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The impact of changing climate on the frequency of daily rainfall extremes in Jakarta, Indonesia, is analysed and quantified. The
study used three different models to assess the changes in rainfall characteristics. The first method involves the use of the weather
generator LARS-WG to quantify changes between historical and future daily rainfall maxima. The second approach consists of
statistically downscaling general circulationmodel (GCM) output based on historical empirical relationships betweenGCMoutput
and station rainfall. Lastly, the study employed recent statistically downscaled global gridded rainfall projections to characterize
climate change impact rainfall structure. Both annual and seasonal rainfall extremes are studied. The results show significant
changes in annual maximum daily rainfall, with an average increase as high as 20% in the 100-year return period daily rainfall.
The uncertainty arising from the use of different GCMs was found to be much larger than the uncertainty from the emission
scenarios. Furthermore, the annual and wet seasonal analyses exhibit similar behaviors with increased future rainfall, but the dry
season is not consistent across the models. The GCM uncertainty is larger in the dry season compared to annual and wet season.

1. Introduction

The increase in the atmospheric concentrations of green-
house gases and the resulting global warming is expected
to cause significant changes in the precipitation structure
(e.g., amount, extremes, and spatial variability) [1–6]. Many
studies have analysed historical rainfall and future climate
projections thereof fromGeneral CirculationModels (GCM)
for predefined climate scenarios and quantified the changes
in precipitation characteristics at global and regional scales
[7–10]. However, given the large variability in precipitation in
tropical regions and that the spatial resolution ofGCMoutput
is quite coarse (1∘–2.5∘) [11], the GCM outputs are required to
be scaled down to local scales using downscaling techniques.

There are two main approaches for downscaling: sta-
tistical and dynamical. Statistical downscaling techniques

use empirical relationships between large-scale climate pre-
dictors from GCMs and local-scale predictands to obtain
station-level variables of interest [12, 13]. Conversely dynam-
ical downscaling techniques employ regional climate mod-
els with GCM output variables as boundary conditions to
produce higher resolution (e.g., 25 km) output [14, 15]. The
statistical downscaling approach is widely used because of its
easy implementation, low computational effort, and ability
to provide point-scale output [16, 17]. Several statistical
downscaling models have been developed in the last few
decades and can be broadly classified as regression models,
weather typing schemes, and weather generators [14]. Some
widely employed models include the Weather Generator
(WGEN), the Long Ashton Research Station-Weather Gen-
erator (LARS-WG), and the Statistical Downscaling Model
(SDSM). Many recent studies have shown that these models
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Figure 1: Map of the western Maritime Continent (a) showing the study area of Jakarta (filled red square) and CanESM2 grids and map of
Jakarta (b) showing the rain gauges used and theNEX-GDDP grids.The red lines represent the CanESM2 grid.The green shaded area denotes
the Jakarta DKI region.

are capable of providing station-level rainfall for different
GCMs and future climate scenarios [12, 18, 19]. In addition
to these downscaling models, high-resolution global gridded
datasets for historical climate are available for hydrological
studies. For future climate a very recent 2015 dataset is the
NASA Earth Exchange Global Daily Downscaled Projections
(NEX-GDDP) [20] for precipitation and temperature. This
was used to characterize severity and extent of future drought
in the Continental US [21].

In this paper, we analysed and quantified the impact of
changing climate on the daily rainfall return period (RP)
curves for a Southeast Asian region, that of Jakarta DKI
(Daerah Khusus Ibukota or Special Capital Region), Indone-
sia. The study conducted a comparative analysis employing
two models, LARS-WG and SDSM, and the downscaled
gridded dataset, NEX-GDDP. Both annual and seasonal (wet,
December–March, and dry, June–September) extremes are
analysed. Jakarta was selected because it is highly vulnerable
to riverine floods.

Jakarta DKI extends from 6.1∘S to 6.5∘S and 106.6∘E
to 107.0∘E and spans an area of 642 km2 (Figure 1). It is
reported that 40% percentage of Jakarta is below mean
sea level [22]. The city frequently experiences severe flood
events (e.g., in 2002, 2007, 2013, and 2014) with annual
losses of USD 321 million [23, 24]. The flood vulnerability of
Jakarta is exacerbated by its population of 10 million people
[25], rapid urbanization, and land subsidence [23]. While
many studies have focused on characterizing the general
climatology of Java Island in which Jakarta is located [26, 27]
and quantified historical trends [28, 29], few have assessed
the future changes in rainfall extremes in Jakarta [23, 30].
However such studies on local-scale changes in seasonal
and annual rainfall maxima are needed for city planners in
Jakarta and in similar flood-prone cities of South East Asia for
purposes of flood control, water supply, and urban drainage.

The study framework is described in Section 2. The
statistical models and datasets are described in Section 3.

The validation of statistical models and their application for
future climate scenarios are discussed in Section 4, followed
by concluding remarks in Section 5.

2. Study Framework

The methodology comprises three components as shown in
Figure 2.The first component involves the LARS-WGmodel.
LARS-WG is a stochastic weather generator developed by
Racsko et al. [31] and has undergone a series of improvements
[32, 33]. Given the daily time series of rainfall, temperature,
and solar radiation at a particular station, the LARS-WG can
generate synthetic daily rainfall series, whose statistics match
well those of observed data [34, 35]. Synthetic series can
further be obtained for historical and future time periods.
An advantage of using LARS-WG is that the information
from 15GCMs is embedded in the model, which allows
an assessment of GCM model uncertainty. However, one
drawback is that the latest version of LARS-WG (version 5.5)
follows the IPCC Fourth Assessment Report (AR4) for future
climate scenarios. More specifically, the synthetic rainfall
series for a future time period can only be obtained for AR4
scenarios A1B, B1, and A2. It is noted that there are a few
recent studies where LARS-WG is employed with the newer
Representative Concentration Pathways (RCP) [33, 36] under
the IPCC Fifth Assessment Report (AR5) and specifically
using LARS-WG 6.0. However this version is still undergoing
final tests (personal communication, Michael Semenov) and
thus not used here.

SDSM, which forms the second component of the
methodology, is used to examine changes in rainfall extremes
under the newer RCP scenarios defined in AR5. However
only one GCM, the second generation Canadian Earth Sys-
tem Model (CanESM2), is available in SDSM, and therefore
climate model uncertainty cannot be assessed. The third
and final component employs the NEX-GDDP dataset. The
NEX-GDDP dataset consists of 0.25∘ resolution gridded daily
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Figure 2: Methodology flowchart showing the framework comparing historical and future daily rainfall RP curves via three different
components: LARS-WG, SDSM, and the NEX-GDDP gridded data.

projections of precipitation and temperature from 2006 to
2100 for 21 GCMs under AR5 RCP 4.5 and RCP 8.5 scenarios.
The dataset also contain retrospective runs of 21 GCMs for
the time period of 1951–2005. To facilitate comparison with
LARS-WGand SDSManalysis, we selectedNEX-GDDPgrids
that cover the rain gauge locations of the study domain
(Figure 2).

Consideration of different combinations of GCMs and
future scenarios and downscaling methods as shown in
Figure 2 allows us to investigate the relative importance of
different sources of uncertainties in climate change impact
studies. Characterization of the variability in the changes
of future rainfall across these approaches will be useful in
interpreting climate change impacts.

3. Data and Models

Observed daily rainfall data from four gauging stations
(Halim, Priuk, Ciliduk, and Depok) for the period of 1984–
2006 are available [37] and used for this study (Figure 1).
Based on the recorded data, the regional averages of annual
rainfall and annual maximum daily rainfall are 1983mm and
112mm/day, respectively.

3.1. LARS-WGModel Runs. LARS-WG requires input weath-
er variables such as the solar radiation and the maxi-
mum and minimum temperature. Data for the four sta-
tions are obtained from the Global Weather Data for Soil
and Water Assessment Tool (SWAT) website (https://global-
weather.tamu.edu/). The LARS-WG model involves three
major steps: (i) determining statistical characteristics of
observed data, (ii) comparing statistical characteristics of
observed data and the generated data, and (iii) generating
synthetic data based on statistical characteristics of the
observed data [38]. For the future time period, the model

generates synthetic time series based on a change factor
approach. The latest version available, LARS-WG 5.5, is
capable of generating future rainfall with 15GCMs under
AR4 emission scenarios (A1B, B1, and A2) for three future
time periods 2011–2030, 2046–2065, and 2081–2099. The
emission scenario A1B is available in all 15 GCMs and B1 and
A2 are available in 11 and 9GCMs, respectively (see Table 1 in
[34]).

For this study,we generated 100 independent sequences of
synthetic daily rainfall, each with the length of 23 years using
observations from 1984 to 2006. Similarly, one hundred, 23-
year-long sequences of future rainfall series were generated
for emission scenarios A1B (15GCMs) and B1 (11 GCMs) over
the period of 2046–2065. The length of each sequence was
chosen to match with the length of the observed record, and
100 sequences were generated in order to characterize the
uncertainty.

3.2. SDSM Model Runs. SDSM is a combination of multiple
linear regression and stochastic weather generator devel-
oped by Wilby et al. [17] and has undergone number of
improvements. SDSM is capable of generating future rainfall
time series with AR5 emission scenarios [2]. This study
used SDSM 4.2.9 to generate the future daily rainfall under
the RCP 4.5 and RCP 8.5 as available with the CanESM2
GCM. SDSM needs two types of input daily data: (1) the
local predictands of interest (daily rainfall in our case)
and (2) the large-scale regional predictors from the GCM
grid box that covers the study area. CanESM2 predictors
(Table 1) were obtained from Canadian Climate Data and
Scenarios for each station from the corresponding grid box
(http://ccds-dscc.ec.gc.ca/?page=pred-canesm2). An empir-
ical relationship between the predictors and the predic-
tand is then used to obtain station-level daily rainfall
series.

https://globalweather.tamu.edu/
https://globalweather.tamu.edu/
http://ccds-dscc.ec.gc.ca/?page=pred-canesm2
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Table 1: CanESM2 predictors used in screening process.

Predictor Description
Ceshmslpgl Mean sea level pressure
ceshp1 fpgl 1000 hPa wind speed
ceshp1 upgl 1000 hPa zonal velocity
ceshp1 vpgl 1000 hPa meridional velocity
ceshp1 zpgl 1000 hPa vorticity
ceshp1thpgl 1000 hPa wind direction
ceshp1zhpgl 1000 hPa divergence
ceshp5 fpgl 500 hPa wind speed
ceshp5 upgl 500 hPa zonal velocity
ceshp5 vpgl 500 hPa meridional velocity
ceshp5 zpgl 500 hPa vorticity
ceshp5thpgl 500 hPa wind direction
ceshp5zhpgl 500 hPa divergence
ceshp8 fpgl 800 hPa wind speed
ceshp8 upgl 800 hPa zonal velocity
ceshp8 vpgl 800 hPa meridional velocity
ceshp8 zpgl 800 hPa vorticity
ceshp8thpgl 800 hPa wind direction
ceshp8zhpgl 800 hPa divergence
ceshp500pgl Relative humidity at 500 hPa
ceshp850pgl Relative humidity at 850 hPa
Ceshprcppgl Total rainfall
ceshs500pgl Specific humidity at 500 hPa
ceshs850pgl Specific humidity at 850 hPa
ceshshumpgl Surface-specific humidity
ceshtemppgl Mean temperature at 2m height

We employed the procedure developed byMahmood and
Babel [19] to finalize the predictors used at each station.
Following this approach, the correlations 𝑟𝑖 between the
predictand and 26 predictors were computed (𝑖 ∈ [1, 26]),
and the one with the highest correlation (𝑟𝑘) was selected
as the first predictor. Then, the partial correlations 𝑟𝑝𝑗
between the remaining predictors (i.e., 𝑗 ̸= 𝑘) and the
predictand, conditioned on the presence of the previously
selected predictor, were obtained. The percentage reduction
in correlation (PRC) was then calculated for these remaining
predictors as follows:

PRC𝑗 = (
𝑟𝑗 − 𝑟𝑝𝑗
𝑟𝑗 ) ; (1 ≤ 𝑗 ≤ 26; 𝑗 ̸= 𝑘) . (1)

The predictor which has the minimum PRC is selected as
the second predictor. Subsequent predictors were selected by
repeating the above steps (i.e., computing partial correlations
and selecting the one with the least PRC). The first predictor
selected through the above procedure is also referred to as
the super predictor (SP). Table 2 lists the super predictors (in
italic) and two next predictors selected at each station.Mostly,
one to three predictors are sufficient to explain the predictand
withoutmulticollinearity [19].The correlation coefficients for
super predictors were found to be 0.15, 0.21, 0.11, and 0.09 for
Halim, Priuk, Ciliduk, and Depok stations, respectively.

Table 2: List of CanESM2 predictors selected for downscaling.

Halim Priuk Ciliduk Depok
ceshp1 vpgl ceshp1 vpgl ceshp1 vpgl ceshp1 vpgl
ceshp1 zpgl ceshp1zhpgl ceshp1 upgl ceshshumpgl
ceshp8thpgl ceshp1thpgl ceshp8thpgl ceshp1thpgl

Once the predictors are selected, the monthly empirical
relationships are derived within SDSM using the follow-
ing submodels: ordinary least squares for optimization, the
fourth-root transformation to account for nonnormality [12,
39], and the conditional scenario. Ordinary least square
optimization method is used as it is much faster than the
dual simplex method and the results are comparable [12].
The conditional scenario is suitable for dependent climate
variables such as precipitation and evaporation [19]. As in
LARS-WG 100 realizations of 23-year-long daily time series
of rainfall are generated for all four stations for the historical
(1984–2006) and future (2046–2068) time periods under
scenarios RCP 4.5 and 8.5.

3.3. Description of NEX-GDDP Data. One of the main
limitations of SDSM is the lack of multiple GCMs for the
AR5 RCPs. To gain insights into climate model uncertainty
for different RCPs, we employed the NEX-GDDP data
(https://cds.nccs.nasa.gov/nex-gddp/, accessed on September
25, 2016). This global dataset comprises 0.25∘ resolution,
bias-corrected, spatially disaggregated, and daily temperature
and precipitation series from the 21GCMs of the Coupled
Model Intercomparison Project Phase 5 (CMIP5) covering
historical (1950–2005) and future (2006–2100) time periods.
Details on the bias correction methodology can be found in
[20], and a description of spatial disaggregation approach
and the list of 21 GCMs can be found in the technical
note (https://nex.nasa.gov/nex/resources/365/, accessed on
October 5, 2016). In this study, we selected 40 years of
historical data, 1961–2000, to overlap the observed record
and future projections, 2031–2070, to overlap the future time
period of LARS-WG and SDSM. Note that 20GCMs are used
in this study because the GCM ACCESS1-0 gives unrealistic
values for annual maximum daily rainfall (∼1000mm/day).

4. Results and Discussion

4.1. LARS-WG Validation. The daily mean, standard devia-
tion, and maximum rainfall were computed for each month
and each of the 100 realizations. Figure 3 shows a com-
parison of statistics obtained for synthetic series at each
station against the observed record. In general, the statistics
computed from the synthetic series agree quite well with
those from observed record. The interquartile range of 100
realizations captures the statistics of the observed record
for a majority of months and for all stations. The average
percentage error over the months for mean and maximum
daily rainfall in the generated series and the observed data is
shown in Table 3. The maximum error is observed for daily
maximum rainfall at Depok station (15%).With the exception
ofmaximumdaily rainfall at Depok, the percentage error was

https://cds.nccs.nasa.gov/nex-gddp/
https://nex.nasa.gov/nex/resources/365/


Advances in Meteorology 5

0

5

10

15

20

25

30
Mean daily rainfall (mm)

Halim

0

5

10

15

20

25

30
Priuk

0

5

10

15

20

25

30
Ciliduk

0

5

10

15

20

25

30
Depok

Observed
Generated

1 2 3 4 5 6 7 8 9 10 11 12
Month

(a)

Observed
Generated

0

5

10

15

20

25

30
Std. dev. daily rainfall (mm)

Halim

0

5

10

15

20

25

30
Priuk

0

5

10

15

20

25

30
Ciliduk

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

30
Depok

Month

(b)

0

30

60

90

120

150
Maximum daily rainfall (mm)

Halim

0

30

60

90

120

150
Priuk

0

30

60

90

120

150
Ciliduk

Observed
Generated

1 2 3 4 5 6 7 8 9 10 11 12
Month

0

30

60

90

120

150
Depok

(c)

Figure 3: Comparison of observed mean (a), standard deviation (b), and maximum daily rainfall (c) with LARS-WG generated rainfall
sequences at the four stations.The observed data are for the period of 1984–2006.The boxplots are derived from 100 independent realizations
of 23-year-long LARS-WG generated data. Whiskers indicate minimum and maximum out of 100 realizations.

high during the drymonths, arising from the smaller number
of rainy days available for calculating the daily statistics. For
example, the highest percentage error in maximum daily
rainfall was found to be 33.4% in June (average rainy days
of 5.3 days) and 32.9% in August (average rainy days of 3.7
days) at Halim and Priuk, respectively. Similar patterns were
observed in mean and standard deviation of daily rainfall.

The annual maximum daily rainfall from the observed
record was fitted with the Log Pearson Type III (LP3)
probability distribution for all four stations. Figure 4 shows
the probability of exceedance of empirical annual maxima

along with the fitted LP3 distribution. The 95% confidence
intervals in Figure 4 were obtained using the Monte Carlo
approach from Kottegoda and Rosso [40]. The empirical
exceedance probabilities at all four stations lie within the
95% confidence interval illustrating that LP3 distribution is a
good fit to the observed record. However, it is noted that the
confidence interval is slightly larger for Depok compared to
other stations. The annual maximum daily rainfall for each
of the 100 realizations from synthetic series was also fitted
with the LP3 probability distribution for all four stations. It
is seen from Figure 5 that the RP curves from the synthetic
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Table 3: Percentage error in daily mean and maximum rainfall
averaged over 12 months.

Station LARS-WG SDSM
Mean Maximum Mean Maximum

Halim 3.3 5.6 19.7 11.1
Priuk 7.1 9.4 15.8 12.7
Ciliduk 5.4 6.2 11.7 11.5
Depok 10.1 15.0 16.9 30.6

series closely follow the observed RP curves except at higher
return periods, where they deviate slightly. These differences
at higher return periods are expected as arising from a
sample size of 23 years. Larger discrepancies between RP
curves of observed and synthetic annual maxima are seen for
Depok, which can be attributed to higher differences between
observed and synthetic daily rainfall time series at this station
(Figure 3 and Table 3). In addition, Depok has larger fitting
uncertainty compared to other stations (Figure 4).

The overall comparison of basic statistics (Figure 3) and
RP curves (Figure 5) indicates that synthetic series generated
from the LARS-WG model is satisfactory. Hereafter, these
100 realizations of LARS-WG generated synthetic data will be
used as the historical values when analysing changes between
historical and future daily rainfall extremes.

4.2. SDSM Validation. A comparison of daily rainfall statis-
tics for observed and SDSM generated rainfall is shown in
Figure 6. Table 3 also shows the percentage error for mean
and maximum daily rainfall averaging over the months. The
maximum error is observed at Depok (30.6%) for maximum
daily rainfall as LARS-WG. Similar to LARS-WG generated
data, the maximum percentage error in SDSM simulations
mainly occurs during dry months. The fitted daily RP curves
(Figure 7) show that the RP curves at Halim and Priuk closely
follow those derived from the observed record. However they
deviate noticeably for Ciliduk and Depok stations. This is
partly attributed to the fact that Halim and Priuk are in
one CanESM2 grid while Ciliduk and Depok stations are
in an adjacent grid (Figure 1). The correlation between the
predictors and the predictand is higher for Halim and Priuk
than for Ciliduk and Depok.

Overall, it is observed that the percentage errors are
higher in the SDSM analysis compared to LARS-WG
(Table 3). That LARS-WG is capable of producing historical
synthetic data better than SDSM is because the former is a
weather generator that produces the synthetic series based
on actual observed data while the latter depends on the
empirical relationships between predictors and predictand.
Furthermore the CanESM2 predictors used in SDSM have a
coarse resolution (∼2.81∘) when compared to the point-level
predictands. However SDSM has an advantage of generating
future rainfall time series for AR5 emission scenarios.
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4.3. Future Rainfall Projections with LARS-WG. The compar-
ison of daily RP curves between the historical and future
time series for emission scenarios A1B and B1 is shown in
Figure 8. The medians from 100 realizations are calculated
for each of 15GCMs (shown individually as thick grey lines),
and the overall median is compared with the median of the
historical rainfall RP curves. Figure 8 also shows the overall
GCM uncertainty (shown as shaded grey area) calculated
by pooling together all 100 realizations of all 15 GCMs. All
four stations experience an increase in daily rainfall at all
return periods for A1B emission scenario.The stationsHalim,
Priuk, Ciliduk, and Depok will experience 2.4, 5.5, 6.3, and
5.7% increase in daily rainfall, respectively, at the RP of 25
years. It is evident that the climate model uncertainty has
the major influence on the changes in annual maximum
daily rainfall with the largest uncertainty at station Halim.
The predictions with emission scenario B1 are lower than
with A1B as expected, since the A1B scenario assumes a
balanced emphasis on all energy sources while B1 assumes
global solutions tomeet economic, social, and environmental
stability [41]. The median for the B1 emission scenario shows
an increased future rainfall, though smaller than with A1B
except for Halim station where a decrease is observed.

4.4. Future Rainfall Projections with SDSM. The CanESM2
predictors and the empirical relationships developed at each

station using the historical time period were used to obtain
daily time series for a future time period of 2046–2068
under RCP 4.5 and RCP 8.5 emission scenarios. As with
the historical rainfall, 100 independent realizations of daily
rainfall for the future period are generated, and the annual
maximum daily rainfalls from each realization were fitted
with LP3 probability distribution and the median values are
calculated. Figure 9 compares the median values of historical
and future daily rainfall maxima. All four stations show an
increase in daily rainfall intensity under both future climate
scenarios. The future daily rainfall under RCP 4.5 at 25-year
RP increased by 3.2, 6.0, 7.3, and 13.7% at stations Halim,
Priuk, Ciliduk, and Depok, respectively. The corresponding
increases are 7.0, 9.9, 3.9, and 6.4% under the higher emission
scenario RCP 8.5. Expected larger increases are seen at
stations Halim and Priuk under RCP 8.5, but lower increases
are seen for Ciliduk and Depok. It is noted that Ciliduk
and Depok which lie on an adjacent CanESM2 grid cell
had higher errors during the SDSM validation with lower
correlations with the predictors (cf. Section 4.2) and this may
have contributed to the predicted smaller increment.

4.5. Future Rainfall Projections with NASA-GDDP Data. The
NEX-GDDP rainfall data from 20GCMs for the historical
(1961–2000) and future time period (2031–2070) are analysed.
Figure 10 compares future RP curves for each GCM and
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Figure 6: Comparison of observedmean (a), standard deviation (b), andmaximum daily rainfall (c) with SDSM generated rainfall sequences
at the four stations.The observed data are for the period of 1984–2006.The boxplots are obtained from 100 realizations of 23-year-long SDSM
generated data. Whiskers indicate minimum and maximum out of 100 realizations.

emission scenario against the historical curves. The median
of future RP curves is always higher than the corresponding
historical for all stations and for both emission scenarios. For
example, the RCP 4.5 emission scenario results in 10%, 16.5%,
and 12.2% increases at 25-year return period for the three grid
cells that cover the four stations.The corresponding values are
17%, 17.6%, and 16.7% increase under RCP 8.5. Figure 10 also
shows large uncertainty across the 20 different GCMs.

4.6. Comparison across Models. The results from LARS-WG
(15GCMs), SDSM (1GCM), and NEX-GDDP (20GCMs)

future predictions are compared here. Figure 11 shows the
percentage change in the future daily rainfall compared to
historical for return period of 50, 100, and 250 years. The
vertical bars represent 10th and 90th percentile values of the
percentage change. All three approaches show an increase in
future daily rainfall with one exception being from LARS-
WGat stationHalimunder emission scenario B1which shows
a decrease for all three return periods. This is attributed to
AR4 B1 being an optimistic emission scenario while the other
scenarios considered here are typical (A1B, RCP 4.5) or less
optimistic (RCP 8.5). Hence station Halim shows an average
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Figure 7: Comparison of RP curves obtained from observations with those from SDSM generated rainfall data. Whiskers indicate minimum
and maximum rainfall from 100 sequences.

increase of 2.0% under LARS-WG with A1B, 2.2% (7.5%)
under SDSM with RCP 4.5 (8.5), and 11.5% (17.0%) under
NEX-GDDP with RCP 4.5 (8.5) in the 100-year RP daily
rainfall. In general, the LARS-WGand SDSM indicate smaller
changes in future rainfall compared to the NEX-GDDP. An
exception to this behavior is a 20.3% increase at Depok using
SDSM under RCP 4.5.

The median percentage change in rainfall between emis-
sion scenarios A1B and B1 ranges from 2.1 to 8.6% for
the four stations. The GCM uncertainty as quantified using
interpercentile range (90th–10th percentiles) is much higher,
ranging from 12.5 to 42.2% and from 8.6 to 38.1% for
LARS-WG A1B and B1 scenarios, respectively (Table 4). The
corresponding uncertainty for NEX-GDDP is 41.7 to 60.3%
and 55.5 to 62.6% for RCP 4.5 and RCP 8.5, respectively.
The uncertainty arising from the GCMs is smaller for LARS-
WG compared to that of NEX-GDDP (Figure 11), which is
mainly due to the former’s use of the change factor approach
to obtain future projections. More specifically, LARS-WG
derives change factors from GCM output at their native
scale (∼2.5∘) and imposes them on historical input data to
obtain future rainfall projections. On the other hand, NEX-
GDDP data is downscaled from GCM native resolution to
25 km. It is also noted that LARS-WG model results are with
15GCMs under SRES scenarios, whereas NEX-GDDP data
has 20GCMs under RCP scenarios.

The above analysis was repeated for the wet (December
to March) and dry (June to September) seasons. The future
wet season daily rainfall is increasing for most of the cases
(Figure 12). The percentage change in daily rainfall in the
wet season and the corresponding GCM uncertainty are
comparable to that of the annual scenario (Figures 11 and 12),
except for LARS-WG result at station Halim under emission
scenario B1. The similarity between wet season and annual
results is expected as most of the annual daily maximum
rainfall values are recorded during the wet season. For
example, the percentage of annual daily maximum rainfall
occurring during the wet season is 83% and 44% at Priuk and
Ciliduk stations, respectively. For the dry season, the future
daily rainfall shows less of a change or even a decrease (e.g.,
Priuk, Figure 13). Comparison of Figures 11–13 indicates that
the GCM uncertainty is the largest during the dry season.
Larger GCM uncertainty during the dry season is because of
fewer number of rainfall days available for analysis and lower
daily rainfall maxima.

Themedian daily rainfalls from the 100 realizations across
the different models are summarized in Table 5. The annual
and the wet season daily rainfall values are quite comparable
and the dry season daily rainfall is much smaller with
the exception of station Halim where a number of annual
maximums occurred in the dry season.This is reflected in the
LARS-WG simulation results where the annual projections
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Figure 8: Daily RP curves comparison between GCM predictions from emission scenarios A1B and B1 for future (2046–2065) and historical
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Table 4: Comparison of median (50th) and interpercentile range (10th to 90th) of percentage changes in 100-year RP daily rainfall for LARS-
WG and NEX-GDDP.

Station
LARS-WG (AR4) NEX-GDDP (AR5)

A1B B1 RCP 4.5 RCP 8.5
50th 10th–90th range 50th 10th–90th range 50th 10th–90th range 50th 10th–90th range

Halim 2.2 42.2 −6.4 38.1 11.5 41.7 17.0 62.6
Priuk 4.2 13.8 1.2 8.8 16.7 60.3 18.5 61.5
Ciliduk 8.4 12.5 5.6 8.6 13.0 44.4 18.2 55.5
Depok 6.5 16.2 4.4 13.2 11.5 41.7 17.0 62.6



Advances in Meteorology 13

Table 5: Daily rainfall from annual and seasonal analysis for historical and future time periods.

Station Return period Model Historical Future—A1B for LARS-WG/RCP4.5 for
NEX-GDDP

Annual Wet Dry Annual Wet Dry

Halim

50
LARS-WG 189.7 164.0 209.8 193.6 177.2 212.2
SDSM 227.1 206.5 156.6 231.4 208.2 159.7

NEX-GDDP 100.2 101.0 51.9 113.1 113.5 49.1

100
LARS-WG 202.9 176.1 239.3 207.3 191.7 241.3
SDSM 248.3 230.3 179.9 253.9 228.2 182.0

NEX-GDDP 108.7 109.7 56.4 121.2 123.0 52.2

250
LARS-WG 221.8 190.8 278.6 226.6 209.1 280.7
SDSM 272.6 260.3 207.7 282.1 259.3 213.5

NEX-GDDP 120.0 119.8 59.6 130.7 131.5 57.1

Priuk

50
LARS-WG 214.1 215.9 88.3 225.3 225.6 82.5
SDSM 208.7 208.1 112.7 223.5 220.7 101.7

NEX-GDDP 94.5 96.4 39.2 111.8 112.1 39.3

100
LARS-WG 233.9 238.0 91.6 243.8 244.9 86.4
SDSM 229.6 231.4 132.4 250.8 251.7 115.2

NEX-GDDP 103.5 106.1 43.9 120.8 121.4 42.1

250
LARS-WG 260.2 261.3 95.5 268.9 273.1 90.0
SDSM 258.7 262.7 159.1 295.0 295.8 133.5

NEX-GDDP 115.9 119.6 47.8 132.3 132.3 45.7

Ciliduk

50
LARS-WG 163.0 168.5 133.9 176.2 178.5 132.9
SDSM 228.0 203.4 178.3 241.2 225.5 174.8

NEX-GDDP 96.9 97.0 55.5 109.7 111.0 53.2

100
LARS-WG 170.9 181.4 140.5 185.3 191.3 138.6
SDSM 252.7 224.1 199.5 264.0 249.6 197.0

NEX-GDDP 104.1 103.3 58.6 117.6 118.6 56.8

250
LARS-WG 180.3 197.9 147.9 196.1 207.4 147.5
SDSM 284.0 254.2 230.0 298.6 281.2 227.5

NEX-GDDP 116.4 114.4 62.7 124.3 125.8 62.6

Depok

50
LARS-WG 286.4 269.3 119.3 303.3 286.7 118.6
SDSM 254.7 207.9 184.4 295.7 220.7 200.3

NEX-GDDP 100.2 101.0 51.9 113.1 113.5 49.1

100
LARS-WG 314.0 303.8 125.6 334.3 322.1 124.8
SDSM 279.2 230.0 206.5 336.0 245.3 230.9

NEX-GDDP 108.7 109.7 56.4 121.2 123.0 52.2

250
LARS-WG 347.9 343.3 137.0 373.0 364.5 134.2
SDSM 315.5 254.4 244.9 388.9 279.0 275.3

NEX-GDDP 120.0 119.8 59.6 130.7 131.5 57.1

are consistent with the dry season where other stations are
consistent with wet season (Figures 11, 12, and 13).The annual
maximum daily rainfall shows an average increase as high as
20% in the 100-year return period in the future. According to
[42], the current average 100-year RP rainfall of 252mm/day
results in a discharge of 1103 and 824m3/s for Ciliwung and
Cengkareng rivers, two of the three main rivers of Jakarta,
respectively, and leads to a direct economic loss of USD397
million in the flood plain surrounded by these rivers. In
addition, an increase in the future 100-year RP rainfall by 20%

will have a corresponding increase in flood discharge of 28%,
which leads to 42% increase in direct economic loss.

5. Conclusions

We assessed the impact of changing climate on local-scale
annual and seasonal maximum daily rainfall using different
downscaling models. The future daily rainfall was generated
with LARS-WG and SDSM at four stations in Jakarta, and
the RP curves were compared against the observed. While
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Figure 11: Comparison of percentage change in the annual maxi-
mum daily rainfall for future time period using LARS-WG (2046–
2065), SDSM (2046–2068), and NEX-GDDP (2041–2070) with
different emission scenarios. Dark vertical bars denote 10th and
90th percentile values for all GCMs which for LARS-WG is for
the medians from 100 realizations for each of the GCMs. The
light vertical bars for LARS-WG denote 10th and 90th percentiles
obtained by pooling 100 realizations across all GCMs.

15 GCMs were used for LARS-WG analysis under AR4 SRES
A1B and B1 emission scenarios, only one GCM under AR5
RCP4.5 and 8.5 scenarioswas available and used in the SDSM
simulations. 20GCMs were used from the gridded NEX-
GDDP data also under RCP 4.5 and 8.5.

The projections with all three approaches show that
the daily rainfall maximum increases in the Jakarta region
with consequent implications for future flood potential.
Uncertainty from GCMs is seen to be much higher than
uncertainty from emission scenarios. Future seasonal daily
rainfall maximum increases for the wet season but the dry
season did not exhibit a consistent increase or decrease
across the models. GCM uncertainty is also higher in the dry
season. The changes in wet season daily rainfall maximum
exhibit similar behavior as the annual scenario as the latter
is mainly controlled by the wet season for this study region.
The study showed that the average increase in 100-year RP
rainfall can be as high as 20% in the future. According to
loss curves from [42] for the same study region, this can lead
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Figure 12: Same as Figure 11 but for wet season (December to
March).

to a significant increase in flood discharge (28%) and direct
economic damage (42%).

The study showed that the uncertainties arising from the
use of different GCMs are predominant compared to those
arising from different statistical downscaling approaches and
emission scenarios. Given the large GCM uncertainty, deter-
ministic (e.g., from ensemble averaging) and probabilistic
(e.g., specific percentile ranges) rainfall estimates can be
propagated through the hydrologic modelling chain to assess
the impact of climate change on future flooding.The analysis
reported here facilitates decision regarding interpretation of
model results across different spatial scales and emission
scenarios. It helps emergency management authorities in
better decision making regarding future mitigation options
for a flood-vulnerable city like Jakarta. However, further
research is needed to reduce the GCM uncertainty in order
to facilitate policy-makers to draw more robust future flood
mitigation plans. While this study examined local-scale
changes in the seasonal and annual maximum daily rainfall
in Jakarta, the results are broadly applicable to other near-
equatorial regions in Southeast Asia due to similarities in
climatology. Extensions on the reportedwork can be achieved
with an updated LARS-WG containing newer AR5 RCP
emission scenarios, updated SDSM with a larger number of
GCMs, and finer resolution gridded data.
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