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We use the elementary and analytic methods and the properties of Chebyshev polynomials to study the computational problem of
the reciprocal sums of one-kind Chebyshev polynomials and give several interesting identities for them. At the same time, we also
give a general computational method for this kind of reciprocal sums.

1. Introduction

It is well known that Chebyshev polynomials of the first and
second kind 𝑇𝑛(𝑥) and 𝑈𝑛(𝑥) are defined as follows: 𝑇0(𝑥) =1, 𝑇1(𝑥) = 𝑥, and the recursion formula 𝑇𝑛+1(𝑥) = 2𝑥𝑇𝑛(𝑥) −𝑇𝑛−1(𝑥) for all integers 𝑛 ≥ 1. 𝑈0(𝑥) = 1, 𝑈1(𝑥) = 2𝑥, and
the recursion formula 𝑈𝑛+1(𝑥) = 2𝑥𝑈𝑛(𝑥) − 𝑈𝑛−1(𝑥) for all
integers 𝑛 ≥ 1.The generation functions of these polynomials
are

1 − 𝑥𝑡1 − 2𝑥𝑡 + 𝑡2 =
∞∑
𝑛=1

𝑇𝑛 (𝑥) 𝑡𝑛, (|𝑥| < 1, |𝑡| < 1) ,
11 − 2𝑥𝑡 + 𝑡2 =

∞∑
𝑛=1

𝑈𝑛 (𝑥) 𝑡𝑛, (|𝑥| < 1, |𝑡| < 1) .
(1)

The general term formulae of 𝑇𝑛(𝑥) and 𝑈𝑛(𝑥) are expressed
as

𝑇𝑛 (𝑥) = 12 [(𝑥 + √𝑥2 − 1)
𝑛 + (𝑥 − √𝑥2 − 1)𝑛] ,

𝑈𝑛 (𝑥) = 1
2√𝑥2 − 1 [(𝑥 + √𝑥2 − 1)

𝑛+1

− (𝑥 − √𝑥2 − 1)𝑛+1] .
(2)

If we take 𝑥 = cos 𝜃, then
𝑇𝑛 (cos 𝜃) = cos (𝑛𝜃) ,
𝑈𝑛 (cos 𝜃) = sin ((𝑛 + 1) 𝜃)

sin 𝜃 . (3)

Since all these definitions and properties of Chebyshev
polynomials can be found in any handbook of mathematics,
there is no need to list the source everywhere.

Recently, some authors studied the properties of Cheby-
shev polynomials and obtainedmany interesting conclusions.
For example, Li [1] obtained some identities involving power
sums of 𝑇𝑛(𝑥) and 𝑈𝑛(𝑥). As some applications of these
results, she obtained some divisibility properties involving
Chebyshev polynomials. At the same time, she also proposed
the following open problem.

Whether there exists an exact expression for the deriva-
tive or integral of the Chebyshev polynomials of the first kind
in terms of the Chebyshev polynomials of the first kind (and
vice-versa) is the question.

Wang and Zhang [2] and Zhang and Wang [3] partly
solved these problems. Some theoretical results related to
Chebyshev polynomials can be found in Ma and Zhang [4],
Cesarano [5], Babusci et al. [6–8], Lee and Wong [9], and
Wang and Han [10]. Doha and others [11–14] and Bircan and
Pommerenke [15] also obtainedmany important applications
of the Chebyshev polynomials.
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In this paper, we consider the computational problem of
the reciprocal sums of Chebyshev polynomials. That is, let 𝑞
and 𝑘 be positive integers with 𝑞 ≥ 3, for any real number 𝑥;
if 𝑇𝑛(𝑥) ̸= 0, then we consider the computational problem of
the summations

𝑞−1∑
𝑎=1

1𝑇2𝑘𝑎 (𝑥) ,
𝑞−1∑
𝑎=1

1
𝑈2𝑘𝑎−1 (𝑥) .

(4)

Although there are many results related to Chebyshev
polynomials, it seems that none had studied the compu-
tational problem of (4). The main reason may be that a
computational formula does not exist. But for some special
real number 𝑥, we can really get the precise value of (4). In
this paper, we will illustrate this point. That is, we will use
the elementary and analytic methods and the properties of
Chebyshev polynomials to prove the following results.

Theorem 1. Let 𝑞 be an integer with 𝑞 ≥ 3.Then for any integerℎ with (ℎ, 𝑞) = 1, one has the identities
𝑞−1∑
𝑎=1

1𝑈2𝑎−1 (cos (𝜋ℎ/𝑞)) =
sin2 (𝜋ℎ/𝑞)

3 (𝑞2 − 1) ;
𝑞−1∑
𝑎=1

1𝑈4𝑎−1 (cos (𝜋ℎ/𝑞))
= sin4 (𝜋ℎ/𝑞)

45 (𝑞2 − 1) (𝑞2 + 11) ;
𝑞−1∑
𝑎=1

1𝑈6𝑎−1 (cos (𝜋ℎ/𝑞))
= sin6 (𝜋ℎ/𝑞)

945 (𝑞2 − 1) (2𝑞2 − 11) (𝑞2 + 17) .

(5)

Theorem 2. Let 𝑞 be an odd number with 𝑞 ≥ 3. Then for any
integer ℎ with (ℎ, 𝑞) = 1, one has the identities
𝑞−1∑
𝑎=1

1𝑇2𝑎 (cos (𝜋ℎ/𝑞)) = 𝑞
2 − 1;

𝑞−1∑
𝑎=1

1𝑇4𝑎 (cos (𝜋ℎ/𝑞)) =
13 (𝑞2 − 1) (𝑞2 + 3) ;

𝑞−1∑
𝑎=1

1𝑇6𝑎 (cos (𝜋ℎ/𝑞)) =
115 (𝑞2 − 1) (2𝑞4 + 7𝑞2 − 363) .

(6)

Some Notes. First in Theorem 2, we must limit 𝑞 as an odd
number. Otherwise, if 𝑞 is an even number, then 𝑎 = (1/2) ⋅ 𝑞

is an integer, 1 ≤ 𝑎 ≤ 𝑞 − 1 and cos(𝜋𝑎/𝑞) = cos(𝜋/2) = 0.
Therefore, the fraction 1/𝑇2𝑘𝑎 (cos(𝜋𝑎/𝑞)) is meaningless.

Second, for any positive integer 𝑘 and 𝑥 = cos(𝜋ℎ/𝑞)
with (ℎ, 𝑞) = 1, we can give an computational formula for
(4). Of course, the calculation is very complicated when 𝑘 is
larger. Sowe donot give a general conclusion for (4), only give
an efficient calculating method. In fact if we use computer
MatLab program, and by means of recursive method in
Lemma 4, we can also obtain all precise values of (4) for any
positive integer 𝑘.
2. Several Lemmas

To complete the proofs of our theorems, we need following
lemmas. First we have

Lemma 3. Let 𝑞 > 3 be an integer. Then for variable 𝑠 with0 < 𝑠 < 1 and function𝑓(𝜋𝑠) = ln sin(𝜋𝑠), one has the identity
𝑞−1∑
𝑎=1

𝑓(2𝑘) (𝜋𝑎𝑞 ) = (−1)𝑘 ⋅ 22𝑘−1 ⋅ 𝐵2𝑘𝑘 ⋅ (𝑞2𝑘 − 1) , (7)

where 𝑓(𝑛)(𝑠) denotes the 𝑛-order derivative of 𝑓(𝑠), 𝐵2𝑘 is
Bernoulli numbers.

Proof. For any real number 𝑠, from Corollary 6 (Section 3,
Chapter 5) in [16] we have the identity

sin (𝜋𝑠) = 𝜋𝑠 ∞∏
𝑛=1

(1 − 𝑠2𝑛2) . (8)

Then from (8), the definition and properties of derivative we
have

𝜋𝑓󸀠 (𝜋𝑠) = 1𝑠 +
∞∑
𝑛=1

( 1𝑛 + 𝑠 − 1𝑛 − 𝑠) ,

𝜋𝑓󸀠󸀠 (𝜋𝑠) = − 1𝑠2 −
∞∑
𝑛=1

( 1
(𝑛 + 𝑠)2 +

1
(𝑛 − 𝑠)2) .

(9)

Generally, for any positive integer 𝑘, we have

𝜋2𝑘𝑓(2𝑘) (𝜋𝑠) = −(2𝑘 − 1)!𝑠2𝑘
− ∞∑
𝑛=1

((2𝑘 − 1)!(𝑛 + 𝑠)2𝑘 +
(2𝑘 − 1)!
(𝑛 − 𝑠)2𝑘 ) .

(10)
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Now taking 𝑠 = 𝑎/𝑞 in (10), and summation for all 1 ≤ 𝑎 ≤𝑞 − 1 and noting the definition and properties of complete
residue system mod 𝑞 (see [16]) we have

𝜋2𝑘𝑞−1∑
𝑎=1

𝑓(2𝑘) (𝜋𝑎𝑞 )

= − (2𝑘 − 1)!𝑞−1∑
𝑎=1

𝑞2𝑘
𝑎2𝑘

− 𝑞−1∑
𝑎=1

∞∑
𝑛=1

( (2𝑘 − 1)!
(𝑛 + 𝑎/𝑞)2𝑘 +

(2𝑘 − 1)!
(𝑛 − 𝑎/𝑞)2𝑘)

= −𝑞2𝑘𝑞−1∑
𝑎=1

∞∑
𝑛=0

(2𝑘 − 1)!
(𝑞𝑛 + 𝑎)2𝑘 − (2𝑘 − 1)!

𝑞−1∑
𝑎=1

𝑞2𝑘
(𝑞 − 𝑎)2𝑘

− 𝑞2𝑘𝑞−1∑
𝑎=1

∞∑
𝑛=2

(2𝑘 − 1)!
(𝑞𝑛 − 𝑎)2𝑘

= −2𝑞2𝑘𝑞−1∑
𝑎=1

∞∑
𝑛=0

(2𝑘 − 1)!
(𝑞𝑛 + 𝑎)2𝑘

= −2 (2𝑘 − 1)! (∞∑
𝑛=1

𝑞2𝑘
𝑛2𝑘 −

∞∑
𝑛=1

1𝑛2𝑘)
= −2 (2𝑘 − 1)! (𝑞2𝑘 − 1) 𝜁 (2𝑘) .

(11)

Note that Riemann 𝜁-function 𝜁(2𝑘) = ∑∞𝑛=1(1/𝑛2𝑘) =(−1)𝑘+1((2𝜋)2𝑘𝐵2𝑘/2(2𝑘)!) (see [17], Theorem 12.17). Then
from (11) we have

𝜋2𝑘𝑞−1∑
𝑎=1

𝑓(2𝑘) (𝜋𝑎𝑞 ) = −2 (2𝑘 − 1)! (𝑞2𝑘 − 1)

⋅ (−1)𝑘+1 (2𝜋)2𝑘 𝐵2𝑘2 (2𝑘)!
= (−1)𝑘 ⋅ (2𝜋)2𝑘 ⋅ 𝐵2𝑘2𝑘 ⋅ (𝑞2𝑘 − 1) .

(12)

This proves Lemma 3.

Lemma 4. Let 𝑓(𝑠) = ln sin(𝜋𝑠), 𝛼 = 𝛼(𝑠) = cot(𝜋𝑠). Then
one has

𝑓󸀠󸀠 (𝑠) = −𝜋2 (1 + 𝛼2) ;
𝑓(4) (𝑠) = −𝜋4 (6𝛼4 + 8𝛼2 + 2) ,
𝑓(6) (𝑠) = −𝜋6 (120𝛼6 + 240𝛼4 + 136𝛼2 + 16) .

(13)

Proof. Noting that the identity 1 + cot2𝑠 = 1/sin2𝑠, from
the definition and properties of derivative we have 𝑓󸀠(𝑠) =𝜋 cot(𝜋𝑠) = 𝜋𝛼 and

𝑓󸀠󸀠 (𝑠) = − 𝜋2
sin (𝜋𝑠) = −𝜋2 (1 + cot2 (𝜋𝑠))

= −𝜋2 (1 + 𝛼2) .
(14)

This proves the first formula of Lemma 4.
Similarly, we have

𝑓(3) (𝑠) = −2𝜋2𝛼𝛼󸀠 = 2𝜋3𝛼 + 2𝜋3𝛼3,
𝑓(4) (𝑠) = 2𝜋3𝛼󸀠 + 6𝜋3𝛼2𝛼󸀠 = −𝜋4 (6𝛼4 + 8𝛼2 + 2) . (15)

This is the second formula of Lemma 4.
It is easy to prove that

𝑓(6) (𝑠) = −𝜋6 (120𝛼6 + 240𝛼4 + 136𝛼2 + 16) . (16)

This completes the proof of Lemma 4.

Lemma 5. Let 𝑞 be an integer with 𝑞 ≥ 3. Then for any integerℎ with (ℎ, 𝑞) = 1, one has the identities
𝑞−1∑
𝑎=1

1
sin2 (𝜋ℎ𝑎/𝑞) = 13 (𝑞 − 1) (𝑞 + 1) ;

𝑞−1∑
𝑎=1

1
sin4 (𝜋ℎ𝑎/𝑞) = 145 (𝑞2 − 1) (𝑞2 + 11) ;

𝑞−1∑
𝑎=1

1
sin6 (𝜋ℎ𝑎/𝑞)
= 1945 (𝑞2 − 1) (𝑞2 + 17) (2𝑞2 − 11) .

(17)

Proof. Since (ℎ, 𝑞) = 1, if 𝑎 pass through a complete residue
system mod 𝑞, then ℎ𝑎 also pass through a complete residue
system mod 𝑞. Therefore, without loss of generality we can
assume that ℎ = 1. Noting that 𝐵2 = 1/6 and 1 + cot2(𝑥) =1/sin2(𝑥), from Lemmas 3 and 4 with 𝑘 = 1 we have

− 𝑞−1∑
𝑎=1

(1 + cot2 (𝜋𝑎𝑞 )) = −
𝑞−1∑
𝑎=1

1
sin2 (𝜋𝑎/𝑞)

= −13 (𝑞2 − 1)
(18)

or
𝑞−1∑
𝑎=1

1
sin2 (𝜋𝑎/𝑞) = 13 (𝑞 − 1) (𝑞 + 1) . (19)

Similarly, noting that 𝐵4 = −1/30, from Lemmas 3 and 4
with 𝑘 = 2 and applying (19) we have

− 𝑞−1∑
𝑎=1

(6 cot4 (𝜋𝑎𝑞 ) + 8 cot2 (𝜋𝑎𝑞 ) + 2)
= − 215 (𝑞4 − 1) ,

(20)
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which implies that
𝑞−1∑
𝑎=1

[6( 1
sin2 (𝜋𝑎/𝑞) − 1)

2 + 8( 1
sin2 (𝜋𝑎/𝑞) − 1)

+ 2] = 215 (𝑞4 − 1)
(21)

or
𝑞−1∑
𝑎=1

1
sin4 (𝜋𝑎/𝑞) = 145 (𝑞2 − 1) (𝑞2 + 11) . (22)

Noting that 𝐵6 = 1/42, from Lemmas 3 and 4 with 𝑘 = 3,
applying (19) and (22) we have

− 𝑞−1∑
𝑎=1

(120 cot6 (𝜋𝑎𝑞 ) + 240 cot4 (𝜋𝑎𝑞 )
+ 136 cot2 (𝜋𝑎𝑞 ) + 16) = −1663 (𝑞6 − 1)

(23)

or
𝑞−1∑
𝑎=1

[15( 1
sin2 (𝜋𝑎/𝑞) − 1)

3

+ 30( 1
sin2 (𝜋𝑎/𝑞) − 1)

2 + 17( 1
sin2 (𝜋𝑎/𝑞) − 1)

+ 2] = 263 (𝑞6 − 1) ,

(24)

which implies that
𝑞−1∑
𝑎=1

1
sin6 (𝜋𝑎/𝑞) = 1945 (𝑞2 − 1) (𝑞2 + 17) (2𝑞2 − 11) . (25)

Now Lemma 5 follows from (19), (22), and (25).
In fact, by using Lemma 4 and the method of proving

Lemma 5 we can give a computational formula for
𝑞−1∑
𝑎=1

1
sin2𝑘 (𝜋𝑎/𝑞) (26)

with all positive integer 𝑘. Here just in order to meet the
demands of main results we only calculated 𝑘 = 1, 2, and3.
3. Proofs of the Theorems

In this section, we shall complete the proofs of our theorems.
First we prove Theorem 1. For any integer 𝑞 ≥ 3, taking 𝑥 =
cos(𝜋ℎ/𝑞) with (ℎ, 𝑞) = 1, from (3) we have

𝑞−1∑
𝑎=1

1
𝑈2𝑘𝑎−1 (𝑥) =

𝑞−1∑
𝑎=1

1
𝑈2𝑘𝑎−1 (cos (𝜋ℎ/𝑞))

= sin2𝑘 (𝜋ℎ𝑞 )
𝑞−1∑
𝑎=1

1
sin2𝑘 (𝜋ℎ𝑎/𝑞) .

(27)

NowTheorem 1 follows from (27) and Lemma 5with 𝑘 = 1, 2,
and 3.

To prove Theorem 2, we note that, for any odd number𝑞 ≥ 3, if 𝑎 pass through a complete residue system mod 𝑞,
then 2𝑎 also pass through a complete residue system mod 𝑞.
So from the properties of trigonometric functions we have

𝑞−1∑
𝑎=1

1
sin2 (𝜋𝑎/𝑞) =

𝑞−1∑
𝑎=1

1
sin2 (2𝜋𝑎/𝑞)

= 𝑞−1∑
𝑎=1

sin2 (𝜋𝑎/𝑞) + cos2 (𝜋𝑎/𝑞)
4 sin2 (𝜋𝑎/𝑞) cos2 (𝜋𝑎/𝑞)

= 14
𝑞−1∑
𝑎=1

1
sin2 (𝜋𝑎/𝑞)

+ 14
𝑞−1∑
𝑎=1

1
cos2 (𝜋𝑎/𝑞) .

(28)

From (3), (28), and Lemma 5 we may immediately deduce
that

𝑞−1∑
𝑎=1

1𝑇2𝑎 (cos (𝜋ℎ/𝑞)) =
𝑞−1∑
𝑎=1

1
cos2 (𝜋ℎ𝑎/𝑞)

= 𝑞−1∑
𝑎=1

3
sin2 (𝜋𝑎/𝑞) = 𝑞2 − 1.

(29)

Similarly, we also have

𝑞−1∑
𝑎=1

1
sin4 (𝜋𝑎/𝑞) =

𝑞−1∑
𝑎=1

1
sin4 (2𝜋𝑎/𝑞)

= 𝑞−1∑
𝑎=1

(sin2 (𝜋𝑎/𝑞) + cos2 (𝜋𝑎/𝑞))2
16 sin4 (𝜋𝑎/𝑞) cos4 (𝜋𝑎/𝑞)

= 116
𝑞−1∑
𝑎=1

1
sin4 (𝜋𝑎/𝑞)

+ 116
𝑞−1∑
𝑎=1

1
cos4 (𝜋𝑎/𝑞)

+ 12
𝑞−1∑
𝑎=1

1
sin2 (2𝜋𝑎/𝑞) .

(30)

So from (30) and Lemma 5 we have

𝑞−1∑
𝑎=1

1
cos4 (𝜋𝑎/𝑞) =

𝑞−1∑
𝑎=1

15
sin4 (𝜋𝑎/𝑞) −

𝑞−1∑
𝑎=1

8
sin2 (𝜋𝑎/𝑞)

= 13 (𝑞2 − 1) (𝑞2 + 3) .
(31)
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Combining (3) and (31) we have the identity
𝑞−1∑
𝑎=1

1𝑇4𝑎 (cos (𝜋ℎ/𝑞)) =
𝑞−1∑
𝑎=1

1
cos4 (𝜋ℎ𝑎/𝑞)

= 13 (𝑞2 − 1) (𝑞2 + 3) .
(32)

From the method of proving (30) we also have
𝑞−1∑
𝑎=1

1
sin6 (𝜋𝑎/𝑞) =

𝑞−1∑
𝑎=1

1
sin6 (2𝜋𝑎/𝑞)

= 𝑞−1∑
𝑎=1

(sin2 (𝜋𝑎/𝑞) + cos2 (𝜋𝑎/𝑞))3
64 sin6 (𝜋𝑎/𝑞) cos6 (𝜋𝑎/𝑞)

= 164
𝑞−1∑
𝑎=1

1
sin6 (𝜋𝑎/𝑞)

+ 164
𝑞−1∑
𝑎=1

1
cos6 (𝜋𝑎/𝑞)

+ 34
𝑞−1∑
𝑎=1

1
sin4 (2𝜋𝑎/𝑞) .

(33)

From (3), Lemma 5, and (33) we can deduce that
𝑞−1∑
𝑎=1

1𝑇6𝑎 (cos (𝜋ℎ/𝑞)) =
𝑞−1∑
𝑎=1

1
cos6 (𝜋ℎ𝑎/𝑞)

= 𝑞−1∑
𝑎=1

63
sin6 (𝜋ℎ𝑎/𝑞)

− 𝑞−1∑
𝑎=1

48
sin4 (𝜋ℎ𝑎/𝑞)

= (𝑞2 − 1) (2𝑞4 + 7𝑞2 − 363)
15 .

(34)

NowTheorem 2 follows from (29), (32), and (34).
This completes all proofs of our results.
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