨󵄨󵄨󵄨

𝑀

≤ 𝐶

∞

∑
𝑛=1

𝑛
−1

𝑏
−𝑀

𝑛
{

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑛𝑖
󵄨󵄨󵄨󵄨
𝑀

𝐸
󵄨󵄨󵄨󵄨𝑋𝑛𝑖

󵄨󵄨󵄨󵄨
𝑀

𝐼 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑛𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑏𝑛)

+

𝑛

∑
𝑖=1

𝑏
𝑀

𝑛
𝑃 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑛𝑖

󵄨󵄨󵄨󵄨 > 𝑏𝑛)}

≤ 𝐶

∞

∑
𝑛=1

𝑛
−1

𝑏
−𝑀

𝑛
{

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑛𝑖
󵄨󵄨󵄨󵄨
𝑀

𝐸|𝑋|
𝑀

𝐼 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨 ≤ 𝑏𝑛)

+2

𝑛

∑
𝑖=1

𝑏
𝑀

𝑛
𝑃 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨 > 𝑏𝑛)}

≤ 𝐶

∞

∑
𝑛=1

𝑛
−1

𝑏
−𝑀

𝑛

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑛𝑖
󵄨󵄨󵄨󵄨
𝑀

𝐸|𝑋|
𝑀

𝐼 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨 ≤ 𝑏𝑛)

+ 𝐶

∞

∑
𝑛=1

𝑛
−1

𝑛

∑
𝑖=1

𝑃 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨 > 𝑏𝑛)

≜ 𝐼
11
+ 𝐼
12
.

(29)

From Lemma 10 and 𝐸|𝑋|𝛼 log(1 + |𝑋|) < ∞, we can obtain
that

𝐼
12
≜ 𝐶

∞

∑
𝑛=1

𝑛
−1

𝑛

∑
𝑖=1

𝑃 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨 > 𝑏𝑛)

≤ 𝐸|𝑋|
𝛼 log (1 + |𝑋|) < ∞.

(30)

For fixed 𝑛 > 1, we divide {𝑎
𝑛𝑖
, 1 ≤ 𝑖 ≤ 𝑛} into three

subsets {𝑎
𝑛𝑖
: |𝑎
𝑛𝑖
| ≤ 1/(log 𝑛)𝑚}, {𝑎

𝑛𝑖
: 1/(log 𝑛)𝑚 < |𝑎

𝑛𝑖
| ≤ 1},

and {𝑎
𝑛𝑖
: |𝑎
𝑛𝑖
| > 1}, where𝑚 = (1/(𝑀 − 𝛼)). Then,

𝐼
11
≜ 𝐶

∞

∑
𝑛=1

𝑛
−1

𝑏
−𝑀

𝑛

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑛𝑖
󵄨󵄨󵄨󵄨
𝑀

𝐸|𝑋|
𝑀

𝐼 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨 ≤ 𝑏𝑛)

= 𝐶

∞

∑
𝑛=1

𝑛
−1

𝑏
−𝑀

𝑛

× ∑

𝑖:|𝑎𝑛𝑖|≤1/(log 𝑛)
𝑚

󵄨󵄨󵄨󵄨𝑎𝑛𝑖
󵄨󵄨󵄨󵄨
𝑀

𝐸|𝑋|
𝑀

𝐼 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨 ≤ 𝑏𝑛)

+ 𝐶

∞

∑
𝑛=1

𝑛
−1

𝑏
−𝑀

𝑛

× ∑

𝑖:1/(log 𝑛)
𝑚

<|𝑎𝑛𝑖|≤1

󵄨󵄨󵄨󵄨𝑎𝑛𝑖
󵄨󵄨󵄨󵄨
𝑀

𝐸|𝑋|
𝑀

𝐼 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨 ≤ 𝑏𝑛)

+ 𝐶

∞

∑
𝑛=1

𝑛
−1

𝑏
−𝑀

𝑛
∑

𝑖:|𝑎𝑛𝑖|>1

󵄨󵄨󵄨󵄨𝑎𝑛𝑖
󵄨󵄨󵄨󵄨
𝑀

𝐸|𝑋|
𝑀

𝐼 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨 ≤ 𝑏𝑛)

≜ 𝐼
(1)

11
+ 𝐼
(2)

11
+ 𝐼
(3)

11
.

(31)

By Lemma 11 and 𝐸|𝑋|𝛼 log(1 + |𝑋|) < ∞ again, it follows
that

𝐼
(3)

11
≜ 𝐶

∞

∑
𝑛=1

𝑛
−1

𝑏
−𝑀

𝑛
∑

𝑖:|𝑎𝑛𝑖|>1

󵄨󵄨󵄨󵄨𝑎𝑛𝑖
󵄨󵄨󵄨󵄨
𝑀

𝐸|𝑋|
𝑀

𝐼 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨 ≤ 𝑏𝑛)

≤ 𝐸|𝑋|
𝛼 log (1 + |𝑋|) < ∞ for𝑀 > 2 ≥ 𝛼 > 0.

(32)

Noting that ∑
𝑖:|𝑎
𝑛𝑖
|≤1/(log 𝑛)𝑚 |𝑎𝑛𝑖|

𝛼

≤ 𝐶𝑛(log 𝑛)−𝑚𝛼, for𝑀 > 𝛼

and fixed 𝑛 > 1, we have that

𝐼
(1)

11
≜ 𝐶

∞

∑
𝑛=1

𝑛
−1

𝑏
−𝑀

𝑛
∑

𝑖:|𝑎𝑛𝑖|≤1/(log 𝑛)
𝑚

󵄨󵄨󵄨󵄨𝑎𝑛𝑖
󵄨󵄨󵄨󵄨
𝑀

𝐸|𝑋|
𝑀

𝐼 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨 ≤ 𝑏𝑛)

≤ 𝐶

∞

∑
𝑛=1

𝑛
−1

𝑏
−𝛼

𝑛
∑

𝑖:|𝑎𝑛𝑖|≤1/(log 𝑛)
𝑚

󵄨󵄨󵄨󵄨𝑎𝑛𝑖
󵄨󵄨󵄨󵄨
𝛼

𝐸|𝑋|
𝛼

𝐼 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨 ≤ 𝑏𝑛)

≤ 𝐶𝐸|𝑋|
𝛼

∞

∑
𝑛=1

𝑛
−1

𝑏
−𝛼

𝑛
∑

𝑖:|𝑎𝑛𝑖|≤1/(log 𝑛)
𝑚

󵄨󵄨󵄨󵄨𝑎𝑛𝑖
󵄨󵄨󵄨󵄨
𝛼

≤ 𝐶𝐸|𝑋|
𝛼

∞

∑
𝑛=1

𝑛
−1

𝑛
−1

(log 𝑛)−1𝑛(log 𝑛)−𝑚𝛼 < ∞.

(33)
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Noting that∑
𝑖:1/(log 𝑛)𝑚<|𝑎

𝑛𝑖
|≤1
|𝑎
𝑛𝑖
|
𝑀

≤ 𝐶𝑛 and𝑚 = 1/(𝑀−𝛼),
for𝑀 > 2, 0 < 𝛼 ≤ 2, we have that

𝐼
(2)

11
≜ 𝐶

∞

∑
𝑛=1

𝑛
−1

𝑏
−𝑀

𝑛
∑

𝑖:1/(log 𝑛)𝑚<|𝑎𝑛𝑖|≤1

󵄨󵄨󵄨󵄨𝑎𝑛𝑖
󵄨󵄨󵄨󵄨
𝑀

𝐸|𝑋|
𝑀

𝐼 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨 ≤ 𝑏𝑛)

≤ 𝐶

∞

∑
𝑛=1

𝑏
−𝑀

𝑛
𝐸|𝑋|
𝑀

𝐼 (|𝑋| ≤ 𝑏
𝑛
(log 𝑛)𝑚)

= 𝐶

∞

∑
𝑛=1

𝑏
−𝑀

𝑛

𝑛

∑
𝑘=1

𝐸|𝑋|
𝑀

𝐼 ((𝑘 − 1)
1/𝛼

(log (𝑘 − 1))𝑚+1/𝛼

< |𝑋| ≤ 𝑘
1/𝛼

(log 𝑘)𝑚+1/𝛼)

= 𝐶

∞

∑
𝑘=1

𝐸|𝑋|
𝑀

𝐼 ((𝑘 − 1)
1/𝛼

(log (𝑘 − 1))𝑚+1/𝛼

< |𝑋| ≤ 𝑘
1/𝛼

(log 𝑘)𝑚+1/𝛼)

×

∞

∑
𝑛=𝑘

𝑛
−𝑀/𝛼

(log 𝑛)−𝑀/𝛼

≤ 𝐶

∞

∑
𝑘=1

𝐸|𝑋|
𝑀

𝐼 ((𝑘 − 1)
1/𝛼

(log (𝑘 − 1))𝑚+1/𝛼

< |𝑋| ≤ 𝑘
1/𝛼

(log 𝑘)𝑚+1/𝛼)

× 𝑘
1−𝑀/𝛼

(log 𝑘)−𝑀/𝛼

≤ 𝐶

∞

∑
𝑘=1

𝐸|𝑋|
𝛼

𝐼 ((𝑘 − 1)
1/𝛼

(log (𝑘 − 1))𝑚+1/𝛼

< |𝑋| ≤ 𝑘
1/𝛼

(log 𝑘)𝑚+1/𝛼)

≤ 𝐶𝐸|𝑋|
𝛼

< ∞.

(34)

Finally, we will prove that

𝐼
2
≜ 𝐶

∞

∑
𝑛=1

𝑛
−1

𝑏
−𝑀

𝑛
(

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨󵄨
𝑋
(𝑛)

𝑖

󵄨󵄨󵄨󵄨󵄨

2

)

𝑀/2

< ∞. (35)

Hence, by 𝐶
𝑟
inequality, Markov inequality, Lemmas 9–11,

and 𝐸|𝑋|𝛼 log(1 + |𝑋|) < ∞, we have that

𝐼
2
≜ 𝐶

∞

∑
𝑛=1

𝑛
−1

𝑏
−𝑀

𝑛
(

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨󵄨
𝑋
(𝑛)

𝑖

󵄨󵄨󵄨󵄨󵄨

2

)

𝑀/2

= 𝐶

∞

∑
𝑛=1

𝑛
−1

(

𝑛

∑
𝑖=1

𝑏
−2

𝑛
𝐸
󵄨󵄨󵄨󵄨󵄨
𝑋
(𝑛)

𝑖

󵄨󵄨󵄨󵄨󵄨

2

)

𝑀/2

≤ 𝐶

∞

∑
𝑛=1

𝑛
−1

(

𝑛

∑
𝑖=1

𝑃 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑛𝑖

󵄨󵄨󵄨󵄨 > 𝑏𝑛))

𝑀/2

+ 𝐶

∞

∑
𝑛=1

𝑛
−1

(

𝑛

∑
𝑖=1

𝑏
−2

𝑛
𝐸
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑛𝑖

󵄨󵄨󵄨󵄨
2

(
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑛𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑏𝑛))

𝑀/2

≤ 𝐶(

∞

∑
𝑛=1

𝑛
−1

𝑛

∑
𝑖=1

𝑃 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨 > 𝑏𝑛))

𝑀/2

+ 𝐶(

∞

∑
𝑛=1

𝑛
−1

𝑛

∑
𝑖=1

𝑏
−2

𝑛
𝐸
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨
2

(
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋

󵄨󵄨󵄨󵄨 ≤ 𝑏𝑛))

𝑀/2

≤ 𝐶(𝐸|𝑋|
𝛼 log (1 + |𝑋|))𝑀/2 < ∞.

(36)

Therefore, the desired result (10) follows from the above
statements. This completes the proof of Theorem 4.
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