provided by Crossref

Some conditions for a class of functions to be completely monotonic

Senlin Guo*

"Correspondence sguo@hotmail.com Department of Mathematics, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China

Abstract

In this article, we present a necessary condition and a necessary and sufficient condition for a class of functions to be completely monotonic. MSC: Primary 34A40; 26D10; secondary 26A48 Keywords: necessary condition; necessary and sufficient condition; completely monotonic function; gamma function

1 Introduction and main results

Recall [1] that a function f is said to be completely monotonic on

$$
\mathbb{R}^{+}:=(0, \infty)
$$

if f has derivatives of all orders on \mathbb{R}^{+}and for all $n \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$

$$
(-1)^{n} f^{(n)}(x) \geq 0, \quad x \in \mathbb{R}^{+} .
$$

Here and throughout the paper, \mathbb{N} is the set of all positive integers. The set of all completely monotonic functions on \mathbb{R}^{+}is denoted by $C M\left(\mathbb{R}^{+}\right)$.
Bernstein [2] proved that a function f on the interval \mathbb{R}^{+}is completely monotonic if and only if there exists an increasing function $\alpha(t)$ on $[0, \infty)$ such that

$$
f(x)=\int_{0}^{\infty} e^{-x t} d \alpha(t)
$$

Also recall [3] that a positive function f is said to be logarithmically completely monotonic on \mathbb{R}^{+}if f has derivatives of all orders on \mathbb{R}^{+}and for all $n \in \mathbb{N}$

$$
(-1)^{n}[\ln f(x)]^{(n)} \geq 0, \quad x \in \mathbb{R}^{+}
$$

The class of all logarithmically completely monotonic functions on \mathbb{R}^{+}is denoted by $\operatorname{LCM}\left(\mathbb{R}^{+}\right)$.

It was proved [4] that a logarithmically completely monotonic function is also completely monotonic.

There is a rich literature on completely monotonic, logarithmically completely monotonic functions and their applications. For more recent work, see, for example, [5-28].

[^0]The Euler gamma function is defined and denoted for $\operatorname{Re} z>0$ by

$$
\Gamma(z):=\int_{0}^{\infty} t^{z-1} e^{-t} d t
$$

The logarithmic derivative of $\Gamma(z)$, denoted by

$$
\psi(z):=\frac{\Gamma^{\prime}(z)}{\Gamma(z)}
$$

is called the psi or digamma function, and the $\psi^{(k)}$ for $k \in \mathbb{N}$ are called the polygamma functions.

In this article, we give two necessary conditions and a necessary and sufficient condition for a class of functions

$$
\begin{equation*}
f_{a, b, c}(x):=(x+a) \ln x-x-\ln \Gamma(x+b)+c, \quad x \in \mathbb{R}^{+} \tag{1}
\end{equation*}
$$

where $a, c \in \mathbb{R}, b \geq 0$ are parameters, to be completely monotonic. The main results are as follows.

Theorem $1 A$ necessary condition for the function $f_{a, b, c}(x)$ to be completely monotonic on the interval $(0, \infty)$ is that

$$
\begin{align*}
& b-a=\frac{1}{2} \tag{2}\\
& 0<b \leq \frac{1}{2} \tag{3}
\end{align*}
$$

and

$$
\begin{equation*}
c \geq \ln \sqrt{2 \pi} \tag{4}
\end{equation*}
$$

Corollary 1 A necessary condition for the function $f_{a, b, c}(x)$ to be completely monotonic on the interval $(0, \infty)$ is that

$$
\begin{equation*}
-\frac{1}{2}<a \leq 0 . \tag{5}
\end{equation*}
$$

Theorem 2 For

$$
b \in\left[\frac{1}{2}-\frac{\sqrt{3}}{6}, \frac{1}{2}\right],
$$

a necessary and sufficient condition for the function $f_{a, b, c}(x)$ to be completely monotonic on the interval $(0, \infty)$ is that

$$
\begin{equation*}
b-a=\frac{1}{2} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
c \geq \ln \sqrt{2 \pi} \tag{7}
\end{equation*}
$$

2 Lemmas

We need the following lemmas to prove our main results.
Let the α be real parameters, β a non-negative parameter. Define

$$
g_{\alpha, \beta}(x):=\frac{x^{x+\beta-\alpha}}{e^{x} \Gamma(x+\beta)}, \quad x \in \mathbb{R}^{+} .
$$

Lemma 1 (see [11]) If

$$
g_{\alpha, \beta} \in L C M\left(\mathbb{R}^{+}\right)
$$

then either

$$
\beta>0 \quad \text { and } \quad \alpha \geq \max \left\{\beta, \frac{1}{2}\right\}
$$

or

$$
\beta=0 \quad \text { and } \quad \alpha \geq 1 .
$$

Lemma 2 (see [7]) Let

$$
\beta \in\left[\frac{1}{2}-\frac{\sqrt{3}}{6}, \frac{1}{2}\right] .
$$

If

$$
\alpha \geq \frac{1}{2},
$$

then

$$
g_{\alpha, \beta} \in L C M\left(\mathbb{R}^{+}\right)
$$

3 Proof of the main results

Proof of Theorem 1 If

$$
f_{a, b, c} \in C M\left(\mathbb{R}^{+}\right)
$$

then

$$
\begin{equation*}
f_{a, b, c}(x) \geq 0, \quad x \in \mathbb{R}^{+}, \tag{8}
\end{equation*}
$$

and $f_{a, b, c}(x)$ is decreasing on \mathbb{R}^{+}.
It is well known that (see [29, p.47])

$$
\begin{equation*}
\ln \Gamma(x+\beta)=\left(x+\beta-\frac{1}{2}\right) \ln x-x+\frac{\ln (2 \pi)}{2}+O\left(\frac{1}{x}\right), \quad \text { as } x \rightarrow \infty . \tag{9}
\end{equation*}
$$

Hence

$$
\begin{equation*}
f_{a, b, c}(x)=\left(\frac{1}{2}-b+a\right) \ln x-\ln \sqrt{2 \pi}+c+O\left(\frac{1}{x}\right), \quad \text { as } x \rightarrow \infty \tag{10}
\end{equation*}
$$

From (8) and (10), we get

$$
\begin{equation*}
\frac{1}{2}-b+a \geq \frac{\ln \sqrt{2 \pi}-c+O(1 / x)}{\ln x}, \quad \text { as } x \rightarrow \infty \tag{11}
\end{equation*}
$$

Since

$$
\begin{equation*}
\frac{\ln \sqrt{2 \pi}-c+O(1 / x)}{\ln x} \rightarrow 0, \quad \text { as } x \rightarrow \infty \tag{12}
\end{equation*}
$$

from (11) we have

$$
\begin{equation*}
b-a \leq \frac{1}{2} . \tag{13}
\end{equation*}
$$

On the other hand, since $f_{a, b, c}(x)$ is decreasing on \mathbb{R}^{+}, from (10), we obtain

$$
\begin{equation*}
\left(\frac{1}{2}-b+a\right) \ln x-\ln \sqrt{2 \pi}+c+O\left(\frac{1}{x}\right) \leq f_{a, b, c}(\tau), \quad \text { as } x \rightarrow \infty \tag{14}
\end{equation*}
$$

where, in (14), τ is a fixed number in \mathbb{R}^{+}.
Equation (14) is equivalent to

$$
\begin{equation*}
\frac{1}{2}-b+a \leq \frac{\ln \sqrt{2 \pi}+O(1 / x)-c+f_{a, b, c}(\tau)}{\ln x}, \quad \text { as } x \rightarrow \infty . \tag{15}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
\frac{\ln \sqrt{2 \pi}+O(1 / x)-c+f_{a, b, c}(\tau)}{\ln x} \rightarrow 0, \quad \text { as } x \rightarrow \infty \tag{16}
\end{equation*}
$$

Then from (15) we have

$$
\begin{equation*}
b-a \geq \frac{1}{2} . \tag{17}
\end{equation*}
$$

Combining (13) and (17) gives

$$
\begin{equation*}
b-a=\frac{1}{2} . \tag{18}
\end{equation*}
$$

From (8), (10), and (18), we obtain

$$
\begin{equation*}
c-\ln \sqrt{2 \pi} \geq O\left(\frac{1}{x}\right), \quad \text { as } x \rightarrow \infty \tag{19}
\end{equation*}
$$

Since

$$
\begin{equation*}
O\left(\frac{1}{x}\right) \rightarrow 0, \quad \text { as } x \rightarrow \infty, \tag{20}
\end{equation*}
$$

from (19) we have

$$
\begin{equation*}
c \geq \ln \sqrt{2 \pi} \tag{21}
\end{equation*}
$$

We note that

$$
\begin{equation*}
f_{a, b, c}(x)=\ln g_{b-a, b}(x)+c \tag{22}
\end{equation*}
$$

If

$$
f_{a, b, c} \in C M\left(\mathbb{R}^{+}\right)
$$

we can verify that

$$
g_{b-a, b} \in L C M\left(\mathbb{R}^{+}\right)
$$

By Lemma 1, if

$$
b>\frac{1}{2},
$$

then

$$
\begin{equation*}
b-a \geq b>\frac{1}{2} \tag{23}
\end{equation*}
$$

which contradicts (18); if

$$
b=0
$$

by Lemma 1, we get

$$
\begin{equation*}
b-a \geq 1 \tag{24}
\end{equation*}
$$

which is another contradiction to (18). So we have proved that

$$
\begin{equation*}
0<b \leq \frac{1}{2} \tag{25}
\end{equation*}
$$

The proof of Theorem 1 is thus completed.

Proof of Corollary 1 This follows from (2) and (3).
The proof of Corollary 1 is completed.

Proof of Theorem 2 By Theorem 1, the condition is necessary.
On the other hand, by Lemma 2, we see that

$$
g_{b-a, b} \in L C M\left(\mathbb{R}^{+}\right) .
$$

Then from (22), we have, for $n \in \mathbb{N}$,

$$
\begin{equation*}
(-1)^{n} f_{a, b, c}^{(n)}(x) \geq 0, \quad x \in \mathbb{R}^{+} . \tag{26}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
f_{a, b, c}^{\prime}(x) \leq 0, \quad x \in \mathbb{R}^{+} . \tag{27}
\end{equation*}
$$

Hence $f_{a, b, c}(x)$ is decreasing on \mathbb{R}^{+}.
By (9),

$$
\begin{equation*}
f_{a, b, c}(x)=\left(\frac{1}{2}-b+a\right) \ln x+c-\ln \sqrt{2 \pi}+O\left(\frac{1}{x}\right), \quad \text { as } x \rightarrow \infty . \tag{28}
\end{equation*}
$$

If

$$
b-a=\frac{1}{2}
$$

and

$$
c \geq \ln \sqrt{2 \pi}
$$

from (28), we obtain

$$
\begin{equation*}
\lim _{x \rightarrow \infty} f_{a, b, c}(x)=c-\ln \sqrt{2 \pi} \geq 0 \tag{29}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
f_{a, b, c}(x) \geq \lim _{x \rightarrow \infty} f_{a, b, c}(x) \geq 0, \quad x \in \mathbb{R}^{+} \tag{30}
\end{equation*}
$$

which means that (26) is also valid for $n=0$. Hence we have proved that

$$
f_{a, b, c} \in C M\left(\mathbb{R}^{+}\right)
$$

The proof of Theorem 2 is hence completed.

Competing interests

The author declares that he has no competing interests.

Acknowledgements

The author thanks the editor and the referees for their valuable suggestions to improve the quality of this paper.
Received: 3 November 2014 Accepted: 17 December 2014 Published online: 13 January 2015

References

1. Bernstein, S: Sur la définition et les propriétés des fonctions analytiques d? une variable réelle. Math. Ann.75, 449-468 (1914)
2. Bernstein, S : Sur les fonctions absolument monotones. Acta Math. 51, 1-66 (1928)
3. Atanassov, RD, Tsoukrovski, UV: Some properties of a class of logarithmically completely monotonic functions. C. R. Acad. Bulgare Sci. 41, 21-23 (1988)
4. Horn, RA: On infinitely divisible matrices, kernels, and functions. Z. Wahrscheinlichkeitstheor. Verw. Geb. 8, 219-230 (1967)
5. Guo, B-N, Qi, F: A class of completely monotonic functions involving divided differences of the psi and tri-gamma functions and some applications. J. Korean Math. Soc. 48, 655-667 (2011)
6. Guo, S: A class of logarithmically completely monotonic functions and their applications. J. Appl. Math. 2014, 757462 (2014)
7. Guo, S: Logarithmically completely monotonic functions and applications. Appl. Math. Comput. 221, 169-176 (2013)
8. Guo, S: Some properties of completely monotonic sequences and related interpolation. Appl. Math. Comput. 219, 4958-4962 (2013)
9. Guo, S, Laforgia, A, Batir, N, Luo, Q-M: Completely monotonic and related functions: their applications. J. Appl. Math. 2014, 768516 (2014)
10. Guo, S, Qi, F: A class of logarithmically completely monotonic functions associated with the gamma function. J. Comput. Appl. Math. 224, 127-132 (2009)
11. Guo, S, Qi, F, Srivastava, HM: A class of logarithmically completely monotonic functions related to the gamma function with applications. Integral Transforms Spec. Funct. 23, 557-566 (2012)
12. Guo, S, Qi, F, Srivastava, HM: Supplements to a class of logarithmically completely monotonic functions associated with the gamma function. Appl. Math. Comput. 197, 768-774 (2008)
13. Guo, S, Qi, F, Srivastava, HM: Necessary and sufficient conditions for two classes of functions to be logarithmically completely monotonic. Integral Transforms Spec. Funct. 18, 819-826 (2007)
14. Guo, S, Srivastava, HM: A certain function class related to the class of logarithmically completely monotonic functions. Math. Comput. Model. 49, 2073-2079 (2009)
15. Guo, S, Srivastava, HM: A class of logarithmically completely monotonic functions. Appl. Math. Lett. 21, 1134-1141 (2008)
16. Guo, S, Srivastava, HM, Batir, N: A certain class of completely monotonic sequences. Adv. Differ. Equ. 2013, 294 (2013)
17. Guo, S, Srivastava, HM, Cheung, WS: Some properties of functions related to certain classes of completely monotonic functions and logarithmically completely monotonic functions. Filomat 28, 821-828 (2014)
18. Krasniqi, VB, Srivastava, HM, Dragomir, SS: Some complete monotonicity properties for the (p, q)-gamma function. Appl. Math. Comput. 219, 10538-10547 (2013)
19. Mortici, C: Completely monotone functions and the Wallis ratio. Appl. Math. Lett. 25, 717-722 (2012)
20. Qi, F, Luo, Q-M: Bounds for the ratio of two gamma functions - from Wendel?s and related inequalities to logarithmically completely monotonic functions. Banach J. Math. Anal. 6, 132-158 (2012)
21. Qi, F, Luo, Q-M, Guo, B-N: Complete monotonicity of a function involving the divided difference of digamma functions. Sci. China Math. 56, 2315-2325 (2013)
22. Salem, A: An infinite class of completely monotonic functions involving the q-gamma function. J. Math. Anal. Appl. 406, 392-399 (2013)
23. Salem, A: A completely monotonic function involving q-gamma and q-digamma functions. J. Approx. Theory 164, 971-980 (2012)
24. Sevli, H, Batir, N: Complete monotonicity results for some functions involving the gamma and polygamma functions. Math. Comput. Model. 53, 1771-1775 (2011)
25. Shemyakova, E, Khashin, SI, Jeffrey, DJ: A conjecture concerning a completely monotonic function. Comput. Math. Appl. 60, 1360-1363 (2010)
26. Wei, C-F, Guo, B-N: Complete monotonicity of functions connected with the exponential function and derivatives. Abstr. Appl. Anal. 2014, 851213 (2014)
27. Yang, S: Absolutely (completely) monotonic functions and Jordan-type inequalities. Appl. Math. Lett. 25, 571-574 (2012)
28. Srivastava, HM, Guo, S, Qi, F: Some properties of a class of functions related to completely monotonic functions. Comput. Math. Appl. 64, 1649-1654 (2012)
29. Erdélyi, A (ed.): Higher Transcendental Functions, vol. 1. McGraw-Hill, New York (1953)

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

[^0]: © 2015 Guo; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

