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Abstract
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condition for a class of functions to be completely monotonic.
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1 Introduction and main results
Recall [] that a function f is said to be completely monotonic on

R
+ := (,∞)

if f has derivatives of all orders on R
+ and for all n ∈N := N∪ {}

(–)nf (n)(x) ≥ , x ∈R
+.

Here and throughout the paper,N is the set of all positive integers. The set of all completely
monotonic functions on R

+ is denoted by CM(R+).
Bernstein [] proved that a function f on the interval R+ is completely monotonic if and

only if there exists an increasing function α(t) on [,∞) such that

f (x) =
∫ ∞


e–xt dα(t).

Also recall [] that a positive function f is said to be logarithmically completely mono-
tonic on R

+ if f has derivatives of all orders on R
+ and for all n ∈N

(–)n[ln f (x)
](n) ≥ , x ∈R

+.

The class of all logarithmically completely monotonic functions on R
+ is denoted by

LCM(R+).
It was proved [] that a logarithmically completely monotonic function is also com-

pletely monotonic.
There is a rich literature on completely monotonic, logarithmically completely mono-

tonic functions and their applications. For more recent work, see, for example, [–].
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The Euler gamma function is defined and denoted for Re z >  by

�(z) :=
∫ ∞


tz–e–t dt.

The logarithmic derivative of �(z), denoted by

ψ(z) :=
�′(z)
�(z)

,

is called the psi or digamma function, and the ψ (k) for k ∈ N are called the polygamma
functions.

In this article, we give two necessary conditions and a necessary and sufficient condition
for a class of functions

fa,b,c(x) := (x + a) ln x – x – ln�(x + b) + c, x ∈R
+, ()

where a, c ∈ R, b ≥  are parameters, to be completely monotonic. The main results are
as follows.

Theorem  A necessary condition for the function fa,b,c(x) to be completely monotonic on
the interval (,∞) is that

b – a =



, ()

 < b ≤ 


, ()

and

c ≥ ln
√

π . ()

Corollary  A necessary condition for the function fa,b,c(x) to be completely monotonic on
the interval (,∞) is that

–



< a ≤ . ()

Theorem  For

b ∈
[




–
√




,



]
,

a necessary and sufficient condition for the function fa,b,c(x) to be completely monotonic on
the interval (,∞) is that

b – a =



()

and

c ≥ ln
√

π . ()
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2 Lemmas
We need the following lemmas to prove our main results.

Let the α be real parameters, β a non-negative parameter. Define

gα,β (x) :=
xx+β–α

ex�(x + β)
, x ∈R

+.

Lemma  (see []) If

gα,β ∈ LCM
(
R

+)
,

then either

β >  and α ≥ max

{
β ,




}

or

β =  and α ≥ .

Lemma  (see []) Let

β ∈
[




–
√




,



]
.

If

α ≥ 


,

then

gα,β ∈ LCM
(
R

+)
.

3 Proof of the main results
Proof of Theorem  If

fa,b,c ∈ CM
(
R

+)
,

then

fa,b,c(x) ≥ , x ∈ R
+, ()

and fa,b,c(x) is decreasing on R
+.

It is well known that (see [, p.])

ln�(x + β) =
(

x + β –



)
ln x – x +

ln(π )


+ O
(


x

)
, as x → ∞. ()
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Hence

fa,b,c(x) =
(




– b + a
)

ln x – ln
√

π + c + O
(


x

)
, as x → ∞. ()

From () and (), we get




– b + a ≥ ln
√

π – c + O(/x)
ln x

, as x → ∞. ()

Since

ln
√

π – c + O(/x)
ln x

→ , as x → ∞, ()

from () we have

b – a ≤ 


. ()

On the other hand, since fa,b,c(x) is decreasing on R
+, from (), we obtain

(



– b + a
)

ln x – ln
√

π + c + O
(


x

)
≤ fa,b,c(τ ), as x → ∞, ()

where, in (), τ is a fixed number in R
+.

Equation () is equivalent to




– b + a ≤ ln
√

π + O(/x) – c + fa,b,c(τ )
ln x

, as x → ∞. ()

It is easy to see that

ln
√

π + O(/x) – c + fa,b,c(τ )
ln x

→ , as x → ∞. ()

Then from () we have

b – a ≥ 


. ()

Combining () and () gives

b – a =



. ()

From (), (), and (), we obtain

c – ln
√

π ≥ O
(


x

)
, as x → ∞. ()

Since

O
(


x

)
→ , as x → ∞, ()
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from () we have

c ≥ ln
√

π . ()

We note that

fa,b,c(x) = ln gb–a,b(x) + c. ()

If

fa,b,c ∈ CM
(
R

+)
,

we can verify that

gb–a,b ∈ LCM
(
R

+)
.

By Lemma , if

b >



,

then

b – a ≥ b >



, ()

which contradicts (); if

b = ,

by Lemma , we get

b – a ≥ , ()

which is another contradiction to (). So we have proved that

 < b ≤ 


. ()

The proof of Theorem  is thus completed. �

Proof of Corollary  This follows from () and ().
The proof of Corollary  is completed. �

Proof of Theorem  By Theorem , the condition is necessary.
On the other hand, by Lemma , we see that

gb–a,b ∈ LCM
(
R

+)
.
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Then from (), we have, for n ∈N,

(–)nf (n)
a,b,c(x) ≥ , x ∈R

+. ()

In particular,

f ′
a,b,c(x) ≤ , x ∈ R

+. ()

Hence fa,b,c(x) is decreasing on R
+.

By (),

fa,b,c(x) =
(




– b + a
)

ln x + c – ln
√

π + O
(


x

)
, as x → ∞. ()

If

b – a =



and

c ≥ ln
√

π ,

from (), we obtain

lim
x→∞ fa,b,c(x) = c – ln

√
π ≥ . ()

Therefore

fa,b,c(x) ≥ lim
x→∞ fa,b,c(x) ≥ , x ∈R

+, ()

which means that () is also valid for n = . Hence we have proved that

fa,b,c ∈ CM
(
R

+)
.

The proof of Theorem  is hence completed. �
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