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We study the existence of nontrivial solution of the following equation without compactness: (−Δ)𝛼𝑝𝑢 + |𝑢|𝑝−2𝑢 = 𝑓(𝑥, 𝑢), 𝑥 ∈ R𝑁,
where𝑁,𝑝 ≥ 2, 𝛼 ∈ (0, 1), (−Δ)𝛼𝑝 is the fractional 𝑝-Laplacian, and the subcritical 𝑝-superlinear term 𝑓 ∈ 𝐶(R𝑁 ×R) is 1-periodic
in 𝑥𝑖 for 𝑖 = 1, 2, . . . , 𝑁. Our main difficulty is that the weak limit of (PS) sequence is not always the weak solution of fractional𝑝-Laplacian type equation. To overcome this difficulty, by adding coercive potential term and using mountain pass theorem, we
get the weak solution 𝑢𝜆 of perturbation equations. And we prove that 𝑢𝜆 → 𝑢 as 𝜆 → 0. Finally, by using vanishing lemma and
periodic condition, we get that 𝑢 is a nontrivial solution of fractional 𝑝-Laplacian equation.

1. Introduction

This article is concerned with the fractional 𝑝-Laplacian
equations

(−Δ)𝛼𝑝 𝑢 + |𝑢|𝑝−2 𝑢 = 𝑓 (𝑥, 𝑢) , 𝑥 ∈ R
𝑁, (1)

where 𝑁,𝑝 ≥ 2, 𝛼 ∈ (0, 1), and 𝑓 satisfies the following
conditions.

(𝑓1) 𝑓 ∈ 𝐶(R𝑁×R),𝑓 is 1-periodic in𝑥𝑖 for 𝑖 = 1, 2, . . . , 𝑁,
and

lim
|𝑡|→∞

𝑓 (𝑥, 𝑡)|𝑡|𝑞−1 = 0,
lim
|𝑡|→∞

𝑓 (𝑥, 𝑡) 𝑡|𝑡|𝑝 = +∞
(2)

uniformly in 𝑥 ∈ R𝑁 for some 𝑞 ∈ (𝑝, 𝑝∗𝛼), where𝑝∗𝛼 = 𝑁𝑝/(𝑁 − 𝛼𝑝);
(𝑓2) 𝑓(𝑥, 𝑡) = 𝑜(|𝑡|𝑝−2𝑡) as |𝑡| → 0 uniformly for 𝑥 ∈ R𝑁;

(𝑓3) 𝐹(𝑥, 𝑢) fl (1/𝑝)𝑓(𝑥, 𝑢)𝑢 − 𝐹(𝑥, 𝑢) > 0 if 𝑢 ̸= 0, and
there exists 𝑐0 ≥ 0 and 𝜎 > max{𝑁/𝑝𝛼, 1} such that

𝑓 (𝑥, 𝑢)𝜎 ≤ 𝑐0 |𝑢|𝜎(𝑝−1) 𝐹 (𝑥, 𝑢) , ∀𝑥 ∈ R
𝑁, |𝑢| ≥ 𝑟0, (3)

where 𝐹(𝑥, 𝑡) = ∫𝑡
0
𝑓(𝑥, 𝑠)𝑑𝑠.

The fractional 𝑝-Laplacian is defined on smooth functions by

(−Δ)𝛼𝑝 𝑢 (𝑥)
= 2 lim

𝜖→0
∫
R𝑁\𝐵𝜖(𝑥)

𝑢 (𝑥) − 𝑢 (𝑦)𝑝−2 (𝑢 (𝑥) − 𝑢 (𝑦))𝑥 − 𝑦𝑁+𝛼𝑝 𝑑𝑦,
𝑥 ∈ R

𝑁.
(4)

This definition is consistent, up to a normalization constant
depending on𝑁 and 𝛼, with the usual definition of the linear
fractional Laplacian operator (−Δ)𝛼 when 𝑝 = 2. There is,
currently, a rapidly growing literature on problems involving
these nonlocal operators. This type of problem arises in
many different applications, such as continuum mechan-
ics, phase transition phenomena, population dynamics, and
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game theory, as they are the typical outcome of stochastically
stabilization of Lévy processes; see [1–9] and the references
therein. The literature on nonlocal operators and their
applications is very interesting and quite large; we refer the
interested reader to [4, 10–21] and the references therein. For
the basic properties of fractional Sobolev spaces, we refer
the interested reader to [22, 23].

The main purpose of this paper is to consider the
existence of nontrivial solutions for equation (1). Our main
difficulty is that the weak limit of (PS) sequence is not always
the weak solution of (1). To overcome this problem, we apply
the perturbation method [22, 24–26]. First, we consider the
perturbation equation by adding coercive potential term

(−Δ)𝛼𝑝 𝑢 + 𝜆𝑉 (𝑥) |𝑢|𝑝−2 𝑢 + |𝑢|𝑝−2 𝑢 = 𝑓 (𝑥, 𝑢) ,
𝑥 ∈ R

𝑁, (5)

where 𝜆 ∈ (0, 1] is a parameter and 𝑉(𝑥) satisfies the fol-
lowing conditions:

(𝑉1) 𝑉 ∈ 𝐶(R𝑁), infR𝑁𝑉(𝑥) ≥ 𝑉0 > 0.
(𝑉2) meas{𝑥 ∈ R𝑁 | 𝑉(𝑥) ≤ 𝑀} < +∞, ∀𝑀 > 0.
And we prove that the energy functional of (5) has the

geometry of the mountain pass theorem that it satisfies the
Cerami condition and finally that the obtained solutions {𝑢𝜆}
have the uniform bounds. Finally, we verify that 𝑢𝜆 ⇀ 𝑢 as𝜆 → 0 and 𝑢 is the nontrivial solution of (1).

Now, we give the main result of this article.

Theorem 1. Suppose that (𝑓1)–(𝑓3) hold. Then (1) possesses at
least a nontrivial solution.

Remark 2. In order to get our result, there are mainly three
difficulties.

(i) The working space has not compactness.

(ii) The classical AR condition for the nonlinearity is not
satisfied.

(iii) If {𝑢𝑛} is a Palais Smale sequence of Φ (see Section 2)
and 𝑢𝑛 converges weakly to 𝑢0, one can not obtain
that 𝑢0 is a weak solution of the fractional𝑝-Laplacian
type equation (1).

Notation 1. In this paper we make use of the following nota-
tion:

(i) ‖ ⋅ ‖𝑝 is the usual norm of the space 𝐿𝑝(R𝑁).
(ii) 𝑐, 𝐶 and 𝑐𝑖, 𝐶𝑖 denote positive (possibly different)

constants.

(iii) We denote the weak convergence in 𝑋 and its 𝑋∗ by
“⇀” and the strong convergence by “→”.

(iv) 𝑜(1) denote being infinitely small (possibly different)
when 𝑛 → ∞.

2. Variational Framework

Before stating this section, we define theGagliardo seminorm
by

[𝑢]𝛼,𝑝 = (∫
2R𝑁

𝑢 (𝑥) − 𝑢 (𝑦)𝑝𝑥 − 𝑦𝑁+𝛼𝑝 𝑑𝑥 𝑑𝑦)1/𝑝 , (6)

where 𝑢 : R𝑁 → R is a measurable function. On one hand,
we define fractional Sobolev space by

𝑊𝛼,𝑝 (R𝑁)
= {𝑢 ∈ 𝐿𝑝 (R𝑁) : 𝑢 is measurable, [𝑢]𝛼,𝑝 < ∞} (7)

endowed with the norm

‖𝑢‖𝛼,𝑝 = ([𝑢]𝑝𝛼,𝑝 + ‖𝑢‖𝑝𝑝)1/𝑝 , (8)

where

‖𝑢‖𝑝 = (∫
R𝑁

|𝑢 (𝑥)|𝑝 𝑑𝑥)1/𝑝 . (9)

Moreover, (1) is variational and its solutions are the critical
points of the functional defined in 𝑊𝛼,𝑝(R𝑁) by
Φ (𝑢) = 1𝑝 [𝑢]𝑝𝛼,𝑝 + 1𝑝 ‖𝑢‖𝑝𝑝 − ∫

R𝑁
𝐹 (𝑥, 𝑢) 𝑑𝑥,

∀𝑢 ∈ 𝑊𝛼,𝑝.
(10)

From (𝑓1), it is easy to check that Φ is well defined on𝑊𝛼,𝑝(R𝑁) and Φ ∈ 𝐶1(𝑊𝛼,𝑝(R𝑁),R), and
⟨Φ (𝑢) , V⟩
= ∫

2R𝑁

𝑢 (𝑥) − 𝑢 (𝑦)𝑝−2 (𝑢 (𝑥) − 𝑢 (𝑦)) (V (𝑥) − V (𝑦))𝑥 − 𝑦𝑁+𝛼𝑝 𝑑𝑥 𝑑𝑦
+ ∫

R𝑁
|𝑢|𝑝−2 𝑢V 𝑑𝑥 − ∫

R𝑁
𝑓 (𝑥, 𝑢) V 𝑑𝑥.

(11)

On the other hand, we consider the fractional Sobolev
space

𝑋𝛼 fl {𝑢 ∈ 𝑊𝛼,𝑝 : ∫
R𝑁

𝑉 (𝑥) |𝑢|𝑝 𝑑𝑥 < ∞} (12)

endowed with the norm

‖𝑢‖ fl ‖𝑢‖𝑋𝛼 = ([𝑢]𝑝𝛼,𝑝 + ∫
R𝑁

𝑉 (𝑥) |𝑢|𝑝 𝑑𝑥)1/𝑝 . (13)

We also need the following inner norm:

‖𝑢‖𝜆 = ([𝑢]𝑝𝛼,𝑝 + 𝜆∫
R𝑁

𝑉 (𝑥) |𝑢|𝑝 𝑑𝑥)1/𝑝 (14)

and let 𝑋𝛼𝜆 = (𝑋𝛼, ‖ ⋅ ‖𝜆). Obviously, we have
𝜆 ‖𝑢‖𝑝 ≤ ‖𝑢‖𝑝𝜆 ≤ ‖𝑢‖𝑝 ; (15)

the two norms ‖⋅‖ and ‖⋅‖𝜆 are equivalent. Next, the following
lemma discusses the continuous and compact embedding for𝑋𝛼 → 𝐿𝑞(R𝑁) for all 𝑞 ∈ [𝑝, 𝑝∗𝛼]. For the proof of the lemma,
it was proved in [27] in the case 𝑝 = 2. For the general case,
the proof is similar. We give it here for readers convenience.
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Lemma 3. Assume that (𝑉1) and (𝑉2) hold. Then 𝑋𝛼 is
continuously embedded in𝐿𝑠(R𝑁) for all 𝑠 ∈ [𝑝, 𝑝∗𝛼].Moreover,𝑋𝛼 can be compactly embedded into 𝐿𝑠(R𝑁) for all 𝑠 ∈ [𝑝, 𝑝∗𝛼).
Proof. Let {𝑢𝑛} ⊂ 𝑋𝛼 be a bounded sequence of 𝑋𝛼 such that𝑢𝑛 ⇀ 0 in 𝑋𝛼. Then, by Theorem 2.1 in [22], 𝑢𝑛 → 0 in𝐿𝑞loc(R𝑁) for 𝑝 ≤ 𝑞 < 𝑝∗𝛼 . We claim that

𝑢𝑛 → 0 strongly in 𝐿𝑝 (R𝑁) . (16)

To prove (16), we only need to show that, for any 𝜀 > 0, there
exists 𝑅 > 0 such that

∫
R𝑁\𝐵𝑅

𝑢𝑛 (𝑥)𝑝 𝑑𝑥 < 𝜀. (17)

Set

𝐵𝑅 = {𝑥 ∈ R
𝑁 | |𝑥| < 𝑅} ,

𝐴 (𝑅,𝑀) = {𝑥 ∈ R
𝑁 \ 𝐵𝑅 | 𝑉 (𝑥) ≥ 𝑀} ,

𝐵 (𝑅,𝑀) = {𝑥 ∈ R
𝑁 \ 𝐵𝑅 | 𝑉 (𝑥) < 𝑀} ;

(18)

then

∫
𝐴(𝑅,𝑀)

𝑢𝑛 (𝑥)𝑝 𝑑𝑥 ≤ ∫
R𝑁

𝑉 (𝑥)𝑀 𝑢𝑛 (𝑥)𝑝 𝑑𝑥
≤ 𝑢𝑛𝑝𝑋𝛼𝑀 .

(19)

Now choose 𝜎 ∈ (1, 𝑝∗𝛼/𝑝) such that 1/𝜎 + 1/𝜎 = 1; then we
have

∫
𝐵(𝑅,𝑀)

𝑢𝑛 (𝑥)𝑝 𝑑𝑥
≤ (∫

𝐵(𝑅,𝑀)

𝑢𝑛 (𝑥)𝑝𝜎 𝑑𝑥)1/𝜎 (meas (𝐵 (𝑅,𝑀)))1/𝜎
≤ 𝐶 𝑢𝑛𝑝𝑋𝛼 (meas (𝐵 (𝑅,𝑀)))1/𝜎 .

(20)

Since ‖𝑢𝑛‖𝑝𝑋𝛼 is bounded and condition (𝑉2) holds, we
may choose 𝑅, 𝑀 large enough such that ‖𝑢𝑛‖𝑝𝑋𝛼/𝑀 and
meas(𝐵(𝑅,𝑀)) are small enough. Hence, ∀𝜀 > 0, we have

∫
R𝑁\𝐵𝑅

𝑢𝑛 (𝑥)𝑝 𝑑𝑥 = ∫
𝐴(𝑅,𝑀)

𝑢𝑛 (𝑥)𝑝 𝑑𝑥
+ ∫

𝐵(𝑅,𝑀)

𝑢𝑛 (𝑥)𝑝 𝑑𝑥 < 𝜀 (21)

from which (16) follows.
To prove the lemma for general exponent 𝑞, we use an

interpolation argument. Let 𝑢𝑛 ⇀ 0 in 𝑋𝛼, we have just
proved that 𝑢𝑛 → 0 in 𝐿𝑝(R𝑁). That is,

∫
R𝑁

𝑢𝑛 (𝑥)𝑝 𝑑𝑥 → 0, (22)

as 𝑛 → ∞. Moreover, because the embedding 𝑋𝛼 ⇀𝐿𝑝∗𝛼 (R𝑁) is continuous and {𝑢𝑛} is bounded in 𝑋𝛼, we also
have

sup
𝑛

∫
R𝑁

𝑢𝑛 (𝑥)𝑝∗𝛼 𝑑𝑥 < ∞. (23)

Since 𝑞 ∈ (𝑝, 𝑝∗𝛼), there is a number 𝜆 ∈ (0, 1) such that 1/𝑞 =𝜆/𝑝 + (1 − 𝜆)/𝑝∗𝛼 . Then by Hölder inequality

∫
R𝑁

𝑢𝑛 (𝑥)𝑞 𝑑𝑥 = ∫
R𝑁

𝑢𝑛 (𝑥)𝜆𝑞 𝑢𝑛 (𝑥)1−𝜆𝑞 𝑑𝑥
≤ 𝑢𝑛𝜆𝑞𝑝 𝑢𝑛(1−𝜆)𝑞𝑝∗

𝛼

→ 0. (24)

This implies 𝑢𝑛 → 0 in 𝐿𝑞(R𝑁).
From Lemma 3, there exists 𝛾𝑠 > 0 such that

‖𝑢‖𝑠 ≤ 𝛾𝑠 ‖𝑢‖ , ∀𝑢 ∈ 𝑋𝛼, (25)

where ‖𝑢‖𝑠 denotes the usual norm in 𝐿𝑠(R𝑁) for all 𝑝 ≤ 𝑠 ≤𝑝∗𝛼 .
Next, we define the energy functional Φ𝜆 on 𝑋𝛼 by
Φ𝜆 (𝑢) = 1𝑝 ‖𝑢‖𝑝𝜆 + 1𝑝 ‖𝑢‖𝑝𝑝 − ∫

R𝑁
𝐹 (𝑥, 𝑢) 𝑑𝑥

= Φ (𝑢) + 𝜆𝑝 ∫
R𝑁

𝑉 (𝑥) 𝑢𝑝𝑑𝑥, ∀𝑢 ∈ 𝑋𝛼. (26)

We also need the following inner norm:

‖𝑢‖𝜆,𝑝 = (‖𝑢‖𝑝𝜆 + ‖𝑢‖𝑝𝑝)1/𝑝 ; (27)

by Lemma 3, we have that the norms ‖ ⋅ ‖ and ‖ ⋅ ‖𝜆,𝑝 are
also equivalent. By (𝑉1), (𝑉2), the energy functional Φ𝜆 :𝑋𝛼 → R is well defined and of class 𝐶1(𝑋𝛼,R). Moreover,
the derivative of Φ𝜆 is

⟨Φ𝜆 (𝑢) , V⟩
= ∫

2R𝑁

𝑢 (𝑥) − 𝑢 (𝑦)𝑝−2 (𝑢 (𝑥) − 𝑢 (𝑦)) (V (𝑥) − V (𝑦))𝑥 − 𝑦𝑁+𝛼𝑝 𝑑𝑥 𝑑𝑦
+ 𝜆∫

R𝑁
𝑉 (𝑥) |𝑢|𝑝−2 𝑢V 𝑑𝑥 + ∫

R𝑁
|𝑢|𝑝−2 𝑢V 𝑑𝑥

− ∫
R𝑁

𝑓 (𝑥, 𝑢) V 𝑑𝑥
= ⟨Φ (𝑢) , V⟩ + 𝜆∫

R𝑁
𝑉 (𝑥) |𝑢|𝑝−2 𝑢V 𝑑𝑥

(28)

for all 𝑢, V ∈ 𝑋𝛼.
In what follows, we give the vanishing lemma which is

introduced by Lion.

Lemma 4 (see [28]). Assume {𝑢𝑘} is a bounded sequence in𝑊𝛼,𝑝 which satisfies

lim
𝑘→+∞

sup
𝑦∈𝑅𝑁

∫
𝐵𝑅(𝑦)

𝑢𝑘 (𝑥)𝑝 𝑑𝑥 = 0 (29)

for some 𝑅 > 0. Then

𝑢𝑘 → 0 in 𝐿𝑞, ∀𝑝 < 𝑞 < 𝑁𝑝𝑁 − 𝛼𝑝. (30)
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3. Proofs of the Main Result

The proof of Theorem 1 is divided into several lemmas.
We show that the functional Φ𝜆 has the geometry of the
mountain pass theorem that it satisfies the Cerami condition
and finally that the obtained solutions have the uniform
bounds.

Lemma 5. Suppose that (𝑉1), (𝑉2), (𝑓1)–(𝑓3) are satisfied.
Then there exists 𝜌 > 0, 𝜂 > 0, such that inf{Φ𝜆(𝑢) | 𝑢 ∈𝑋𝛼, ‖𝑢‖ = 𝜌} > 𝜂 for fixed 𝜆 ∈ (0, 1], where 𝜌 and 𝜂 are
independent of 𝜆.
Proof. For any 𝜀 > 0, it follows from (𝑓1) and (𝑓2) that there
exists 𝐶𝜀 such that

𝑓 (𝑥, 𝑠) ≤ 𝜀 |𝑠|𝑝−1 + 𝐶𝜀 |𝑠|𝑞−1 , 𝑠 ∈ R, 𝑥 ∈ R
𝑁, (31)

where 𝑝 < 𝑞 < 𝑝∗𝛼 , and then

|𝐹 (𝑥, 𝑠)| ≤ 𝜀𝑝 |𝑠|𝑝 + 𝐶𝜀𝑞 |𝑠|𝑞 , 𝑠 ∈ R, 𝑥 ∈ R
𝑁. (32)

For 𝜌 > 0, let
Σ𝜌 = {𝑢 ∈ 𝑋𝛼 | ‖𝑢‖ ≤ 𝜌} . (33)

So, from the Sobolev inequality, one has

∫R𝑁 𝐹 (𝑥, 𝑢) 𝑑𝑥 ≤ 𝜀𝑝 ∫
R𝑁

|𝑢|𝑝 𝑑𝑥 + 𝐶𝜀𝑞 ∫
R𝑁

|𝑢|𝑞 𝑑𝑥
≤ 𝛾𝑝𝜀𝑝 ‖𝑢‖𝑝 + 𝛾𝑞𝐶𝜀𝑞 ‖𝑢‖𝑞 .

(34)

So one has, for 𝑢 ∈ 𝜕Σ𝜌,
Φ𝜆 (𝑢) = 1𝑝 [𝑢]𝑝𝛼,𝑝 + 1𝑝 ‖𝑢‖𝑝𝑝 + 𝜆𝑝 ∫

R𝑁
𝑉 (𝑥) |𝑢|𝑝 𝑑𝑥

− ∫
R𝑁

𝐹 (𝑥, 𝑢) 𝑑𝑥
≥ 𝜆𝑝 [𝑢]𝑝𝛼,𝑝 + 𝜆𝑝 ∫

R𝑁
𝑉 (𝑥) |𝑢|𝑝 𝑑𝑥 − 𝛾𝑝𝜀𝑝 ‖𝑢‖𝑝

− 𝛾𝑞𝐶𝜀𝑞 ‖𝑢‖𝑞 = 𝜆 − 𝛾𝑝𝜀𝑝 ‖𝑢‖𝑝 − 𝛾𝑞𝐶𝜀𝑞 ‖𝑢‖𝑞 ,

(35)

since 0 < 𝜆 ≤ 1. Hence, by fixing 𝜀 ∈ (0, 1/𝜆𝛾𝑝) and letting𝜌 > 0 be small enough, it is easy to see that there is 𝜂 > 0 such
that this lemma holds.

Lemma 6. Suppose that (𝑉1), (𝑉2), (𝑓1)–(𝑓3) are satisfied.
then there exists 𝑒 ∈ 𝑋𝛼 with ‖𝑒‖ > 𝜌 such that Φ𝜆(𝑒) < 0
for fixed 𝜆 ∈ (0, 1], where 𝜌 is given by Lemma 5.

Proof. Using (𝑓1), we obtain there exists 𝑇 > 0 such that

𝐹 (𝑥, 𝑡) > |𝑡|𝑝𝜀 − 𝑇𝑝𝜀 , 𝑡 ∈ R, 𝑥 ∈ R
𝑁. (36)

Next, for 𝜑 ∈ 𝐶∞0 (R𝑁) we have
∫
R𝑁

𝐹 (𝑥, 𝑡𝜑)|𝑡|𝑝 𝑑𝑥 ≥ 1𝜀 ∫
R𝑁

𝜑𝑝 𝑑𝑥 − 𝑇𝑝𝜀 |𝑡|𝑝 ∫
supp(𝜑)

𝑑𝑥. (37)

This implies

lim
|𝑡|→∞

∫
R𝑁

𝐹 (𝑥, 𝑡𝜑)|𝑡|𝑝 𝑑𝑥 ≥ 1𝜀 ∫
R𝑁

𝜑𝑝 𝑑𝑥, (38)

for all 𝜀 > 0. Since 𝜀 is arbitrary, by the above inequality, we
get

lim
|𝑡|→∞

∫
R𝑁

𝐹 (𝑥, 𝑡𝜑)|𝑡|𝑝 𝑑𝑥 = +∞. (39)

Consequently,

Φ𝜆 (𝑡𝜑)|𝑡|𝑝 = 1𝑝 𝜑𝑝𝜆 + 1𝑝 𝜑𝑝𝑝 − ∫
R𝑁

𝐹 (𝑥, 𝑡𝜑)|𝑡|𝑝 𝑑𝑥
≤ 1𝑝 𝜑𝑝 + 1𝑝 𝜑𝑝𝑝 − ∫

R𝑁

𝐹 (𝑥, 𝑡𝜑)|𝑡|𝑝 𝑑𝑥
→ −∞

(40)

as |𝑡| → +∞. Hence, let 𝑡0 be big enough and 𝑒 = 𝑡0𝜑; then
we have Φ𝜆(𝑒) < 0; we complete the proof.

Definition 7. We say that 𝐽 satisfies Cerami condition in 𝐸, if,
for any sequence {𝑢𝑛} ⊂ 𝐸 such that

𝐽 (𝑢𝑛) → 𝑐,
(1 + 𝑢𝑛𝐸) 𝐽 (𝑢𝑛) → 0, (41)

as 𝑛 → ∞, there exists a convergent subsequence of {𝑢𝑛}.
Lemma 8. Suppose that (𝑉1), (𝑉2) and (𝑓1)–(𝑓3) are satisfied.
Then the functional Φ𝜆(𝑢𝑛) satisfies Cerami condition.

Proof. Let {𝑢𝑛} be a sequence in 𝑋𝛼 so that
Φ𝜆 (𝑢𝑛) → 𝑐𝜆,

(1 + 𝑢𝑛)Φ𝜆 (𝑢𝑛) → 0. (42)

We shall prove that {𝑢𝑛} contains a convergent subsequence.
(i) We claim that {𝑢𝑛} is bounded in𝑋𝛼. Observe that for𝑛 large

𝑐𝜆 + 1 ≥ Φ𝜆 (𝑢𝑛) − 1𝑝Φ𝜆 (𝑢𝑛) 𝑢𝑛 = ∫
R𝑁

𝐹 (𝑥, 𝑢𝑛) 𝑑𝑥. (43)

Arguing indirectly, assume by contradiction that ‖𝑢𝑛‖ → ∞;
then ‖𝑢𝑛‖𝜆,𝑝 → ∞. Set V𝑛 = 𝑢𝑛/‖𝑢𝑛‖𝜆,𝑝; then ‖V𝑛‖𝜆,𝑝 = 1.
By Lemma 3, one has ‖V𝑛‖𝑠 ≤ 𝛾𝑠‖V𝑛‖𝜆,𝑝 = 𝛾𝑠 for 𝑠 ∈ [𝑝, 𝑝∗𝛼).
Observe that from (42) and

Φ𝜆 (𝑢𝑛) 𝑢𝑛 = 𝑢𝑛𝑝𝜆,𝑝(1 − ∫
R𝑁

𝑓 (𝑥, 𝑢𝑛) V𝑛𝑢𝑛𝑝−1𝜆,𝑝

𝑑𝑥) (44)
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it follows that

∫
R𝑁

𝑓 (𝑥, 𝑢𝑛) V𝑛𝑢𝑛𝑝−1𝜆,𝑝

𝑑𝑥 = ∫
R𝑁

𝑓 (𝑥, 𝑢𝑛)𝑢𝑝−1𝑛

V𝑝𝑛𝑑𝑥 → 1. (45)

Set for 𝑟 ≥ 0
ℎ (𝑟) fl inf {𝐹 (𝑥, 𝑢) | 𝑥 ∈ R

𝑁, 𝑢 ∈ R with |𝑢| ≥ 𝑟} . (46)

By (𝑓3), ℎ(𝑟) > 0 for all 𝑟 > 0, and ℎ(𝑟) → +∞ as 𝑟 → +∞.
For 0 ≤ 𝑎 < 𝑏 let

Ω𝑛 (𝑎, 𝑏) = {𝑥 ∈ R
𝑁 | 𝑎 ≤ 𝑢𝑛 (𝑥) < 𝑏} ,

𝑐𝑏𝑎 fl inf {𝐹 (𝑥, 𝑢)𝑢𝑝 | 𝑥 ∈ R
𝑁, 𝑢 ∈ R with 𝑎 ≤ |𝑢|

≤ 𝑏} .
(47)

Since 𝐹(𝑥, 𝑢) > 0 if 𝑢 ̸= 0, one has 𝑐𝑏𝑎 > 0 and
𝐹 (𝑥, 𝑢𝑛 (𝑥)) ≥ 𝑐𝑏𝑎 𝑢𝑛 (𝑥)𝑝 , ∀𝑥 ∈ Ω𝑛 (𝑎, 𝑏) . (48)

It follows from (43) that

𝑐𝜆 + 1 ≥ ∫
Ω𝑛(0,𝑎)

𝐹 (𝑥, 𝑢𝑛) 𝑑𝑥 + ∫
Ω𝑛(𝑎,𝑏)

𝐹 (𝑥, 𝑢𝑛) 𝑑𝑥
+ ∫

Ω𝑛(𝑏,∞)
𝐹 (𝑥, 𝑢𝑛) 𝑑𝑥

≥ ∫
Ω𝑛(0,𝑎)

𝐹 (𝑥, 𝑢𝑛) 𝑑𝑥 + 𝑐𝑏𝑎 ∫
Ω𝑛(𝑎,𝑏)

𝑢𝑛𝑝 𝑑𝑥
+ ℎ (𝑏) Ω𝑛 (𝑏, +∞) .

(49)

Invoking (𝑓3), set 𝜏 fl 𝑝𝜎/(𝜎 − 1) and 𝜎∗ = 𝜎/(𝜎 − 1) = 𝜏/𝑝.
Since 𝜎 > max{1,𝑁/𝑝𝛼} one sees 𝜏 ∈ (𝑝, 𝑝∗𝛼). Fix arbitrarily𝑠 ∈ (𝜏, 𝑝∗𝛼). Using (49),

Ω𝑛 (𝑏, +∞) ≤ 𝑐 + 1ℎ (𝑏) → 0 (50)

as 𝑏 → +∞ uniformly in 𝑛, which implies by Hölder
inequality that

∫
Ω𝑛(𝑏,+∞)

V𝑛𝜏 𝑑𝑥
≤ [∫

Ω𝑛(𝑏,+∞)

V𝑛𝑠 𝑑𝑥]𝜏/𝑠 Ω𝑛 (𝑏, +∞)1−𝜏/𝑠
≤ 𝛾𝜏𝑠 Ω𝑛 (𝑏, +∞)1−𝜏/𝑠 → 0

(51)

as 𝑏 → +∞ uniformly in 𝑛. Using (49) again, for any fix 0 <𝑎 < 𝑏,
∫
Ω𝑛(𝑎,𝑏)

V𝑛𝑝 𝑑𝑥 = 1𝑢𝑛𝑝𝜆,𝑝 ∫
Ω𝑛(𝑎,𝑏)

𝑢𝑛𝑝 𝑑𝑥
≤ 𝑐𝜆 + 1𝑐𝑏𝑎 𝑢𝑛𝑝𝜆,𝑝 → 0 (52)

as 𝑛 → +∞.

Let 0 < 𝜀 < 1/3. By (𝑓2) there is 𝑎𝜀 > 0 such that|𝑓(𝑥, 𝑢)| < (𝜀/𝛾𝑝)|𝑢|𝑝−1 for all |𝑢| ≤ 𝑎𝜀; consequently,
∫
Ω𝑛(0,𝑎𝜀)

𝑓 (𝑥, 𝑢𝑛)𝑢𝑝−1𝑛

V𝑝𝑛𝑑𝑥 ≤ ∫
Ω𝑛(0,𝑎𝜀)

𝜀𝛾𝑝 V𝑛𝑝 𝑑𝑥
≤ 𝜀𝛾𝑝 V𝑛𝑝𝑝 ≤ 𝜀

(53)

for all 𝑛. By (𝑓3), (43), (51), and Hölder inequality we can take𝑏𝜀 ≥ 𝑟0 large so that
∫
Ω𝑛(𝑏𝜀 ,+∞)

𝑓 (𝑥, 𝑢𝑛)𝑢𝑝−1𝑛

V𝑝𝑛𝑑𝑥

≤ (∫
Ω𝑛(𝑏𝜀 ,+∞)

𝑓 (𝑥, 𝑢𝑛)𝜎𝑢𝑛𝜎(𝑝−1) 𝑑𝑥)1/𝜎

⋅ (∫
Ω𝑛(𝑏𝜀 ,+∞)

V𝑛𝜏 𝑑𝑥)1/𝜎
∗

≤ (∫
R𝑁

𝑐0𝐹 (𝑥, 𝑢𝑛) 𝑑𝑥)1/𝜎 (∫
R𝑁

V𝑛𝜏 𝑑𝑥)(𝑝−1)/𝜏

⋅ (∫
Ω𝑛(𝑏𝜀 ,+∞)

V𝑛𝜏 𝑑𝑥)1/𝜏 < 𝜀

(54)

for all 𝑛. Note that there is 𝛾 = 𝛾(𝜀) > 0 independent of 𝑛 such
that |𝑓(𝑥, 𝑢𝑛)| ≤ 𝛾|𝑢𝑛|𝑝−1 for 𝑥 ∈ Ω𝑛(𝑎𝜀, 𝑏𝜀). By (52) there is𝑛0 such that

∫
Ω𝑛(𝑎𝜀 ,𝑏𝜀)

𝑓 (𝑥, 𝑢𝑛)𝑢𝑝−1𝑛

V𝑝𝑛𝑑𝑥 ≤ 𝛾∫
Ω𝑛(𝑎𝜀 ,𝑏𝜀)

V𝑝𝑛𝑑𝑥 < 𝜀 (55)

for all 𝑛 ≥ 𝑛0. Now the combination of (53), (55), and (62)
implies that for 𝑛 ≥ 𝑛0

∫
R𝑁

𝑓 (𝑥, 𝑢𝑛)𝑢𝑝−1𝑛

V𝑝𝑛𝑑𝑥 < 3𝜀 < 1 (56)

which contradicts (45). Hence {𝑢𝑛} is bounded in 𝑋𝛼.
(ii) By (i), we can conclude that {𝑢𝑛} is bounded in 𝑋𝛼.

Going if necessary to a subsequence, we can assume that𝑢𝑛 ⇀ 𝑢 in 𝑋𝛼. From Lemma 3, we have 𝑢𝑛 → 𝑢 in 𝐿𝑠(R𝑁)
for all 𝑝 ≤ 𝑠 < 𝑝∗𝛼 . By the boundedness of {𝑢𝑛} in 𝐿𝑝(R𝑁), we
have

Λ 1 = sup
𝑛

∫
R𝑁

𝑢𝑛𝑝 𝑑𝑥 < ∞. (57)

By Hölder inequality and the above inequality we also have

Λ 2 = sup
𝑛

∫
R𝑁

𝑢𝑛𝑝−1 𝑢 𝑑𝑥
≤ sup

𝑛
(∫

R𝑁

𝑢𝑛𝑝 𝑑𝑥)(𝑝−1)/𝑝 ‖𝑢‖𝑝 < ∞.
(58)
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Similarly,

Λ 3 = sup
𝑛

∫
R𝑁

|𝑢|𝑝−1 𝑢𝑛 𝑑𝑥 < ∞. (59)

By (𝑓1), (𝑓2), for 𝜀 > 0, there exists 𝐶𝜀 > 0 such that

𝑓 (𝑥, 𝑡) ≤ 𝜀 |𝑡|𝑝−1 + 𝐶𝜀 |𝑡|𝑞−1 , ∀ (𝑥, 𝑡) ∈ R
𝑁 × R. (60)

Then using Hölder inequality we have

∫
R𝑁

(𝑓 (𝑥, 𝑢𝑛) − 𝑓 (𝑥, 𝑢)) (𝑢𝑛 − 𝑢) 𝑑𝑥
≤ ∫

R𝑁
[𝜀 (𝑢𝑛𝑝−1 + |𝑢|𝑝−1)

+ 𝐶𝜀 (𝑢𝑛𝑞−1 + |𝑢|𝑞−1)] 𝑢𝑛 − 𝑢 𝑑𝑥
≤ 𝜀∫

R𝑁
(𝑢𝑛𝑝 + |𝑢|𝑝 + 𝑢𝑛𝑝−1 |𝑢|

+ |𝑢|𝑝−1 𝑢𝑛) 𝑑𝑥 + 𝐶𝜀 ∫
R𝑁

(𝑢𝑛𝑞−1 𝑢𝑛 − 𝑢

+ |𝑢|𝑞−1 𝑢𝑛 − 𝑢) 𝑑𝑥 ≤ 𝜀 (Λ 1 + Λ 2 + Λ 3

+ ‖𝑢‖𝑝𝑝) + 2𝐶𝜀 (sup
𝑛

𝑢𝑛𝑞−1𝑞 + ‖𝑢‖𝑞−1𝑞 ) 𝑢𝑛 − 𝑢𝑞 .
(61)

Since {𝑢𝑛} is bounded in 𝐿𝑞(R𝑁) and 𝜀 is arbitrarily small, we
have

∫
R𝑁

(𝑓 (𝑥, 𝑢𝑛) − 𝑓 (𝑥, 𝑢)) (𝑢𝑛 − 𝑢) 𝑑𝑥 → 0,
as 𝑛 → ∞. (62)

By (62) and

𝑢𝑛 − 𝑢𝑝
= ∫ (𝑢𝑛 (𝑥) − 𝑢𝑛 (𝑦)) − (𝑢 (𝑥) − 𝑢 (𝑦))𝑝𝑥 − 𝑦𝑁+𝛼𝑝 𝑑𝑥 𝑑𝑦

+ ∫𝑉 (𝑥) 𝑢𝑛 (𝑥) − 𝑢 (𝑥)𝑝 𝑑𝑥
(63)

we have

⟨Φ𝜆 (𝑢𝑛) − Φ𝜆 (𝑢) , 𝑢𝑛 − 𝑢⟩
= ∫ 𝑢𝑛 (𝑥) − 𝑢𝑛 (𝑦)𝑝−2 (𝑢𝑛 (𝑥) − 𝑢𝑛 (𝑦)) − 𝑢 (𝑥) − 𝑢 (𝑦)𝑝−2 (𝑢 (𝑥) − 𝑢 (𝑦))𝑥 − 𝑦𝑁+𝛼𝑝 (𝑢𝑛 (𝑥) − 𝑢𝑛 (𝑦) − 𝑢 (𝑥) + 𝑢 (𝑦)) 𝑑𝑥 𝑑𝑦

+ 𝜆∫𝑉 (𝑥) [𝑢𝑛𝑝−2 𝑢𝑛 − |𝑢|𝑝−2 𝑢] (𝑢𝑛 − 𝑢) 𝑑𝑥 − ∫ (𝑓 (𝑥, 𝑢𝑛) − 𝑓 (𝑥, 𝑢)) (𝑢𝑛 − 𝑢) 𝑑𝑥
≥ 𝑐1 ∫ (𝑢𝑛 (𝑥) − 𝑢𝑛 (𝑦)) − (𝑢 (𝑥) − 𝑢 (𝑦))𝑝𝑥 − 𝑦𝑁+𝛼𝑝 𝑑𝑥 𝑑𝑦 + 𝜆𝑐2 ∫𝑉 (𝑥) 𝑢𝑛 − 𝑢𝑝 𝑑𝑥 − 𝑜 (1)
≥ min {𝑐1, 𝜆𝑐2} 𝑢𝑛 − 𝑢𝑝 − 𝑜 (1) ,

(64)

where we have used the following elementary inequality:

(|𝑎|𝑝−2 𝑎 − |𝑏|𝑝−2 𝑏) (𝑎 − 𝑏) ≥ 𝑐 |𝑎 − 𝑏|𝑝 , (65)

where the constant 𝑐 is independent from the variable 𝑎 and𝑏. Recall that 𝑢𝑛 ⇀ 𝑢, Φ𝜆(𝑢𝑛) → 0 as 𝑛 → ∞; it is clear
that

⟨Φ𝜆 (𝑢𝑛) − Φ𝜆 (𝑢) , 𝑢𝑛 − 𝑢⟩ → 0, as 𝑛 → ∞. (66)

From (64), (66), we have ‖𝑢𝑛 − 𝑢‖ → 0 as 𝑛 → ∞. Therefore,Φ𝜆(𝑢) satisfies Cerami condition.

Since Lemmas 5–8 hold, theMountain PassTheorem [28]
gives that (5) has a nontrivial solution 𝑢𝜆 satisfying

Φ𝜆 (𝑢𝜆) = 0,

𝑐𝜆 = Φ𝜆 (𝑢𝜆) = inf
𝛾∈Γ

max
𝑡∈[0,1]

Φ𝜆 (𝛾 (𝑡)) > Φ𝜆 (0)
= 0,

(67)
where Γ = {Υ ∈ 𝐶([0, 1], 𝑋𝛼) | Φ𝜆(0) = 0, Φ𝜆(1) = 𝑒} and 𝑒
from Lemma 6.

Lemma 9. Let 𝜆𝑘 → 0 and {𝑢𝑘} ⊂ 𝐸 be a sequence of critical
points ofΦ𝜆𝑘 satisfyingΦ𝜆𝑘(𝑢𝑘) = 0 andΦ𝜆𝑘(𝑢𝑘) ≤ 𝐶 for some𝐶 independent of 𝑘. Then, up to a subsequence 𝑢𝑘 ⇀ 𝑢 in 𝑋𝛼
as 𝑘 → ∞ and u is a critical point of Φ.

Proof. We first claim that {𝑢𝑘} is bounded in 𝑋𝛼. Observe
that

𝑐𝜆𝑘 = Φ𝜆𝑘 (𝑢𝑘) − 1𝑝Φ𝜆𝑘 (𝑢𝑘) 𝑢𝑘 = ∫
R𝑁

𝐹 (𝑥, 𝑢𝑘) 𝑑𝑥 (68)
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Arguing indirectly, assume by contradiction that ‖𝑢𝑘‖ → ∞;
then ‖𝑢𝑘‖𝜆𝑘,𝑝 → ∞. Set V𝑘 = 𝑢𝑘/‖𝑢𝑘‖𝜆𝑘 ,𝑝; then ‖V𝑘‖𝜆𝑘 ,𝑝 = 1.
By Lemma 3, one has ‖V𝑘‖𝑠 ≤ 𝛾𝑠‖V𝑘‖𝜆,𝑝 = 𝛾𝑠 for 𝑠 ∈ [𝑝, 𝑝∗𝛼).
Observe that

Φ𝜆𝑘 (𝑢𝑘) 𝑢𝑘 = 𝑢𝑘𝑝𝜆𝑘 ,𝑝(1 − ∫
R𝑁

𝑓 (𝑥, 𝑢𝑘) V𝑘𝑢𝑘𝑝−1𝜆𝑘,𝑝

𝑑𝑥)
= 0;

(69)

it follows that

∫
R𝑁

𝑓 (𝑥, 𝑢𝑘) V𝑘𝑢𝑘𝑝−1𝜆𝑘 ,𝑝

𝑑𝑥 = ∫
R𝑁

𝑓 (𝑥, 𝑢𝑘)𝑢𝑝−1
𝑘

V𝑝
𝑘
𝑑𝑥 = 1. (70)

Set for 𝑟 ≥ 0
ℎ (𝑟) fl inf {𝐹 (𝑥, 𝑢) | 𝑥 ∈ R

𝑁, 𝑢 ∈ R with |𝑢| ≥ 𝑟} . (71)

By (𝑓3), ℎ(𝑟) > 0 for all 𝑟 > 0, and ℎ(𝑟) → +∞ as 𝑟 → +∞.
For 0 ≤ 𝑎 < 𝑏 let

Ω𝑘 (𝑎, 𝑏) = {𝑥 ∈ R
𝑁 | 𝑎 ≤ 𝑢𝑘 (𝑥) < 𝑏} ,

𝑐𝑏𝑎 fl inf {𝐹 (𝑥, 𝑢)𝑢𝑝 | 𝑥 ∈ R
𝑁, 𝑢 ∈ R with 𝑎 ≤ |𝑢|

≤ 𝑏} .
(72)

Since 𝐹(𝑥, 𝑢) > 0 if 𝑢 ̸= 0, one has 𝑐𝑏𝑎 > 0 and
𝐹 (𝑥, 𝑢𝑘 (𝑥)) ≥ 𝑐𝑏𝑎 𝑢𝑘 (𝑥)𝑝 , ∀𝑥 ∈ Ω𝑘 (𝑎, 𝑏) . (73)

It follows from (68) that

𝑐𝜆𝑘 = ∫
Ω𝑘(0,𝑎)

𝐹 (𝑥, 𝑢𝑘) 𝑑𝑥 + ∫
Ω𝑘(𝑎,𝑏)

𝐹 (𝑥, 𝑢𝑘) 𝑑𝑥
+ ∫

Ω𝑘(𝑏,∞)
𝐹 (𝑥, 𝑢𝑘) 𝑑𝑥

≥ ∫
Ω𝑘(0,𝑎)

𝐹 (𝑥, 𝑢𝑘) 𝑑𝑥 + 𝑐𝑏𝑎 ∫
Ω𝑘(𝑎,𝑏)

𝑢𝑘𝑝 𝑑𝑥
+ ℎ (𝑏) Ω𝑘 (𝑏, +∞) .

(74)

Invoking (𝑓3), set 𝜏 fl 𝑝𝜎/(𝜎 − 1) and 𝜎∗ = 𝜎/(𝜎 − 1) = 𝜏/𝑝.
Since 𝜎 > max{1,𝑁/𝑝𝛼} one sees 𝜏 ∈ (𝑝, 𝑝∗𝛼). Fix arbitrarily𝑠 ∈ (𝜏, 𝑝∗𝛼). Using (74),Ω𝑘 (𝑏, +∞) ≤ 𝑐𝜆𝑘ℎ (𝑏) → 0 (75)

as 𝑏 → +∞ uniformly in 𝑘, which implies by Hölder
inequality that

∫
Ω𝑘(𝑏,+∞)

V𝑘𝜏 𝑑𝑥
≤ [∫

Ω𝑘(𝑏,+∞)

V𝑘𝑠 𝑑𝑥]𝜏/𝑠 Ω𝑘 (𝑏, +∞)1−𝜏/𝑠
≤ 𝛾𝜏𝑠 Ω𝑘 (𝑏, +∞)1−𝜏/𝑠 → 0

(76)

as 𝑏 → +∞ uniformly in 𝑘. Using (74) again, for any fix 0 <𝑎 < 𝑏,
∫
Ω𝑘(𝑎,𝑏)

V𝑘𝑝 𝑑𝑥 = 1𝑢𝑘𝑝𝜆𝑘 ,𝑝 ∫
Ω𝑘(𝑎,𝑏)

𝑢𝑘𝑝 𝑑𝑥
≤ 𝑐𝜆𝑘𝑐𝑏𝑎 𝑢𝑘𝑝𝜆𝑘 ,𝑝 → 0 (77)

as 𝑘 → +∞.
Let 0 < 𝜀 < 1/3. By (𝑓2) there is 𝑎𝜀 > 0 such that|𝑓(𝑥, 𝑢)| < (𝜀/𝛾𝑝)|𝑢|𝑝−1 for all |𝑢| ≤ 𝑎𝜀; consequently,

∫
Ω𝑘(0,𝑎𝜀)

𝑓 (𝑥, 𝑢𝑘)𝑢𝑝−1
𝑘

V𝑝
𝑘
𝑑𝑥 ≤ ∫

Ω𝑘(0,𝑎𝜀)

𝜀𝛾𝑝 V𝑘𝑝 𝑑𝑥
≤ 𝜀𝛾𝑝 V𝑘𝑝𝑝 ≤ 𝜀

(78)

for all 𝑘. Obviously, by (31), there exists a constant 𝐶(𝑘) > 0
such that

∫
R𝑁

𝑐0𝐹 (𝑥, 𝑢𝑘) 𝑑𝑥 ≤ 2𝑐0𝜖𝑝 ∫
R𝑁

𝑢𝑘𝑝 𝑑𝑥
+ 𝑐0 ( 1𝑝 + 1𝑞)𝐶𝜖 ∫

R𝑁

𝑢𝑘𝑞 𝑑𝑥
≤ 2𝑐0𝜖𝛾𝑝𝑝𝑝 𝑢𝑘𝑝

+ 𝑐0 ( 1𝑝 + 1𝑞) 𝛾𝑞𝑞 𝑢𝑘𝑞 < 𝐶 (𝑘)

(79)

for all 𝑢𝑘 ∈ 𝑋𝛼. By (𝑓3), (68), (79), and Hölder inequality we
can take 𝑏𝜀 ≥ 𝑟0 large so that

∫
Ω𝑘(𝑏𝜀 ,+∞)

𝑓 (𝑥, 𝑢𝑘)𝑢𝑝−1
𝑘

V𝑝
𝑘
𝑑𝑥

≤ (∫
Ω𝑘(𝑏𝜀 ,+∞)

𝑓 (𝑥, 𝑢𝑘)𝜎𝑢𝑘𝜎(𝑝−1) 𝑑𝑥)1/𝜎

⋅ (∫
Ω𝑘(𝑏𝜀 ,+∞)

V𝑘𝜏 𝑑𝑥)1/𝜎
∗

≤ (∫
R𝑁

𝑐0𝐹 (𝑥, 𝑢𝑘) 𝑑𝑥)1/𝜎 (∫
R𝑁

V𝑘𝜏 𝑑𝑥)(𝑝−1)/𝜏

⋅ (∫
Ω𝑘(𝑏𝜀 ,+∞)

V𝑘𝜏 𝑑𝑥)1/𝜏 < 𝜀

(80)

for all 𝑘. Note that there is 𝛾 = 𝛾(𝜀) > 0 independent of 𝑘 such
that |𝑓(𝑥, 𝑢𝑘)| ≤ 𝛾|𝑢𝑘|𝑝−1 for 𝑥 ∈ Ω𝑘(𝑎𝜀, 𝑏𝜀). By (77) there is𝑘0 such that

∫
Ω𝑘(𝑎𝜀 ,𝑏𝜀)

𝑓 (𝑥, 𝑢𝑘)𝑢𝑝−1
𝑘

V𝑝
𝑘
𝑑𝑥 ≤ 𝛾∫

Ω𝑘(𝑎𝜀 ,𝑏𝜀)

V𝑘𝑝 𝑑𝑥 < 𝜀 (81)
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for all 𝑘 ≥ 𝑘0. Now the combination of (78), (80), and (81)
implies that for 𝑘 ≥ 𝑘0

∫
R𝑁

𝑓 (𝑥, 𝑢𝑘)𝑢𝑝−1
𝑘

V𝑝
𝑘
𝑑𝑥 < 3𝜀 < 1 (82)

which contradictswith (70).Hence {𝑢𝑘} is bounded in𝑋𝛼.We
may assume up to a subsequence {𝑢𝑘} converges to 𝑢 weakly
in 𝑋𝛼. By Hölder inequality, we have

𝜆𝑘 ∫
R𝑁

𝑉 (𝑥) 𝑢𝑘𝑝−2 𝑢𝑘V 𝑑𝑥
≤ 𝜆𝑘 ∫

R𝑁
[𝑉 (𝑥)](𝑝−1)/𝑝 𝑢𝑘𝑝−1 [𝑉 (𝑥)]1/𝑝 V 𝑑𝑥

≤ 𝜆𝑘 [∫
R𝑁

𝑉 (𝑥) 𝑢𝑘𝑝 𝑑𝑥](𝑝−1)/𝑝

⋅ [∫
R𝑁

𝑉 (𝑥) |V|𝑝 𝑑𝑥]1/𝑝 → 0, as 𝑘 → ∞.

(83)

By the weakly continuity of Φ and (83), we have

⟨Φ (𝑢) , V⟩ = lim
𝑘→∞

⟨Φ (𝑢𝑘) , V⟩
= lim
𝑘→∞

[⟨Φ𝜆𝑘 (𝑢𝑘) , V⟩
− 𝜆𝑘 ∫

R𝑁
𝑉 (𝑥) 𝑢𝑘𝑝−2 𝑢𝑘V 𝑑𝑥]

= − lim
𝑘→∞

𝜆𝑘 ∫
R𝑁

𝑉 (𝑥) 𝑢𝑘𝑝−2 𝑢𝑘V 𝑑𝑥 = 0

(84)

for any V ∈ 𝑋𝛼. Hence, 𝑢 is critical point of Φ(𝑢).
Proof of Theorem 1. By Lemma 6, there exists a constant 𝐶 >0, independent of 𝜆, such that

𝑐𝜆 = inf
𝛾∈Γ

max
𝑡∈[0,1]

Φ𝜆 (𝛾 (𝑡)) ≤ sup
𝑡≥0

Φ1 (𝑡𝑇𝑢) ≤ 𝐶. (85)

Then, we can choose a sequence 𝜆𝑘 → 0. Assume that {𝑢𝑘} ⊂𝑊𝛼,𝑝 is a sequence of critical points of Φ𝜆𝑘 . According to
Lemma 9, 𝑢 is a critical point of Φ(𝑢) on 𝑊𝛼,𝑝; it is suffice
to show that 𝑢 ̸= 0. Indeed, if 𝑢 is vanishing, then

𝛿 fl lim
𝑘→+∞

sup
𝑦∈𝑅𝑁

∫
𝐵1(𝑦)

𝑢𝑘 (𝑥)𝑝 𝑑𝑥 = 0. (86)

By Lemma 4, we have

𝑢𝑘 → 0 in 𝐿𝑞 (𝑅𝑁) , for 𝑝 < 𝑞 < 𝑝∗𝛼 . (87)

By (𝑓1), (𝑓2), for 𝜀 > 0, there exists 𝐶𝜀 > 0 such that
𝑓 (𝑥, 𝑢) 𝑢 ≤ 𝜀 |𝑢|𝑝 + 𝐶𝜀 |𝑢|𝑞 ,

0 = ⟨Φ𝜆𝑘 (𝑢𝑘) , 𝑢𝑘⟩
= 𝑢𝑘𝑝𝛼,𝑝 + 𝜆𝑘 ∫

R𝑁
𝑉 (𝑥) 𝑢𝑝𝑘 𝑑𝑥

− ∫
R𝑁

𝑓 (𝑥, 𝑢𝑘) 𝑢𝑘 𝑑𝑥
≥ 𝑢𝑘𝑝𝛼,𝑝 − 𝜀 𝑢𝑘𝑝𝑝 − 𝐶𝜀 𝑢𝑘𝑞𝑞
≥ 𝐶 𝑢𝑘𝑝𝑞 − 𝐶𝜀 𝑢𝑘𝑞𝑞

(88)

since 𝜀 is arbitrary small. Hence, we have ‖𝑢𝑘‖𝑞 ≥ [𝐶/𝐶𝜀]1/(𝑞−𝑝) > 0. This conflicts with (87); thus 𝑢 is nonvanish-
ing, 𝛿 > 0. Therefore, by standard method, we can obtain𝑢 ̸= 0. The proof is completed.
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