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The walking, waiting, transfer, and delayed in-vehicle travel times mainly contribute to route’s travel time reliability in the metro
system.The automatic fare collection (AFC) system provides huge amounts of smart card records which can be used to estimate all
these times distributions. A new estimationmodel based on Bayesian inference formulation is proposed in this paper by integrating
the probability measurement of the OD pair with only one effective route, in which all kinds of times follow the truncated normal
distributions.Then,MarkovChainMonte Carlomethod is designed to estimate all parameters endogenously. Finally, based onAFC
data in Guangzhou Metro, the estimations show that all parameters can be estimated endogenously and identifiably. Meanwhile,
the truncated property of the travel time is significant and the threshold tested by the surveyed data is reliable. Furthermore, the
superiority of the proposed model over the existing model in estimation and forecasting accuracy is also demonstrated.

1. Introduction

Travel time reliability in terms of variation in travel time has
attracted more and more attention recently, not only in the
road traffic, but also in themetro system. In themetro system,
travel time consists of entry walking time, entry waiting time,
in-vehicle travel time, transfer travel time, exit walking time,
and so forth. As is well known, walking and waiting time
are of high variability, while in-vehicle travel time has long
been considered punctual (Kusakabe et al. [1]; Sun andXu [2];
Zhou and Xu [3]), even though it may be delayed by excessive
demand, especially during peak hours. Splitting travel time
is referred to as estimating the entry walking, entry waiting,
and exit walking time in every station, in-vehicle travel time
in every section between two successive stations, and transfer
travel time in every transfer station. All these kinds of times
provide us with the level of services of nontransfer stations,
sections, and transfer stations. They can help us calculate
the congestion levels in the walking channels and waiting
platforms, evaluate transfer efficiency between two lines, find
the train delay in the sections, optimize the train schedule

even under the cooperated operation condition, estimate
passengers’ route choice behavior, and so forth. However,
measuring these times is extremely challenging at a network
level even when carrying out a field survey in the metro
system.

Fortunately, the automatic fare collection (AFC) system
is currently widely used to collect smart cards data in the
metro system. This data is called AFC data and records
every passenger’s travel details, including entry station, exit
station, and the corresponding times when swiping their
cards. Based on AFC data, much research has been done,
such as trip generation prediction (Guang et al. [4]; Cai
et al. [5]), Origin-Destination (OD) distribution prediction
(Cai et al. [6]; Cai et al. [7]; Chapleau et al. [8]; Rahbee
[9]), route choice proportion estimation (Sun and Schonfeld
[10]; Zhu et al. [11]), and travelers’ characteristics extraction
(Lee and Hickman [12]). For more application, see Pelletier
et al.’s review [13]. Research has also been done to estimate
various times using AFC data. Sun and Xu [14] assumed that
walking and waiting time were all random, but in-vehicle
travel time was punctual since it was determined by fixed
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Figure 1: The example for the PDFs of truncated normal distribution and general normal distribution.

train schedules. Zhou et al. [15] assumed that, except waiting
time following uniform distribution, other types of times
yielded to normal distribution, including in-vehicle travel
time, and they were estimated bymoment estimationmethod
based on the maximum spanning tree. But in this approach,
a field survey was still needed to calculate the first station’s
entry time. In Sun et al.’s research [16], all kinds of times
were supposed to independently yield to normal distribution
and the parameters were estimated by the Maximum Like-
lihood Estimation (MLE) approach without any additional
surveys. Sun et al. [17] proposed an integrated Bayesian
statistical inference framework to characterize the passenger
flow assignment model in a complex metro network. In this
research, all kinds of times were still assumed to follow
normal distribution and a Bayesian approachwas designed to
estimate all parameters, along with the chosen proportions of
feasible routes.

However, the distribution assumptions of all kinds of
times are hardly consistent with the facts because the trun-
cated property of the real data is neglected. In practice, all
times have their ranges; for example, with respect to the
walking time which relates to the travel time of free flows and
the congestion degrees, it cannot be very short (e.g., being
close to 0) or long (e.g., tending to infinity) which means
it is truncated. Meanwhile, on account of the fact that the
AFC data only records the travel time which is the period
between swiping-in time at the origin station and swiping-
out time at the destination station, it cannot indicate which
route the passenger has really traveled between the OD pairs
with multiple feasible routes (e.g., without loops). Therefore,
it is meaningful to select the OD pairs with only one effective
route to exactly split the travel time of the route into links and
then estimate all kinds of times. Generally, a threshold is set
to determine whether the second shortest route is considered
or not and then the OD pair with only one effective route can
be selected (Sun et al. [16]). However, in the existing research,
they usually neglect the random property of the OD pair with
only one effective route due to the travel time reliability of the
routes and calibrate the threshold exogenously.

Therefore, in order to estimate the walking, waiting, in-
vehicle, and transfer timesmore precisely, this paper proposes
an approach in which the contributions are as follows: all
kinds of times follow the truncated normal distributions,
the random property of the OD pair with only one effec-
tive route is considered, and the threshold is calibrated
endogenously. The left sections are organized as follows:
Section 2 mainly relates to the methodology, in which the
property of truncated normal distribution is introduced, the
method selecting the OD pair with only one effective route is
proposed, and a Bayesian inference formulation is established
together with the estimation approach based on Markov
Chain Monte Carlo (MCMC) method; in Section 3, based
on AFC data, train schedules, topology network, and other
data in the Guangzhou Metro, the estimations are discussed
and estimation errors between the existing and the proposed
models are compared; Section 4 is the conclusions.

2. Methodology

It should be mentioned here that, in this paper, the unit of
all kinds of times is minute, taking account of the fact that, in
terms of the time of the link, it is usually severalminuteswhile
for the travel time of the route it is usually tens of minutes.

2.1. Truncated Normal Distribution. On the assumption that
random variable 𝑇 follows a normal distribution 𝑇 ∼

𝑁(𝜇, 𝜎
2
), if 𝑇 lies within the interval 𝑇 ∈ (𝑎, 𝑏), 𝑇 conditional

on 𝑎 < 𝑇 < 𝑏 has a truncated normal distribution 𝑇 ∼

𝑇𝑁(𝜇, 𝜎
2
, 𝑎, 𝑏), and its probability density function (PDF) is

defined as follows, along with the curve shown in Figure 1
(Johnson et al. [18]):

𝜓 (𝜇, 𝜎, 𝑎, 𝑏; 𝑡)

=

{{{{{

{{{{{

{

0, if 𝑡 ≤ 𝑎

𝜙 (𝜇, 𝜎; 𝑡)

Φ (𝜇, 𝜎; 𝑏) − Φ (𝜇, 𝜎; 𝑎)
, if 𝑎 < 𝑡 < 𝑏

0, if 𝑡 ≥ 𝑏,

(1)
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Figure 2: The example for the network used in this paper.

where 𝜇, 𝜎 are the mean and standard derivation of normal
distribution,𝜓(⋅) is the PDFof truncated normal distribution,
𝜙(⋅) is the PDF of normal distribution, and Φ(⋅) is the
cumulative density function (CDF) of normal distribution.

Generally, in the metro system, travel time contains entry
walking time, entry waiting time, in-vehicle travel time,
transfer travel time, exit walking time, and so forth. Suppose
that every type of time is represented by a link in the metro
network shown in Figure 2. It depicts that a route from O
to D may consist of multiple links which represent types of
times. The transfer travel link represents the sum of transfer
walking and waiting times which are hard to be distinguished
as they always appear at the same time for a transfer station.
In practice, all these times are truncated within intervals; that
is, with respect to the time of link 𝑖, it follows a truncated
normal distribution 𝑇𝑙𝑖 ∼ 𝑇𝑁(𝜇𝑖, 𝜎

2

𝑖, 𝑎𝑖, 𝑏𝑖; 𝑡𝑖). For the travel
time 𝑇𝑘 of the route 𝑘, it is the sum of all kinds of mentioned
times; that is,𝑇𝑘 = ∑𝑖∈H𝑘 𝑇𝑙𝑖, whereH𝑘 denotes the set of links
constituting route 𝑘. Supposing that the times of every link
are independent of each other, the travel time of the route still
follows the truncated normal distribution whose probability
density function 𝜓(𝜇

𝑘
, 𝜎


𝑘
, 𝑎


𝑘
, 𝑏


𝑘
; 𝑡) is shown:

𝜓 (𝜇


𝑘
, 𝜎


𝑘
, 𝑎


𝑘
, 𝑏


𝑘
; 𝑡) = ∑

𝑖∈H𝑘

𝜓 (𝜇
𝑖
, 𝜎𝑖, 𝑎𝑖, 𝑏𝑖; 𝑡)

= 𝜓(∑

𝑖∈H𝑘

𝜇
𝑖
,
√
∑

𝑖∈H𝑘

𝜎
2

𝑖
, ∑

𝑖∈H𝑘

𝑎𝑖, ∑

𝑖∈H𝑘

𝑏𝑖; 𝑡) .

(2)

The mean 𝜇
𝑘
and the variance 𝜎2

𝑘
of truncated normal

distribution of route 𝑘 can be regarded as a perturbation of the
mean 𝜇

𝑘
and the variance 𝜎2

𝑘
of parent normal distribution,

respectively, which can be derived from moment equations:

𝜇


𝑘
= ∫

∑
𝑖∈H𝑘
𝑏𝑖

∑
𝑖∈H𝑘
𝑎𝑖

𝑡 ⋅ 𝜓 (𝜇


𝑘
, 𝜎


𝑘
, 𝑎


𝑘
, 𝑏


𝑘
; 𝑡) 𝑑𝑡

= ∫

∑
𝑖∈H𝑘
𝑏𝑖

∑
𝑖∈H𝑘
𝑎𝑖

𝑡 ⋅ 𝜓(∑

𝑖∈H𝑘

𝜇
𝑖
,
√
∑

𝑖∈H𝑘

𝜎
2

𝑖
, ∑

𝑖∈H𝑘

𝑎𝑖, ∑

𝑖∈H𝑘

𝑏𝑖; 𝑡)𝑑𝑡

= ∑

𝑖∈H𝑘

𝜇
𝑖
+
√
∑

𝑖∈H𝑘

𝜎
2

𝑖
Λ 1

(3)

𝜎
2

𝑘
= ∫

∑
𝑖∈H𝑘
𝑏𝑖

∑
𝑖∈H𝑘
𝑎𝑖

𝑡
2
⋅ 𝜓 (𝜇



𝑘
, 𝜎


𝑘
, 𝑎


𝑘
, 𝑏


𝑘
; 𝑡) 𝑑𝑡

= ∫

∑
𝑖∈H𝑘
𝑏𝑖

∑
𝑖∈H𝑘
𝑎𝑖

𝑡
2
⋅ 𝜓(∑

𝑖∈H𝑘

𝜇
𝑖
,
√
∑

𝑖∈H𝑘

𝜎
2

𝑖
, ∑

𝑖∈H𝑘

𝑎𝑖, ∑

𝑖∈H𝑘

𝑏𝑖; 𝑡)𝑑𝑡

= ∑

𝑖∈H𝑘

𝜎
2

𝑖
⋅ (Λ 2 − Λ

2

1
) ,

(4)

whereΛ 1 = −(𝜙(0, 1; 𝛽) −𝜙(0, 1; 𝛼))/(Φ(0, 1; 𝛽) −Φ(0, 1; 𝛼));
Λ 2 = −(𝛽 ⋅ 𝜙(0, 1; 𝛽)−𝛼 ⋅ 𝜙(0, 1; 𝛼))/(Φ(0, 1; 𝛽)−Φ(0, 1; 𝛼))+

1; 𝛼 = (∑𝑖∈H𝑘 𝑎𝑖 − ∑𝑖∈H𝑘 𝜇𝑖)/√∑𝑖∈H𝑘 𝜎
2

𝑖
; 𝛽 = (∑𝑖∈H𝑘 𝑏𝑖 −

∑𝑖∈H𝑘 𝜇𝑖)/√∑𝑖∈H𝑘 𝜎
2

𝑖
.

2.2. The OD Pairs with Only One Effective Route. Though
the AFC data records the travel times between OD pairs,
not all travel times data can be used to estimate distribution
parameters because there may be multiple effective routes
between some OD pairs. This paper just focuses on the
OD pairs with only one effective route. Considering the
randomness of the travel time of the route, except the OD
pairs between which there is only one feasible route (e.g.,
no loop) due to the topological structure, other OD pairs
with only one effective route are random. Suppose that
there are more than two feasible routes between a specific
OD pair. Before calculating the probability of this OD pair
with only one effective route, the routes with the first and
second shortest travel time should be generated. Usually, the
routes with the shortest travel time and the second shortest
travel time can be selected out easily according to K-shortest
routes algorithms if they are constant. In the reliable context,
researchers paid more attention to the route with the reliable
shortest travel time (Khani and Boyles [19]). Taking account
of the fact that the scale of metro network is comparatively
smaller than the road network, this paper firstly generates
amounts of feasible routes (e.g., at most ten routes) for the
OD pair based on the route’s physical length. Then, it selects
the routes with the first and second reliable shortest travel
time from the generated routes set R according to the below
minimization formulation.

The route with the reliable shortest travel time is the
solution to the minimization formulation as follows:

Min𝑍1 = 𝜇


𝑘
+ 𝜆𝜎


𝑘
, 𝑘 ∈ R, (5)

where 𝜆 is a parameter indicating the value of route reliability
(measured by standard deviation 𝜎

𝑘
) relative to the expected
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travel time 𝜇
𝑘
. And the route with the second reliable shortest

travel time is the solution to the sameminimization formula-
tion after removing the route with the reliable shortest travel
time from the routes set R.

Let 𝑇1 denote the reliable shortest travel time and
𝑇2 is the second reliable shortest travel time. They both
follow the truncated normal distributions, that is, 𝑇1 ∼

𝑇𝑁(𝜇


1
, 𝜎
2

1
, 𝑎


1
, 𝑏


1
; 𝑡) and 𝑇𝑠

2
∼ 𝑇𝑁(𝜇

𝑠

2
, (𝜎
𝑠

2
)
2
, 𝑎
𝑠

2
, 𝑏
𝑠

2
; 𝑡), respec-

tively. The probability of the OD pair with only one effective
route can be measured by the probability formulation as
follows:

𝑃 (𝑠 | 𝑌
𝑠
) = 𝑃 (𝑇

𝑠

2
− 𝑇
𝑠

1
≥ 𝑌
𝑠
) + eps = ∫

+∞

𝑌𝑠
𝜓(𝜇
𝑠

2

− 𝜇
𝑠

1
, √(𝜎
𝑠

2
)
2
+ (𝜎
𝑠

1
)
2
, 𝑎
𝑠

2
− 𝑏
𝑠

1
, 𝑏
𝑠

2
− 𝑎
𝑠

1
; 𝑡) 𝑑𝑡

+ eps

(6)

𝑌
𝑠
= 𝛼 ⋅ ln(

𝜇
𝑠

1

60
+ 1) , (7)

where 𝑌𝑠 is the threshold value for OD pair 𝑠 which varies
with the OD pairs due to the scale effects of OD pairs; 𝛼 is
the parameter; and eps is an extreme positive value tending
to 0 (e.g., 0.000001 in this paper).The purpose to add eps is to
avoid the probability 0 of the OD pair with only one effective
route, that is, to satisfy the condition𝑃(𝑠 | 𝑌𝑠) > 0 to carry out
the estimationmethod below.The above equationsmean that,
for the OD pair with multiple feasible routes, the probability
of the OD pair with only one effective route is equal to the
probability that the difference between the second reliable
shortest travel time and the reliable shortest travel time is
larger than the threshold value. Obviously, if the threshold
value is larger than the upper boundary 𝑌𝑠 ≥ 𝑏

𝑠

2
− 𝑎
𝑠

1
, then

𝑃(𝑇
𝑠

2
− 𝑇
𝑠

1
≥ 𝑌
𝑠
) = 0, and the probability of the OD pair with

only one effective route tends to 0; that is, 𝑃(𝑠 | 𝑌𝑠) = eps;
if the threshold value is smaller than the lower boundary
𝑌
𝑠
≤ 𝑎
𝑠

2
− 𝑏
𝑠

1
, the probability 𝑃(𝑇𝑠

2
− 𝑇
𝑠

1
≥ 𝑌
𝑠
) is equal to 1

and 𝑃(𝑠 | 𝑌𝑠) = 1 + eps ≈ 1.

2.3. Bayesian Inference. Let 𝜇, 𝜎, a, and b represent the sets
of the parent mean, variance, interval lower boundary, and
upper boundary of all kinds of times, respectively, that is,
T ∼ 𝑇𝑁(𝜇,𝜎, a, b). Together with the threshold Y, they need
to be estimated based on theAFCdata.The complex structure
of likelihood function as shown in (9) makes Maximum
Likelihood Estimation method hard to be applied when
trying to estimate distribution parameters and threshold
parameter endogenously in this paper. Therefore, a Bayesian
inference formulation is established. The Bayesian posterior
distribution of unknown parameters given the travel time
observations can be derived based on Bayes’ theorem as
follows:
𝜋 (𝜇,𝜎, a, b,Y | T)
∝ 𝑝 (T | 𝜇,𝜎, a, b,Y) ⋅ 𝜋 (𝜇,𝜎, a, b,Y)
= 𝑝 (T | 𝜇,𝜎, a, b,Y) ⋅ 𝜋 (𝜇) ⋅ 𝜋 (𝜎) ⋅ 𝜋 (a) ⋅ 𝜋 (b)

⋅ 𝜋 (Y)

(8)

𝑝 (T | 𝜇,𝜎, a, b,Y) ∝ ∏

𝑠∈S
𝜓 (T𝑠 | 𝜇,𝜎, a, b, 𝑠) 𝑝 (𝑠 | 𝑌

𝑠
)

= ∏

𝑠∈S,𝑡∈T𝑠

𝜓 (𝑡 | 𝜇,𝜎, a, b, 𝑠) 𝑝 (𝑠 | 𝑌𝑠) ,
(9)

where 𝜋(𝜇,𝜎, a, b,Y | T) denotes the density function of
all parameters given the observations; S is the set of OD
pairs; T𝑠 is the travel time observations of OD pair 𝑠; 𝑝(⋅) is
equal to the likelihood function of all parameters given the
travel time observations; 𝜋(𝜇), 𝜋(𝜎), 𝜋(a), 𝜋(b), and 𝜋(Y)
are the prior distributions. At last, taking account of the
threshold parameter 𝛼, the Bayesian formulation is shown as
follows:

𝜋 (𝜇,𝜎, a, b, 𝛼 | T) ∝ ∏

𝑠∈S,𝑡∈T𝑠

[𝜓 (𝑡 | 𝜇,𝜎, a, b)

⋅ 𝑝 (𝑠 | 𝑌
𝑠
) ⋅ 𝜋 (𝜇) ⋅ 𝜋 (𝜎) ⋅ 𝜋 (a) ⋅ 𝜋 (b) ⋅ 𝜋 (𝛼)] .

(10)

The prior distribution needs to be determined in advance
though the number of travel time observations in metro
system is large enough to revise the prior knowledge to a great
extent.

2.4. Estimation Method. Markov Chain Monte Carlo
(MCMC) method allows us to simulate draws that are
slightly dependent and are approximately from a posterior
distribution. Then, those draws can be taken to calculate
quantities of interest for the posterior distribution. In
Bayesian statistics, Gibbs Sampler and Metropolis-Hastings
(M-H) algorithm (Metropolis et al. [20]; Hastings [21]) are
widely used MCMC methods. Without the prior knowledge
among parameters and the full conditional distributions
for each parameter, M-H algorithm is more appropriate
to estimate the parameters in this paper. Considering
that it is a high-dimensional problem to solve so many
parameters, the variable-at-a-time Metropolis sampling
scheme (Metropolis et al. [20]) is used to avoid the large
rejection rate perhaps caused by general Metropolis. Let 𝜁 be
the set of all parameters; that is, 𝜁 = 𝜇 ∪ 𝜎 ∪ a ∪ b ∪ 𝛼. In the
variable-at-a-time scheme, it generates new sample for each
coordinate (parameter) in turn in the parameters’ set. The
estimation approach is as follows.

Step 1. Choose a starting value 𝜁(0) = (𝜁(0)
1
, . . . , 𝜁

(0)

𝑖
, . . . , 𝜁

(0)

𝑁
),

where 𝑁 denotes the number of parameters. And generate
routes sets forODpairs based on physical length. Set iteration
𝑚 = 1.

Step 2. Update the travel time distribution of feasible routes
based on the distribution parameters of links and select out
the routes with the first and second reliable shortest travel
time based on minimization formulation (5).

Step 3. Draw a candidate 𝜁∗ = (𝜁(𝑚)
1
, . . . , 𝜁

(𝑚)

𝑖−1
, 𝜁
∗

𝑖
, 𝜁
(𝑚−1)

𝑖+1
, . . . ,

𝜁
(𝑚−1)

𝑁
) from a jumping distribution 𝐽𝑚(𝜁

∗

𝑖
| 𝜁
(𝑚−1)

𝑖
) in

sequential order (𝑖 = 1, . . . , 𝑁).
Here, we suppose that the jumping distribution is a

normal distribution which is a symmetric distribution; that
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Figure 3: Guangzhou Metro Map (2014).

is, 𝐽𝑚(𝜁
∗

𝑖
| 𝜁
(𝑚−1)

𝑖
) = 𝐽𝑚(𝜁

(𝑚−1)

𝑖
| 𝜁
∗

𝑖
). Generally, the

jumping distribution can be denoted as 𝐽𝑚(𝜁
∗

𝑖
| 𝜁
(𝑚−1)

𝑖
) ∼

𝑁(𝜁
(𝑚−1)

𝑖
, 𝜉
2
), where 𝜉

2 is the proposal variance for the
𝑖th parameter. This is known as Gaussian random walk
Metropolis sampling.

Step 4. Calculate the acceptance ratio 𝜅 = min{1,
𝜋

(𝜁
∗

𝑖
)𝐽𝑚(𝜁
(𝑚−1)

𝑖
| 𝜁
∗

𝑖
)/𝜋

(𝜁
(𝑚−1)

𝑖
)𝐽𝑚(𝜁
∗

𝑖
| 𝜁
(𝑚−1)

𝑖
)} = min{1,

𝜋

(𝜁
∗

𝑖
)/𝜋

(𝜁
(𝑚−1)

𝑖
)}. In this equation, the posterior distribu-

tions are calculated as follows:

𝜋

(𝜁
∗

𝑖
) = 𝜋 (𝜁

(𝑚)

1
, . . . , 𝜁

(𝑚)

𝑖−1
, 𝜁
∗

𝑖
, 𝜁
(𝑚−1)

𝑖+1
, . . . , 𝜁

(𝑚−1)

𝑁
| T)

∝ ∏

𝑠∈S,𝑡∈T𝑠

[

[

𝑝 (𝑡 | 𝜁
(𝑚)

1
, . . . , 𝜁

(𝑚)

𝑖−1
, 𝜁
∗

𝑖
, 𝜁
(𝑚−1)

𝑖+1
, . . . , 𝜁

(𝑚−1)

𝑁
)

⋅

𝑖−1

∏

𝑗=1

𝜋 (𝜁
(𝑚)

𝑗
) ⋅

𝑁

∏

𝑗=𝑖+1

𝜋 (𝜁
(𝑚−1)

𝑗
) ⋅ 𝜋 (𝜁

∗

𝑖
)]

]

𝜋

(𝜁
(𝑚−1)

𝑖
) = 𝜋 (𝜁

(𝑚)

1
, . . . , 𝜁

(𝑚)

𝑖−1
, 𝜁
(𝑚−1)

𝑖
, 𝜁
(𝑚−1)

𝑖+1
, . . . , 𝜁

(𝑚−1)

𝑁
|

T) ∝ ∏

𝑠∈S,𝑡∈T𝑠

[

[

𝑝 (𝑡 | 𝜁
(𝑚)

1
, . . . , 𝜁

(𝑚)

𝑖−1
, 𝜁
(𝑚−1)

𝑖
, 𝜁
(𝑚−1)

𝑖+1
, . . . ,

𝜁
(𝑚−1)

𝑁
) ⋅

𝑖−1

∏

𝑗=1

𝜋 (𝜁
(𝑚)

𝑗
) ⋅

𝑁

∏

𝑗=𝑖+1

𝜋 (𝜁
(𝑚−1)

𝑗
) ⋅ 𝜋 (𝜁

(𝑚−1)

𝑖
)]

]

,

(11)

where 𝑝(𝑡 | 𝜁
(𝑚)

1
, . . . , 𝜁

(𝑚−1)

𝑁
) = 𝜓(𝑡 | 𝜁

(𝑚)

1
, . . . , 𝜁

(𝑚−1)

𝑁−1
) ⋅

𝑝[𝑠 | 𝑌
𝑠
(𝜁
(𝑚−1)

𝑁
)]. 𝑝[𝑠 | 𝑌𝑠(𝜁(𝑚−1)

𝑁
)] > 0 ensures that the

denominator is not equal to 0. After canceling out the same
parts, the ratio can be simplified as

𝜅 = min{1,
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, . . . , 𝜁

(𝑚)

𝑖−1
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(𝑚−1)

𝑖
, 𝜁
(𝑚−1)
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, . . . , 𝜁

(𝑚−1)

𝑁
) ⋅ 𝜋 (𝜁

(𝑚−1)

𝑖
)]

} . (12)

Step 5. Draw a value 𝑢 from the uniform (0, 1) distribution.
If 𝑢 ≤ 𝜅, 𝜁(𝑚) = 𝜁∗; otherwise, 𝜁(𝑚) = 𝜁(𝑚−1).

Step 6. If 𝑚 < 𝑀, 𝑚 = 𝑚 + 1, repeat Steps 2–5; otherwise,
stop sampling.

3. Results and Discussion

As shown in Figure 3, in the year of 2014, except the
APM line, there are 8 lines and 136 stations (including 19
transfer stations) in operation in Guangzhou Metro. APM is
the abbreviation of Zhujiang New Town Automated People
Mover System which is also operated by Guangzhou Metro
Corporation but independent of other lines. People should
swipe the smart card again to go through theAPM line even if
they transfer from other lines.Therefore, it is excluded in this
paper.The number ofODpairs is up to 18360.There are about
3 million transactions every day in which the maximum
amounts of transactions are about 6000 between OD pair
while, for few OD pairs, there are only several transactions.
Here, we use one-month data to keep the distribution
property, that is, the data in June for estimation and the data
in July for testing. There are some hypotheses made here: the

entry and exit walking time relating to the same line at the
same station are the same while they are different relating to
different lines even at the same (transfer) station; the waiting
times relating to different lines even at the same (transfer)
station are different but they are the same relating to the same
line’s different directions; the transfer times in the same trans-
fer station from the same line transferring to another line’s
different directions are different; in-vehicle travel times of
different directions between the same successive stations are
the same; and all kinds of times follow the truncated normal
distribution.

Figure 4 shows the characteristics of the AFC data col-
lected from Tianhe Coach Terminal to Gangding on June 18,
2014. The number of observations is 6328, the average travel
time is 11.61min, and the standard derivation is 3.39min.This
clearly indicates that the travel time follows approximately a
truncated normal distribution. Meanwhile, the lower bound-
ary is closer to the average value than the upper boundary.
The far longer travel time than the average value may result
from the common fact that some passengersmiss the trains or
just walk slowly. It can be found that this phenomenon exists
in most OD pairs according to the AFC data. Therefore, the
truncated normal distribution assumption is more suitable
for the fact and the estimations should satisfy that the
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Figure 4: An example for the travel time distribution from Tianhe Coach Terminal to Gangding.

difference between the upper boundary and the mean should
be larger than the difference between the mean and the lower
boundary.

3.1. Estimation Results. The prior knowledge is noninfor-
mative; thus, all parameters are assumed to follow uniform
distributions according to the operational experiences and
the train schedules. The in-vehicle travel time distribution
can be easily estimated based on the real train schedule.
However, the real train schedule is hard to be collected
even for the operation corporation. Therefore, in-vehicle
travel time distributions are also estimated in this paper
and the prior knowledge can be gained from the planned
train schedule. The ratio between the standard derivation
and the mean of the in-vehicle travel time is recognized as
a constant (Sun et al. [17]); that is, 𝜎vt = 𝛽 ⋅ 𝜇

vt. In order
to distinguish the parameters conveniently, we use ee, ew, tt,
and vt to denote entry/exit walking time, entry waiting time,
transfer travel time, and in-vehicle travel time, respectively.
The total number of parameters is 156 ∗ 4 + 156 ∗ 4 +

147 ∗ 3 + 1 + 168 ∗ 4 + 1 = 2363 (156 entry/exit walking
links, 156 entry waiting links, 147 in-vehicle travel links, 1

constantmeasuring the ratio between the standard derivation
and the mean of the in-vehicle travel time, 168 transfer
travel links, and 1 threshold parameter). The random walk
sampling variance 𝜉2 is 15min for entry/exit walking time,
7min for entry waiting time, 15min for transfer travel time,
2min for in-vehicle travel time, and 10min for threshold
parameter, respectively. Though the large quantities of data
in Guangzhou Metro system can correct the biased prior
knowledge, an appropriate distribution assumption is still
needed to save the simulating time. For the same type of the
time, the prior distributions of some types of parameters are
the same which are exampled in Table 1. The initial value of
each parameter for estimation is the mean.

The splitting model proposed in this paper avoids select-
ing particular OD pairs in advance, such as the OD pairs
with only one feasible route. But the routes between the OD
pairs should cover all links. Here, we randomly choose 5000
OD pairs (excluding the OD pair with OD volume smaller
than 1000 for a month) and, for each OD pair, 100 travel time
observations collected in June, 2014, are chosen. For each
OD pair, the observations with 2 times greater or shorter
travel time than the average travel time are not drawn for
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Table 1: The prior distributions of some parameters.

Entry/exit walking time (min) Entry waiting time (min) Transfer time (min) In-vehicle time (min) Threshold parameter
𝜇
ee
1

𝑈(1, 20) 𝜇
ew
1

𝑈(0, 10) 𝜇
tt
1

𝑈(1, 20) 𝜇
vt
1

𝑈(1, 5) 𝛼 𝑈(0, 20)

𝜎
ee
1

𝑈(0, 20) 𝜎
ew
1

𝑈(0, 10) 𝜎
tt
1

𝑈(0, 20) 𝛽 𝑈(0, 1) — —
𝑎
ee
1

𝑈(0, 20) 𝑎
ew
1

𝑈(0, 10) 𝑎
tt
1

𝑈(0, 20) 𝑎
vt
1

𝑈(0, 5) — —
𝑏
ee
1

𝑈(1, 50) 𝑏
ew
1

𝑈(0, 30) 𝑏
tt
1

𝑈(1, 50) 𝑏𝑖 𝑈(1, 20) — —
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ — —
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝜇

vt
147

𝑈(1, 5)

𝜇
ee
156

𝑈(1, 20) 𝜇
ew
156

𝑈(0, 10) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝛽 𝑈(0, 1) — —
𝜎
ee
156

𝑈(0, 20) 𝜎
ew
156

𝑈(0, 10) 𝜇
tt
168

𝑈(1, 20) 𝑎
vt
147

𝑈(0, 5) — —
𝑎
ee
156

𝑈(0, 20) 𝑎
ew
156

𝑈(0, 10) 𝜎
tt
168

𝑈(0, 20) 𝑏
vt
147

𝑈(1, 20) — —
𝑏
ee
156

𝑈(1, 50) 𝑏
ew
156

𝑈(0, 30) 𝑎
tt
168

𝑈(0, 20) — — — —
— — — — 𝑏

tt
168

𝑈(1, 50) — — — —
Note: ⋅ ⋅ ⋅ means the rest; — means not applicable.
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Figure 5: An example for statistical analysis on the samples of the parameter.

estimation in case that some abnormal data is excluded. The
parameter 𝜆 which indicates the value of standard deviation
relative to the mean is assumed to be 1 in this paper. We
take 10000 iterations of which the former 5000 iterations
are burn-in period. Simulating in the PC with Intel Core
i3-2130 CPU at 3.40GHz and 4.00GB RAM, the simulation
takes about 20 s for each iteration and at last 5000 effective
samples for each parameter are drawn. By analyzing the
effective samples of the parameters via histograms and the

results’ tendency of the iterationswhich are shown in Figure 5
as an example, they are all converged. From Figure 5(a),
we can see that, after the burn-in period, the values of the
samples keep stable which means that the iterations are
converged.Meanwhile, in Figure 5(b), the histograms express
the frequency distribution of the effective sampled parameter
values which shows that the samples of the parameter follow
the normal distribution. Figure 5 indicates that the drawn
samples are effective significantly and the estimations are
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Table 2: The estimations of some parameters.

Entry/exit walking time (min) Entry waiting time (min) Transfer time (min) In-vehicle time (min)
Para. Mean (CI) Para. Mean (CI) Para. Mean (CI) Para. Mean (CI)

𝜇
ee
1

3.31
(2.42, 5.02) 𝜇

ew
1

2.03
(1.91, 2.52) 𝜇

tt
1

4.22
(3.82, 6.06) 𝜇

vt
1

2.22
(1.92, 2.82)

𝜎
ee
1

1.22
(1.04, 2.13) 𝜎

ew
1

1.01
(0.92, 1.22) 𝜎

tt
1

1.21
(1.01, 2.02) 𝛽

0.04
(0.01, 0.10)

𝑎
ee
1

1.42
(1.11, 2.31) 𝑎

ew
1

0.05
(0.00, 0.10) 𝑎

tt
1

2.83
(1.73, 3.65) 𝑎

vt
1

1.71
(1.43, 2.12)

𝑏
ee
1

8.03
(5.97, 9.88) 𝑏

ew
1

6.22
(5.11, 7.31) 𝑏

tt
1

13.33
(12.11, 14.86) 𝑏

vt
147

3.02
(1.76, 4.38)

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝜇
vt
147

1.67
(1.11, 2.51)

𝜇
ee
156

5.31
(4.51, 6.11) 𝜇

ew
156

2.65
(1.83, 3.10) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝛽

0.04
(0.01, 0.10)

𝜎
ee
156

1.52
(1.21, 2.07) 𝜎

ew
156

1.11
(0.92, 1.81) 𝜇

tt
168

4.55
(3.53, 6.39) 𝑎

vt
147

1.49
(1.05, 2.06)

𝑎
ee
156

3.87
(3.13, 4.78) 𝑎

ew
156

0.11
(0.01, 0.30) 𝜎

tt
168

1.67
(1.18, 2.31) 𝑏

vt
147

2.57
(1.99, 3.71)

𝑏
ee
156

10.22
(8.99, 11.81) 𝑏

ew
156

6.97
(6.42, 7.03) 𝑎

tt
168

2.71
(1.65, 3.48) — —

— — — — 𝑏
tt
168

17.07
(15.19, 19.02) — —

Note: ⋅ ⋅ ⋅ means the rest; — means not applicable.

reliable. Considering that too many parameters are estimated
in this paper so that it is impossible to list all the results, the
estimation results of some parameters are shown in Table 2,
including the mean and 95% Bayesian conference interval
(CI) according to the distribution provided by the Bayesian
estimation.Themean of the threshold parameter𝛼 is 5.04 and
its 95% CI is 4.01, 6.10.

And the prior distributions of the parameters for the
same kind of time are referred to as the same as shown in
Table 1, but the results in Table 2 show us that the posterior
distributions can be significantly different which means that
amounts of AFC data can correct the biased prior knowledge.
It also can be seen from Table 2 that the lower boundary of
the entry waiting time is the smallest (tending to 0) because,
in some cases, passengers can catch up the departing train in
time without any waiting periods. Meanwhile, the difference
between the upper and lower boundaries for in-vehicle travel
time and the variance are both the smallest which means that
the in-vehicle travel time relating to the train schedule varies
the least relative to other kinds of times.

As is shown in Figure 4, from Tianhe Coach Ter-
minal to Gangding, the truncated characteristic of the
observations is significant. According to (2), the distribu-
tion of the travel time (unit: min) for this OD pair is
𝑇𝑁(10.22, 6.30, 8.01, 19.33); that is, for normal distribution,
themean is 10.22min and the standard derivation is 2.51min.
For the truncated normal distribution, the mean is 11.06min
and standard derivation is 3.74min which are obviously
closer to the real values (the average value is 11.61min and the
standard derivation is 3.39min) than the mean and standard

derivation of normal distribution. Meanwhile, the estimated
boundaries are both consistent with the real censored data. It
shows the superiority of the truncated normal distribution to
the normal distribution.

The estimation result of the threshold parameter is also
significant with the mean 26.04 (the unit of the threshold
is minute) and 95% CI (24.01, 28.10). Based on (7), the
threshold for different OD pair is curved in Figure 5. In
order to test the estimation for the threshold parameter
and the threshold equation structure, a field survey was
carried out in June, 2014. The survey mainly focused on
passengers’ travel characteristics in metro system and at last
10000 effective samples were collected. With respect to the
threshold, 8 scenarios were designed as follows: for the OD
pair, if the shortest travel time was 10min, 20min, 30min,
60min, 90min, 120min, 150min, and 180min, respectively,
howmuchmore time you can tolerate. And the average value
for every scenario was calculated and then displayed as the
histogram in Figure 6. It can be seen from Figure 6 that the
estimated curve can significantly fit for the surveyed data
which demonstrates that the estimated threshold parame-
ter and the threshold function structure are both reliable.
Exactly, the Mean Absolute Percent Error (MAPE) between
the estimated values and real data is 3.46% which shows that
the model has a good goodness-of-fit to the real data.

According to the estimated threshold, the distribution of
the number of the OD pairs with only one effective route
based on the probability intervals is shown in Figure 7. It
shows that none of OD pairs have the probability 0 to have
only one effective route which is a response to the estimation
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Figure 7:The distribution of the number of OD pairs with only one
effective route.

condition (referring to the condition that the denominator is
not equal to 0). There are 3647 OD pairs whose probabilities
are equal to 1 which is due to the fact that there is only
one feasible route or the threshold is greater than the upper
boundary for those OD pairs. These OD pairs can be used to
test the forecasting performance.

3.2. Performance Test. The estimated results show their con-
vergence properties based on statistical test, but without
the real data test, such as forecasting performance test. In
order to test the mobility and estimating effectiveness of the
parameters, this paper establishes an index measuring the
errors between the estimated results and real data. In advance,
some representative OD pairs are selected out based on the
condition that, for example, if a specific OD pair 𝑠 ∈ S2,
then 𝑃(𝑠 | 𝑌

𝑠
) = 1. Thereafter, the set S2 is made of

the representative OD pairs. The measuring index 𝐹 can be
calculated by the following equations:

𝐹 =

∑𝑠∈S2 𝐹𝑠

𝑁(S2)
, (13)

𝐹𝑠 =

𝑖=𝐼𝑠−1

∑

𝑖=0

abs [∫
𝛾𝑖+1

𝛾𝑖

𝜓 (𝑡 | 𝜇


1
,𝜎


1
, a
1
, b
1
) 𝑑𝑡

− 𝑝 (𝛾𝑖, 𝛾𝑖+1)] ,

(14)

𝑝 (𝛾𝑖, 𝛾𝑖+1) =

∑𝑡∈T𝑠 𝛿𝑡

𝑁(T𝑠)
,

if 𝛾𝑖 ≤ 𝑡 < 𝛾𝑖+1, 𝛿𝑡 = 1; otherwise, 𝛿𝑡 = 0,

(15)

where 𝐹𝑠 is the error for OD pair 𝑠; 𝐼𝑠 is the number of
travel time intervals for ODpair 𝑠;𝑝(𝛾𝑖, 𝛾𝑖+1) denotes the ratio
between the number of travel time observations within the
interval (𝛾𝑖, 𝛾𝑖+1) and the total number of observations; the
interval boundary needs to satisfy 𝛾0 ≤ min(T𝑠) < 𝛾1 and
𝛾𝐼𝑠−1

≤ max(T𝑠) < 𝛾𝐼𝑠
; 𝑁(S2) denotes the size of the OD

pairs set S2; 𝑁(T𝑠) denotes the number of the travel time
observations in set T𝑠.

According to the above statistical analysis, there are 3647
OD pairs which satisfy the equation 𝑃(𝑠 | 𝑌

𝑠
) = 1. The

test data is a month sized data which was collected in July,
2014, in which the OD pair with the OD volume smaller than
1000 is deleted to make sure of the distribution property. At
last, 1121 OD pairs are left to carry out the test. Based on
(13)∼(15), the measuring index 𝐹 is calculated for every OD
pair with interval length 𝛾𝑖+1 − 𝛾𝑖 = 0.5min. Meanwhile, in
order to evaluate the forecasting accuracy, an existing model
is simulated in advance. The difference between the existing
model and the proposed model is formulated as follows: for
the existing model, all kinds of times are assumed to follow
normal distributions and the selected OD pairs satisfy the
condition that the ratio between the shortest mean time and
the second shortest mean time is smaller than 0.5 (Sun et
al. [16]). The error based on the proposed model (𝐹𝑠(𝑝)) is
regarded as the horizontal axis and the error based on the
existing model (𝐹𝑠(𝑒)) is regarded as the vertical axis. The
scattered points are shown in Figure 8.

In Figure 8, the solid spots represent the errors (𝐹𝑠) and
the solid line indicates that the error based on the proposed
model is equal to the error based on the existing model; that
is, 𝐹𝑠(p) = 𝐹𝑠(e), for the OD pair 𝑠. If the spot lies above
the line, it means the error based on the proposed model
is smaller than that based on the existing model; that is,
𝐹𝑠(p) < 𝐹𝑠(e), for the OD pair 𝑠. Otherwise, 𝐹𝑠(p) > 𝐹𝑠(e).
From Figure 8, we can see that, for all selected OD pairs,
the error spots lie above or lie on the line which indicates
that the error based on the proposed model is not greater
than that based on the existing model; that is, 𝐹𝑠(p) <= 𝐹𝑠(e).
And the average error for all selected OD pairs based on the
proposedmodel is 0.19 while that based on the existingmodel
is 0.30. The above results show that the proposed model
can improve significantly estimation accuracy on estimating
the distributions of route travel time, station walking time,
station waiting time, section in-vehicle time, and transfer
station transfer time, respectively.

4. Conclusions

Travel time reliability in the metro system, referring to the
variation in travel time, has attracted more and more atten-
tion recently, as it can support evaluating the level of services,
calculating route choice proportion, optimizing the train
schedule, and so forth. In themetro system, the walking time,
waiting time, and delayed in-vehicle time mainly contribute
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Figure 8: The scattered spots figure.

to the variation of the travel time of the travel route. Thus,
estimating the walking time in the station, waiting time on
the platform, transfer travel time in the transfer channel, and
in-vehicle travel time between two successive stations in the
metro system is the key to estimate the travel time of the
route, especially for the OD pairs between which there are
various effective routes. Based on AFC data, huge amounts of
passenger’s travel times between OD pairs can be collected.
But the walking, waiting, transfer, and real in-vehicle travel
times cannot be directly gained and the travel times between
some OD pairs cannot be directly assigned to the routes as
there are more than effective routes between the OD pairs.

Some research has been found in studying the estimation
method for various times in the metro system. However,
the truncated property of the data is neglected and the
threshold which is used to select the OD pairs with only one
effective route is calculated exogenously without considering
the random property of the travel times of feasible routes.
The truncated property of the data is derived from a common
sense that all kinds of timeswill not be too long or shortwhich
depends on, for example, the length of the walking channel,
walking speed, train schedule, and so forth. Therefore, a new
estimationmodel is proposed in this paper based on Bayesian
inference formulation by integrating the probability equation
of theODpair with only one effective route, inwhich all kinds
of times are assumed to follow truncated normal distributions
and the threshold is estimated endogenously. The probability
of the OD pair with only one effective route is derived from
the relationship between the reliable shortest travel time
of the route and the reliable second shortest travel time
of the route for the OD pair, which varies with the travel
time distribution. Considering that the new model contains
complex integrations, Markov Chain Monte Carlo (MCMC)
method is designed to estimate all parameters, in which
Gaussian random walk Metropolis proposals are employed
on all the unknown parameters.

Based on the AFC data collected fromGuangzhouMetro,
the truncated property of the travel time is demonstrated
and the proposed model is estimated. The results show that
the drawn samples are converged and all parameters are
identifiable. The mean value and standard derivation value
of the truncated normal distribution are closer to the real
average value and standard derivation value than those of
normal distribution, which indicates that the truncated nor-
mal distribution assumption is more reliable. The threshold
is tested by the surveyed data and the MAPE indicates
the effectiveness of the threshold parameter estimation and
the threshold function structure assumption. Furthermore,
relating to the estimating and forecasting accuracy, in terms
of every selected OD pair, the error based on the proposed
model is not greater than that based on the existing model,
and, for all selected OD pairs, the average error based
on the proposed model is smaller significantly than that
based on the existing model. Therefore, both the estimations’
statistical effectiveness and the forecasting accuracy indicate
the superiority of the proposed model over the existing
model.
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