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Abstract

It is known that the error rate can be used as a measure of reliability and security over the wire-tap channel when
practical, finite length codes are used for transmission, and the security gap is an error rate based metric able to jointly
treat these two aspects. In this paper, we consider several low-density parity-check (LDPC) coded transmissions,
which represent the state of the art for transmissions over the wire-tap channel and we assess and compare their
security gap performance. We consider two kinds of wire-tap channels: the flat and the fast fading wire-tap channels
with additive white Gaussian noise. As a reference, we use the progressive edge growth (PEG) algorithm for the
design of unstructured LDPC codes and compare its performance with that of four approaches for designing
structured LDPC codes. We analyze both systematic and non-systematic transmissions and show that some
structured code design techniques are able to achieve comparable or even better performance than the PEG
algorithm over the considered channels, while taking advantage of their simpler encoding and decoding procedures.
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1 Introduction
Physical layer security (PLS) is a breakthrough in com-
munications security paradigms, since it allows to achieve
secure transmissions without the need of any form of
pre-shared secret within the group of legitimate users. A
first level of security, in fact, can be achieved through
the physical layer, only exploiting the difference between
the channels of legitimate receivers and those of potential
eavesdroppers. Such a security level may suffice by itself
or, more frequently, may constitute a basis for higher layer
cryptographic protocols.
This setting is well represented by the simple wire-

tap channel model [1], in which there is a transmitter
(Alice) sending some confidential information to a legit-
imate receiver (Bob), in the presence of an eavesdropper
(Eve). The transmission technique used by Alice is per-
fectly known by both Bob and Eve. However, the channel
between Alice and Bob is inherently different from the
channel between Alice and Eve; hence, only based on
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this difference, there is the expectation that the informa-
tion sent from Alice to Bob is not successfully retrieved
by Bob.
In this paper, we focus on the Gaussian wire-tap channel

model, for which transmission security can be achieved
only when Bob’s channel has a higher signal-to-noise ratio
(SNR) than Eve’s channel [2]. As a metric for PLS, we use a
parameter which allows for a straightforward assessment
and comparison of practical transmission schemes, based
on the error rate achieved by Bob and Eve. This parame-
ter is the so-called security gap, first introduced in [3]. It is
defined as the quality ratio between Bob’s and Eve’s chan-
nels that is required to achieve a sufficient level of PLS,
while ensuring that Bob reliably receives the transmitted
information. An analytical definition of the security gap
will be given in Section 2.
It must be said that other performance metrics exist and

are also often used for assessing transmissions over this
kind of channels. However, the error rate and the security
gap have the advantage to depend on all the characteristics
of the code used for transmission. Therefore, they allow
to assess each specific code and compare its performance
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with others (for example, having exactly the same param-
eters, but designed with a different technique). Among
the other metrics, an important role is played by informa-
tion theoretic tools, which allow to estimate themaximum
amount of secret information that can travel from Alice
to Bob. This way, the ultimate capacity limits can be
computed (see, for example, [4, 5]). However, finding prac-
tical transmission techniques which are actually able to
approach these bounds is still an open challenge. Another
very useful security metric is the eavesdropper’s equivo-
cation rate on the secret message [6, 7]. The error rate,
however, provides a more direct metric also in practical
experiments [8] and is more suited for the comparison
between different coding schemes, which is the main
target of this paper.
The security gap measures the possibility to have reli-

able and secure transmissions even with a small degrada-
tion of Eve’s channel with respect to Bob’s channel. If this
occurs, the security gap is small, that is, close to 1. On the
contrary, if the security gap is large, that is, much greater
than 1, a great difference between Bob’s and Eve’s channels
is required, which is, obviously, a less favorable operation
condition.
Figure 1 provides a pictorial representation of two cases

in which the security gap is large (a) and small (b), respec-
tively. In the figure, we consider the presence of Alice
(A), Bob (B), and two eavesdroppers (E1 and E2). The
inner region (green) defines the zone where Bob should
stand in order to enjoy a sufficiently low error rate. The
outer region (red) instead is the zone where eavesdrop-
pers should be, since their error rate is sufficiently high
to ensure security. The critical region is the intermediate
one (grey), where a legitimate receiver cannot stand, since
its error rate would be too high, while a wiretapper—like

E1 in Fig. 1a—can eavesdrop a non-negligible amount
of information, as its error rate is not sufficiently high.
Therefore, such an area is useless for the purposes of
transmission, and the security gap gives a measure of its
extension. When the security gap is small, the grey area is
small as well, and the transition from the region reserved
to legitimate receivers to the region where eavesdroppers
should stay becomes sharper.
In this paper, the security gap is first computed in the

presence of thermal noise only, that is, over the flat addi-
tive white Gaussian noise (AWGN) channel and then
also in the presence of fast fading (FF). We focus on
state-of-the-art low-density parity-check (LDPC) codes,
which are capacity-achieving codes under belief propaga-
tion (BP) iterative decoding [9], and have been shown to
achieve astonishing performance over the wire-tap chan-
nel as well [4]. However, previous works in this line of
research have mostly been focused on flat AWGN chan-
nels. In [3, 10, 11], it has been shown that an effective
way of reducing the security gap consists in using punc-
tured LDPC codes over these channels. On the other
hand, the use of punctured codes brings the disadvan-
tage of an increase in the power consumption. In some
of our previous papers [12–14], we have demonstrated
that similar, and even larger, reductions in the security
gap can be achieved by using scrambled transmissions,
and with considerable power saving with respect to punc-
tured codes. A similar approach can also be used in
the context of IEEE 802.11 wireless networks, where less
powerful convolutional codes are used in the place of
LDPC codes [15]. More recently, the same strategies have
also been extended to the Rayleigh fading channel [16]
and to the broadcast channel with confidential messages
[17, 18].

Fig. 1 Effect of large (a) and small (b) security gaps
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In this paper, we address the problem of choosing an
LDPC code design technique with the aim of reduc-
ing the security gap over flat and FF wire-tap channels.
For this purpose, we consider some different LDPC code
construction techniques and assess their performance in
such a framework. We evaluate the security gap, through
numerical simulations, for each of the considered code
design techniques. Information scrambling can contribute
to reduce the security gap; thus, we extend the compar-
ative analysis in the presence of such an option, applied
to single frames or even to multiple concatenated frames.
At the transmitter, scrambling permits to realize non-
systematic coding, which is an essential prerequisite for
security (also puncturing achieves the same result, but in
a different manner). At the receiver, the corresponding
descrambler, necessary to re-obtain the information vec-
tor, allows to increase the number of residual errors out-
going Eve’s decoder. In particular, scrambling is defined
perfect when even a single error at the descrambler input
produces about half of the information bits in error at the
output and with randomly distributed error positions. In
our previous papers [14, 15], we have verified that perfect
scrambling is rather easy to approach in practice.
In this work, we provide clear indications about the

code design techniques which are preferable to use for
reducing the security gap when systematic or scrambled
transmissions are implemented. As already mentioned,
alternatively to scrambling, we could use puncturing to
achieve non-systematic coding and repeat the same com-
parative assessment, although we do not expect that dif-
ferent conclusions would result. A preliminary version of
this analysis was presented in [19] where, however, only
flat Gaussian wire-tap channels were considered.
The organization of the paper is as follows. In Section 2,

we introduce the channel models and the basic notation
and definitions. In Section 3, we describe the LDPC code
design techniques that we consider, whose performance is
assessed in Section 4 for the wire-tap channel models of
interest. Finally, Section 5 concludes the paper.

2 Systemmodel and notation
In the wire-tap channel model that we consider, Alice
wishes to send a secret 1 × k binary information vector
u to Bob. For this purpose, she encodes u into a 1 × n
binary codeword c, with n > k, and transmits it over the
channel. In the following, we assume that transmission
employs binary phase shift keying (BPSK) modulation.
The codeword c is received by Bob and Eve through two
different channels, corrupted by AWGN with different
noise variance.
Two kinds of channel are considered in this paper: the

first one is a flat AWGN channel, where only thermal
noise is present, and the second one is an FF chan-
nel corrupted by AWGN, where each transmitted bit

experiences a different channel gain, in addition to ther-
mal noise.
Both these scenarios are covered by the model reported

in Fig. 2, where wB and wE represent AWGN samples.
For the flat AWGN channel, the coefficients hB and hE
are constant and equal to 1. Hence, the SNR per bit,
noted by γ in the following, is simply given by the ratio
Eb/N0 between the energy per bit and the one-side power
spectral density of the thermal noise.
For the FF channel, instead, hB and hE represent the fad-

ing coefficients for Bob’s and Eve’s channels, respectively,
which are Rayleigh distributed.
More precisely, the real and imaginary parts of hB and hE

are Gaussian random variables with mean 0 and variance
1/2; hence, the squaredmodulus of hB and hE is chi-square
distributed. The thermal noise is present also in this case.
It follows that the SNR per bit (which has to be special-
ized for Bob and Eve, but we omit the subscripts B and E
for the sake of simplicity), γ = |h|2Eb/N0, is chi-square
distributed as well, with probability density function:

p�(γ ) = 1
γ
e−γ /γ , γ ≥ 0, (1)

where γ = Eb/N0 is the mean value.
Contrary to the flat AWGN channel, where the bit error

rate (BER) is fixed for a given SNR, for the FF channel, the
bit error rate is a random variable as well, with a mean
value

Pb =
∫ ∞

0
Q

(√
2γ

)
p�(γ )dγ = 1

2

[
1 −

√
γ

1 + γ

]
(2)

where Q(x) = 1√
2π

∫ ∞
x e−t2/2dt is the complemen-

tary distribution function of the zero-mean, unit-variance
Gaussian distribution.
Equation (2) refers to the case of the absence of coding.

If an error correcting code with rate R = k/n is applied,
the argument of the function Q(.) must be replaced with√
2γR and Pb has the meaning of mean channel bit error

rate, while the BER at the decoder output must be com-
puted by taking into account the effect of the decoding
algorithm.

Fig. 2Wire-tap channel model
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Since we assume that Alice sends messages divided into
frames of n bits each, we can get an estimate of the mean
frame error rate (FER) as

Pf = 1 − (
1 − Pb

)n . (3)

In the presence of coding, the previous considerations
on Pb apply and the FER is evaluated at the decoder
output.
For both the flat and the FF channels, the security gap

Sg can be formally defined as follows. Let us fix two suit-
able thresholds for Bob’s and Eve’s FER, named PBf

∣∣∣
th
and

PEf
∣∣∣
th
, respectively. In order to have reliability, we impose

that Bob’s mean FER is ≤ PBf
∣∣∣
th
; dually, in order to have

security, we impose that Eve’s mean FER is ≥ PEf
∣∣∣
th
. On

the other hand, taking into account the error rate depen-
dence on the SNR, the same conditions can be translated
in terms of the channel quality by imposing γB ≥ γB|th
and γE ≤ γE|th, where γB|th and γE|th are the SNR values
corresponding to PBf

∣∣∣
th
and PEf

∣∣∣
th
, respectively, and γB and

γE are the mean SNRs for Bob and Eve, respectively.
The security gap is defined as

Sg = γB|th
γE|th

. (4)

According to this definition, it is evident that Sg , that is
always greater than 1, should be kept as close to 1 as pos-
sible, in such a way that the reliability and security targets
are reached even with a small degradation of Eve’s channel
quality with respect to Bob’s.
An example of Sg computation is shown in Fig. 3, where

the SNR is expressed in dB (which justifies the difference
in place of the ratio). Based on its definition, it is clear

Fig. 3 Pictorial representation of the security gap

that the security gap depends on the steepness of the FER
curve: the steeper the slope, the smaller the security gap.
It is also evident that Sg can be equally determined after

having fixed the threshold values PBb
∣∣
th and PEb

∣∣
th on the

BER instead of the FER. Actually, this is the choice that will
be done in Section 4, which is devoted to the presentation
of the numerical results.
The value of Sg clearly depends on the decoder used

by Bob and Eve, respectively. Since we focus on LDPC
codes, it is natural to consider BP iterative decoding,
which ensures near-optimum performance with limited
complexity. Hence, we assume that both Bob and Eve use
the BP decoder.
As mentioned above, an important target from the PLS

standpoint is to keep the security gap as small as possible.
Since systematic transmission yields large security gaps,
in [3, 10, 11], the use of punctured codes is proposed, by
associating the secret bits to punctured bits. As shown in
[12–14], an alternative solution is to scramble the infor-
mation bits prior to encoding them. This approach allows
achieving similar or even better reductions in the security
gap than puncturing; moreover, a smaller signal power is
required to achieve Bob’s reliability target.
Scrambling can be applied to single frames. Better per-

formance, however, can be achieved when L information
vectors (L > 1) are concatenated together and then multi-
plied by a kL × kL non-singular scrambling matrix. Then,
the resulting vector is divided again into L subvectors,
which are individually encoded and transmitted. At the
receiver side, after having received the corresponding L
codewords, and having exploited the channel code to cor-
rect the errors affecting them, the received information
vectors are concatenated again and descrambled together
through the inverse scrambling matrix. This way, the mes-
sage transmitted by Alice is recovered only if all the errors
affecting the L vectors have been corrected. Otherwise,
during descrambling, a single residual bit error can be
spread over all L vectors, thus causing maximum uncer-
tainty. Hence, only Bob, who is very likely able to correct
all the errors induced by the channel, can recover the
message transmitted by Alice, while Eve suffers a BER
close to 0.5.
As we have shown in [12–14], when the scrambling

matrix is a random dense matrix, it is able to approach
the effect of a perfect scrambler, which increases and
spreads ideally (i.e., with maximum uncertainty) the resid-
ual errors over the received vectors. In this case, the BER
equals half the FER, since a frame which is received in
error corresponds to an error rate approximately equal to
0.5 on its bits, after descrambling. This effect is further
emphasized when L > 1, since, in this case, a single frame
received in error within a block of L frames implies that all
the L frames are in error after descrambling. Despite the
condition of a BER equal to 0.5 coincides with achieving
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the maximum uncertainty for Eve, it must be observed
that the error positions after descrambling are not inde-
pendent and identically distributed (i.i.d.). Therefore, we
cannot state that this system achieves perfect secrecy [1],
since a BER equal to 0.5 does not coincide with maximum
entropy at Eve’s (as it would occur in the case of i.i.d. error
positions).

3 LDPC code construction techniques
In this section, we describe five LDPC code design tech-
niques which we consider for assessing their performance
in terms of security gap over the considered wire-tap
channels.
We use as a benchmark the progressive edge

growth (PEG) code design technique [20], which is
a well-consolidated solution for designing very good
unstructured LDPC codes. The PEG technique aims at
maximizing the length of the local cycles in the Tanner
graph associated with an LDPC code. This allows to
achieve very good performance under BP decoding,
which is strongly influenced by the Tanner graph proper-
ties. On the other hand, LDPC codes designed through
the PEG algorithm have parity-check matrices without
any inner structure, which may be responsible for a
significant complexity when encoding and decoding are
implemented in hardware.
For this reason, several techniques have been pro-

posed in the literature to design codes having structured
parity-check matrices, which facilitate the hardware and
even software implementation. We consider four differ-
ent methods to design structured LDPC codes and assess
their security gap performance in comparison with that
achieved through the PEG algorithm. These techniques
are briefly reminded next.

3.1 Quasi-cyclic codes
Quasi-cyclic (QC) LDPC codes are a class of codes able to
join the excellent performance of LDPC iterative decod-
ing with the low complexity encoding which characterizes
QC codes. In fact, QC codes have the desirable property
of being encodable through simple barrel shift registers,
which have complexity increasing in the code redundancy.
We remind that a code is QC if a shift of a codeword
by n0 positions yields another (or the same) codeword. A
cyclic code is a special case of QC code (corresponding to
n0 = 1).
QC-LDPC codes have structured generator and parity-

check matrices, formed by circulant blocks. Several ways
of designing QC-LDPC codes are known in the litera-
ture. Two main classes are those using cyclic permutation
matrices, like array LDPC codes [21], and those using
general sparse circulant matrices [22].
The latter, in particular, contain a class of very sim-

ple codes which are able to achieve good performance,

especially at high code rate. They are characterized by a
parity-checkmatrix in the form of a single row of circulant
blocks [23]:

H = [
H0|H1| . . . |Hn0−1

]
, (5)

where Hi, i = 0, 1, . . . , n0 − 1 is an r × r circulant matrix,
being r the number of redundancy bits. We consider QC-
LDPC codes having a parity-check matrix in the form (5),
with constant column weight equal to dv. In this case, it
can easily be shown that the code minimum distance is

≤ 2dv and the correspondingmultiplicity is≈
(
n0
2

)
[22].

3.2 Serially concatenated codes
Another powerful, though simple, class of structured
LDPC codes is represented by multiple serially con-
catenated multiple parity-check (M-SC-MPC) codes [24].
These codes exploit the serial concatenation of very sim-
ple components, similarly to what is proposed in [25],
where single parity-check component codes are used.
By employing different component codes, which how-
ever remain very simple, M-SC-MPC codes are described
through sparse parity-check matrices which ensure good
performance under BP decoding.
As shown in Fig. 4, an M-SC-MPC code is obtained

as the serial concatenation of M component codes, each
with ki information bits and ri redundancy bits, with
i = 1, 2, . . . ,M. The serial concatenation is systematic;
hence, each component code appends its ri redundancy
bits to the input codeword. The i-th component MPC
code computes its j-th redundancy bit, with j = 1, . . . , ri,
as the EX-OR of the codeword bits whose indexes are
smaller than j by an integer multiple of ri. It follows from
its definition that an M-SC-MPC code has a lower trian-
gular parity-check matrix with a simple inner structure.
An example of such structure is given in Fig. 5, for a code
with M = 3. The black diagonals denote symbols 1, while
the other symbols are 0. The structured nature of M-SC-
MPC codes makes their encoding very easy [24], and also,
the implementation of LDPC decoders may benefit by the
form of their parity-check matrix.

3.3 Interleaved product LDPC codes
It is known that a special structure of LDPC code can be
obtained in the form of a bi-dimensional product code
using two smaller LDPC codes as components [26, 27].

Fig. 4M-SC-MPC encoder
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Fig. 5 Parity-check matrix of an M-SC-MPC code withM = 3

Noting by da and db, respectively, the minimum dis-
tances of the two component codes, a distinctive feature of
the product code is the “multiplicative property”, by virtue
of which the minimum distance dp of the product code
can be obtained as dp = dadb.
However, the codes obtained rarely exhibit good per-

formance under BP decoding due to the very regular
structure of their Tanner graph. This drawback can be
overcome by introducing an interleaver between the two
component codes [28]. Interleaving is crucial in the design
of turbo codes, and it is also exploited in the design of
turbo product codes [29]. In particular, we are interested
in the use of column interleavers that are able to pre-
serve the multiplicative property. This result is achieved
by interleaving only one of the two component codes.
In other terms, a column interleaver only permutes the
elements within each row of the encoding matrix. Since
the interleaver acts after row encoding, the effect of
the row component code is unaltered and, before col-
umn encoding, at least da columns contain a symbol
1. It follows that the code minimum distance remains
dp = dadb.
A further benefit of interleaving is that it also helps

in reducing the number of minimum weight codewords
[28]. As a counterpart, the use of an interleaver produces
a slight increase in the complexity that however remains
limited because of the very simple encoding procedure
which is typical of product codes.

3.4 Progressive differences convolutional LDPC codes
Recently, an increasing interest has been devoted to LDPC
convolutional codes, which are able to join the advantages
of convolutional codes with the very good performance of
LDPC codes. In particular, convolutional codes have the
advantage to be encodable through very simple circuits
and to allow decoding based on a sliding window, which

does not need the whole stream to be received before
starting to decode it.
A particularly interesting class of LDPC convolutional

codes is that of time-invariant codes, which are able to
achieve very good performance with limited complexity
[30]. In this paper, we focus on the technique we have
proposed in [31], which is able to design codes, named
progressive difference convolutional low-density parity-
check (PDC-LDPC) codes that are characterized by a very
small constraint length (that is, a relatively small number
of memory elements in the encoder shift registers). This
permits us to design even rather short convolutional codes
and to easily terminate them without incurring significant
losses in the code rate.
PDC-LDPC codes are based on ordered sets of pro-

gressive differences as separations between symbols 1 in
their parity-check matrix columns and exhibit the impor-
tant features to have, by construction, known minimum
distance (independently of the rate) and Tanner graphs
without cycles.

4 Security gap assessment
In order to assess the performance of the considered
LDPC code design techniques from the PLS standpoint,
we have used them to design five LDPC codes having fixed
code length and rate, and we have estimated their secu-
rity gap through numerical simulations. All the considered
codes have length n = 1024 and nominal rate R = 3/4 (as
specified below, the rate is slightly different for the inter-
leaved product code). The first code is a reference LDPC
code designed through the PEG algorithm, having con-
stant variable node degree equal to 5. The second code is
a QC-LDPC code with a parity-check matrix in the form
(5): it consists of four 256× 256 circulant matrices having
row and column weight equal to 5. It has been designed
through the random difference families technique [32],
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which ensures that there are no short cycles in the associ-
ated Tanner graph. The third code is an M-SC-MPC code
having M = 5 component MPC codes, with r1 = 45,
r2 = 47, r3 = 52, r4 = 53, and r5 = 59. The fourth code
is an interleaved product code having, as components, a
(n1 = 64, k1 = 51) PEG code and a (n2 = 16, k2 = 15) sin-
gle parity-check code. In this case, the code rate is 0.747,
that is, slightly lower than 3/4. Moreover, the resulting
parity-check matrix column weight is smaller than for the
other codes due to the constraints imposed by the prod-
uct code structure. In fact, the mean column weight is
2.71, while it is about 5 for the other codes. The last code
is a PDC-LDPC code with parity-check matrix column
weight 5.We have used a tail-biting termination to comply
with the fixed code length and code rate.
The log-likelihood ratio sum product algorithm (LLR-

SPA) with floating-point variables [33] is used for LDPC
decoding of all the considered schemes. This choice
ensures in fact a minor influence of finite precision prob-
lems with respect to belief propagation iterative decoding
algorithms. According to the channel models in Section 2,
the symbol received upon transmission of a symbol x is
obtained as y = hx + w (see Fig. 2), where h is the Rayleigh
distributed channel gain experienced at the correspond-
ing symbol time and w is a thermal noise sample. For the
BPSK modulation, here considered, the corresponding a
priori LLR is computed as M(y) = 4yγR [13]. The values
ofM(y) for each received symbol are the starting point for
the LLR-SPA iterative decoding algorithm.
We assume that the receiver is able to reconstruct

exactly the received signal phase, which is a necessary con-
dition to use phase shift keying modulation efficiently, but
it has not complete channel state information.
Hence, the a priori LLR is obtained by using the mean

SNR value γ = Eb/N0 and results in M(y) = 4yEs/N0,
where Es = EbR is the energy per channel symbol. It is
interesting to observe that M(y) is the same for both the
flat and the FF channels.

4.1 Performance over the flat AWGN channel
Figure 6 reports the BER performance achieved by the
designed codes, by using systematic transmission (i.e.,
without scrambling) over the flat AWGN channel. In
order to evaluate the security gap for the considered cod-
ing schemes, we fix PBb

∣∣
th = 10−5 and PEb

∣∣
th = 0.4

(these values are significant enough for practical applica-
tions) and determine the corresponding values of γB|th
and γE|th, from which the security gap is easily obtained
by using (4).
The results of such an evaluation are reported in Table 1.

We notice that using systematic transmission yields very
large security gaps. In fact, in order to achieve PEb

∣∣
th = 0.4,

all codes require γE|th = −13.6 dB, which is a very
low signal-to-noise ratio (this value is not covered by the

Fig. 6 BER performance with systematic transmission for codes with
n = 1024 and code rate R = 3/4 over the flat AWGN channel

abscissa range in Fig. 6 for better readability of the plots in
the region of low error rates). The resulting security gap is
in the order of 18 dB, and the smallest value (17.19 dB) is
achieved by the M-SC-MPC code.
It is interesting to notice that the value of the security

gap is determined, on one hand, by the slope of the error
rate curve in the waterfall region and, on the other hand,
by the slope of the same curve in the flat region. Indeed,
these two slopes correspond to quite different code behav-
iors, the former determining Bob’s performance and the
latter Eve’s performance. The flat region, in particular, is
critical, as to achieve PEb

∣∣
th = 0.4, as required, forces us to

consider very small values of γ .
The situation considerably improves by resorting to

scrambling: the BER performance for this case is reported
in Fig. 7. By assuming a perfect scrambler which acts on
each transmitted frame, the bit error rate is BER = FER/2.
A practical perfect scrambler can be approached through
a dense k × k scrambling matrix. As we can see from the
figure, the first and most important effect of scrambling
is to increase the flatness of the curve in its initial part.
As a consequence, γE|th is considerably increased, while

Table 1 Security gap with systematic transmission over the flat
AWGN channel

Code γE|th [dB] γB|th [dB] Sg [dB]

Int. product −13.6 4.81 18.41

PDC-LDPC −13.6 3.78 17.38

M-SC-MPC −13.6 3.59 17.19

QC-LDPC −13.6 3.78 17.38

PEG −13.6 3.78 17.38
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Fig. 7 BER performance with perfect scrambling for codes with
n = 1024 and code rate R = 3/4 over the flat AWGN channel

γB|th is only slightly increased (because the impact on the
waterfall region is much less relevant).
The corresponding SNR threshold values are reported

in Table 2, together with the security gap. We observe
that the use of scrambling allows reducing the security
gap down to some dBs, which means to accept a moderate
quality difference between Bob’s and Eve’s channels.
The best result in this case is achieved by the PEG code

that yields a security gap equal to 1.62 dB. The security gap
of the M-SC-MPC solution, however, is very close, with
the additional advantage to require an SNR for Bob that is
0.24 dB smaller than that required by the PEG code.
A further improvement can be achieved by concatenat-

ing L > 1 messages and scrambling them together. In
this case, again under the assumption of perfect scram-
bling, the relationship between the BER and the FER is as
follows:

BER = 1 − (1 − FER)L

2
. (6)

Figure 8 shows the performance achieved with L = 3
and a 3k × 3k perfect scrambler. As reported in Table 3,

Table 2 Security gap with perfect scrambling over the flat
AWGN channel

Code γE|th [dB] γB|th [dB] Sg [dB]

Int. product 2.27 6.74 4.47

PDC-LDPC 2.32 4.83 2.51

M-SC-MPC 2.17 3.80 1.63

QC-LDPC 2.44 4.10 1.66

PEG 2.42 4.04 1.62

Fig. 8 BER performance with perfect scrambling and L = 3 for codes
with n = 1024 and code rate R = 3/4 over the flat AWGN channel

the security gap is further reduced, with respect to the
values in Table 2, at the expense of some additional delay
due to frame concatenation. The best results are achieved
by the PEG and M-SC-MPC codes, with a security gap
Sg = 1.46 dB. As in Table 2, Bob’s SNR is smaller for the
M-SC-MPC code.

4.2 Performance over the fast fading channel
The discussion developed in Section 4.1 can be repeated
for the FF channel with AWGN, obtaining similar conclu-
sions. Details are reported next.
Figure 9 shows the BER performance in the case of a

systematic transmission, while Table 4 gives the relevant
numerical values. Also in this case, we fix PBb

∣∣
th = 10−5

and PEb
∣∣
th = 0.4 and obtain the corresponding values of

γB|th and γE|th, from which the security gap is computed
according to (4).
As expected, because of the presence of fast fading, the

security gap is now increased (see Table 1 for compari-
son). Moreover, as for the flat AWGN channel case, the
best performance is achieved by the M-SC-MPC code
(Sg = 21.4 dB).

Table 3 Security gap with perfect scrambling and L = 3 over the
flat AWGN channel

Code γE|th [dB] γB|th [dB] Sg [dB]

Int. product 2.75 7.00 4.25

PDC-LDPC 2.66 5.05 2.39

M-SC-MPC 2.46 3.92 1.46

QC-LDPC 2.68 4.19 1.51

PEG 2.67 4.13 1.46
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Fig. 9 BER performance with systematic transmission for codes with
n = 1024 and code rate R = 3/4 over the FF channel with AWGN

Similarly to the flat AWGN channel case, we can
improve the security gap performance by resorting to
scrambling. Figure 10 and Table 5 refer to the case of
perfect scrambling performed over a single frame, while
Fig. 11 and Table 6 consider the case of perfect scrambling
acting over multiple frames. In both scenarios, the secu-
rity gap value for the PEG, QC-LDPC, and M-SC-MPC
constructions are almost identical, but the M-SC-MPC
scheme has the advantage of requiring smaller SNRs. We
also observe that, similarly to the flat AWGN channel, the
Sg values obtained in the presence of FF are rather small
(the only exception is the interleaved product code).

4.3 Eve’s ideal performance and outage probability
In the analysis developed so far, we have made two
important assumptions on Eve: (i) that she uses the same
decoder as Bob and (ii) that we are interested only in
her average error rate. The first of these hypotheses may
appear weak from the security standpoint, since in PLS,
it is usually assumed that Eve does not suffer from limita-
tions in computing power; therefore, she should be able to
use the best decoder available. Also, the second hypoth-
esis may appear limiting, since even when performance

Table 4 Security gap with systematic transmission over the FF
channel with AWGN

Code γE|th [dB] γB|th [dB] Sg [dB]

Int. product −12.0 13.1 25.1

PDC-LDPC −12.0 9.8 21.8

M-SC-MPC −12.0 9.4 21.4

QC-LDPC −12.0 9.8 21.8

PEG −12.0 9.8 21.8

Fig. 10 BER performance with perfect scrambling for codes with
n = 1024 and code rate R = 3/4 over the FF channel with AWGN

over a fading channel is good in average terms, an outage
event may occur due to oscillations in the channel quality.
In this subsection, we remove these two assumptions and
show that, despite this, the results of the comparative
analysis among the considered code design techniques
do not change. Therefore, they can be considered of
general validity for the channel setting that is here of
interest.
For any code of given length and rate, the best per-

formance achievable under maximum likelihood (ML)
decoding in terms of FER is lower bounded by the well-
known sphere packing bound (SPB) [34], which is par-
ticularly tight to the ML decoder performance in the
region of high error rates. Therefore, we can use the
SPB to provide a conservative estimate of the perfor-
mance that Eve can achieve by using ML decoding over
a code with given length and rate. A similar approach
can also be followed for Bob by considering the well-
known union bound, which provides an upper bound
on performance under ML decoding, and is usually tight
in the regime of low error rates. However, in order to
compute the union bound (and its dominant term, in

Table 5 Security gap with perfect scrambling and L = 1 over the
FF channel with AWGN

Code γE|th [dB] γB|th [dB] Sg [dB]

Int. product 7.7 19.7 12.0

PDC-LDPC 6.9 12 5.1

M-SC-MPC 6.6 9.8 3.2

QC-LDPC 7.1 10.2 3.1

PEG 7.0 10.2 3.2
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Fig. 11 BER performance with perfect scrambling and L = 3 for codes
with n = 1024 and code rate R = 3/4 over the FF channel with AWGN

particular, which is known as the error floor term), we
need the knowledge of the weight spectrum of the code
(or, at least, of its minimum distance and the correspond-
ing multiplicity). This is usually unknown for the codes
here considered. Moreover, Bob’s performance does not
affect the security requirements; therefore, we focus on
Eve only.
For the case of a flat AWGN channel, the performance

estimated through the SPB is reported in Fig. 12, where
it is compared with the FER achieved by using the LLR-
SPA decoder over the considered codes. If we fix again
PEb

∣∣
th = 0.4 and consider perfect scrambling, we obtain

that Eve must have an SNR per bit ≤ γE|SPBth = 0.55 dB in
order to achieve the security target when she is provided
with an ideal decoder. The corresponding security gap val-
ues are reported in Table 7. By comparing themwith those
provided in Table 2, we observe that, by using the ideal
decoder, Eve achieves a gain slightly smaller than 2 dB
over classical LDPC decoding. This produces an increase
in the security gap of the same order. However, the results
of the comparative analysis among the several codes are
basically unchanged. In fact, the two code constructions

Table 6 Security gap with perfect scrambling and L = 3 over the
FF channel with AWGN

Code γE|th [dB] γB|th [dB] Sg [dB]

Int. product 8.9 20.5 11.6

PDC-LDPC 7.6 12.4 4.8

M-SC-MPC 7.3 10 2.7

QC-LDPC 7.7 10.4 2.7

PEG 7.7 10.4 2.7

Fig. 12 FER performance with systematic transmission for codes with
n = 1024 and code rate R = 3/4 over the flat AWGN channel and
comparison with Shannon’s sphere packing bound

which achieve the best performance in terms of security
gap are still the PEG and M-SC-MPC designs, while the
others are in the same relative positions. The only minor
difference is that the PEG code slightly outperformed the
M-SC-MPC code for the case of classical LDPC decod-
ing, while the opposite occurs when Eve uses the ideal
decoder.
In order to assess performance over the FF channel, we

also take into account the probability of occurrence of
an outage event concerning the security target. For this
purpose, as a further metric, we consider the secrecy out-
age probability, defined as the probability ξ that Eve’s bit
error rate falls below PEb

∣∣
th. In order to estimate such

a probability, we consider perfect scrambling and follow
the approach proposed in [35] for the case of coding
across sub-messages. According to such an approach, also
followed in [36], ξ can be expressed as

ξ = 1 −
[
1 − exp

(
− γE|AWGN

th
γE|FFth

)]n

, (7)

Table 7 Security gap with perfect scrambling and Eve’s ideal
decoder over the flat AWGN channel

Code γE|SPBth [dB] γB|th [dB] Sg [dB]

Int. product 0.55 6.74 6.19

PDC-LDPC 0.55 4.83 4.28

M-SC-MPC 0.55 3.80 3.25

QC-LDPC 0.55 4.10 3.55

PEG 0.55 4.04 3.49
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where γE|AWGN
th and γE|FFth are the two threshold values of

Eve’s average SNR corresponding to the flat AWGN and
FF channels, respectively. Starting from (7), we obtain

γE|FFth = − γE|AWGN
th

ln
[
1 − n√1 − ξ

] , (8)

which allows to compute the threshold value of Eve’s
average SNR over the FF channel by taking into account
possible outage events and fixing the secrecy outage
probability ξ .
In order to provide an example, we consider that Eve still

uses the ideal decoder, that is, γE|AWGN
th = γE|SPBth = 0.55

dB. By using (8) and considering a secrecy outage prob-
ability ξ = 10−3, we obtain that over the FF channel,
the threshold value for Eve’s average SNR per bit becomes
γE|th = γE|FFth = −10.86 dB. The corresponding secu-
rity gap values are reported in Table 8, by considering
the same average values for Bob’s SNR per bit used in
Table 5, and L = 1. We observe that, in comparison with
the results in Table 5, the security gap values are signifi-
cantly increased, but the relative behavior of the consid-
ered codes is basically unchanged. The conclusion would
be similar by imposing a constraint also on the transmis-
sion outage probability, i.e., the probability that Bob’s error
rate overcomes the threshold PBb

∣∣
th. This confirms that the

results of the comparative analysis developed in the previ-
ous sections have a general meaning, despite that the use
of practical LDPC decoders is assumed also for Eve and
the probability of occurrence of outage events is not taken
into account.

4.4 General remarks
Looking at the results presented in Sections 4.1 and 4.2,
we see that the relative behavior of the considered LDPC
schemes remains basically unchanged through the vari-
ous operation conditions. In essence, the performance, in
terms of Sg of the M-SC-MPC, the QC-LDPC, and the
PEG constructions are very similar; so, they can be consid-
ered substantially equivalent. The M-SC-MPC solution,
however, has the advantage to require the smallest SNR.

Table 8 Security gap with perfect scrambling and L = 1 over the
FF channel with Eve’s ideal decoder and secrecy outage
probability ξ = 10−3

Code γE|th [dB] γB|th [dB] Sg [dB]

Int. product −10.86 19.7 30.56

PDC-LDPC −10.86 12 22.86

M-SC-MPC −10.86 9.8 20.66

QC-LDPC −10.86 10.2 21.06

PEG −10.86 10.2 21.06

On the contrary, the other two constructions exhibit
some penalty. This is always true for the interleaved prod-
uct code that suffers from the impact of the lower parity-
check matrix column weight imposed by the constraints
due to the product code structure. The PDC-LDPC code,
in turn, exhibits an error floor that, at the reliability target
of 10−5, has no effect for the case of flat AWGN channel
without scrambling (see Fig. 6), while produces a loss in
all the other, more significant, cases.
In conclusion, the relative behavior of the considered

classes of codes basically depends on their inherent prop-
erties and is substantially the same for any considered
scenario. On the contrary, the required values of SNR
and the security gaps are scenario-dependent. So, though
demonstrated for a specific choice of n and R, the conclu-
sions drawn appear rather general and can be extended to
other values of code length and rate.

5 Conclusions
We have assessed the performance achievable by some
LDPC code design techniques in terms of the security
gap over the AWGN and the fast Rayleigh fading wire-
tap channels. We have considered both systematic and
scrambled transmissions and frame concatenation before
scrambling. Assuming the PEG code design algorithm
as a reference, we have compared its performance with
that of four techniques for designing structured LDPC
codes. Our results show that M-SC-MPC codes and QC-
LDPC codes generally exhibit performance comparable
and sometimes even better than that resulting from the
application of the PEG algorithm. Hence, we can con-
clude that M-SC-MPC and QC-LDPC codes represent
valid alternatives to PEG codes for the use in this frame-
work, as they allow to take advantage of the structured
nature of their characteristic matrices, while achieving
very good performance from the PLS standpoint. On
the contrary, the solution exploiting interleaved product
codes, though being characterized by low complexity, is
generally inefficient from the security gap standpoint.
The analysis developed in this paper is a first step

towards the choice of good code design techniques for
supporting joint security and reliability of transmissions.
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