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Abstract

Background: Exome sequencing has advanced to clinical practice and proven useful for obtaining molecular
diagnoses in rare diseases. In approximately 75 % of cases, however, a clinical exome study does not produce a
definitive molecular diagnosis. These residual cases comprise a new diagnostic challenge for the genetics
community. The Undiagnosed Diseases Program of the National Institutes of Health routinely utilizes exome
sequencing for refractory clinical cases. Our preliminary data suggest that disease-causing variants may be missed
by current standard-of-care clinical exome analysis. Such false negatives reflect limitations in experimental design,
technical performance, and data analysis.

Results: We present examples from our datasets to quantify the analytical performance associated with current
practices, and explore strategies to improve the completeness of data analysis. In particular, we focus on patient
ascertainment, exome capture, inclusion of intronic variants, and evaluation of medium-sized structural variants.

Conclusions: The strategies we present may recover previously-missed, disease causing variants in second-pass
exome analysis. Understanding the limitations of the current clinical exome search space provides a rational basis
to improve methods for disease variant detection using genome-scale sequencing techniques.

Keywords: Clinical exome sequencing, Analytical quality, Performance enhancement, Clinical genomics, Rare
diseases, Completeness problem, False negative results
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Background
The Undiagnosed Diseases Program (UDP) of the Na-
tional Institutes of Health (NIH) was established in 2008
to evaluate patients who were undiagnosed despite an ex-
tensive medical workup [1–3]. Besides thorough clinical
phenotyping by multiple specialists, the UDP has been
utilizing exome sequencing and SNP array analysis when a
genetic etiology is suspected. The feasibility of using ex-
ome sequencing to identify new disease genes was first
demonstrated in 2009 [4, 5] and has ever since contrib-
uted to the discovery of many Mendelian disease genes

[6]. Exome sequencing studies have become an increas-
ingly routine clinical approach with a reported 25 % mo-
lecular diagnostic rate [7, 8]. In the past few years, we
observed that an increasing percentage of pediatric pa-
tients referred to the UDP has already been studied with a
clinical exome. Hence, we employed an extended set of
analytic approaches to identify disease-causing variants
beyond those detected by current clinical exome analysis.
Several specific features of an exome analysis pipeline

contribute to the final sensitivity and specificity of the
overall test. They include the design of the analysis, e.g.,
included family members, limitations of the underlying se-
quencing technology, and a number of specific analytic* Correspondence: dadams1@mail.nih.gov
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parameters that affect variant filtration and prioritization.
These include segregation rules, application of allele fre-
quency cutoffs derived from control populations, and pre-
dictions of deleteriousness [9, 10]. The choice of analytic
parameters depends on the experimental design and scope
of testing, with an overall goal of optimizing the final list
of prioritized variants to be subjected to manual curation.
Stringent parameters, focusing only on coding sequences
in known disease genes and common Mendelian inherit-
ance models, may filter out a “true” variant and create
false negative results. This approach is commonly applied
in clinical exome analysis where clinical interpretability is
prioritized over new gene discovery. Conversely, relaxed
filtration settings feature enhanced sensitivity but generate
a number of false positive variants that increase the work
associated with final curation. This approach is generally
more suitable to a research-level analysis, where variants
in genes not yet associated with disease may be of intrinsic
interest.
Our current goal is to optimize research-level exome

analysis for single, small-pedigree families. We quantify
the consequences of widening the final search space
using several analytic techniques. They include sequen-
cing additional family members; evaluation of minimal
exome coverage; reducing the number of false negative
results by considering variants in non-coding regions;
and searching for medium-sized indels missed by the
standard genotyping modules of current analytical pipe-
lines. Each of these potential second-pass procedures
can be employed when standard exome analyses fail to
provide a satisfactory explanation for the patient’s
clinical features.

Results
Patients
A growing number of pediatric patients referred to the
UDP present with prior unrevealing clinical exome stud-
ies (Fig. 1a), which necessitates the development of novel
diagnostic strategies to improve experimental power.
Cohort-based studies, which have been successful in

detecting disease genes by exome sequencing [4, 5], are
not an appropriate tool to employ for our subjects given
their high degree of phenotypic diversity as demon-
strated by comparison of Human Phenotype Ontology
terms [11, 12] that were used to characterize each af-
fected patient (Fig. 1b). Additionally, most of our cases
are limited to a nuclear family that is too small to
achieve the LOD score thresholds used in linkage ana-
lyses (Fig. 1c). These factors have focused our attention
on the general problem of maximizing the information
that can be extracted from small-family, n = 1 cases [13].

Ascertainment of family members
Our study participants have undergone extensive med-
ical testing before being accepted into our program. As a
result, many easily-identifiable diagnoses, and interpret-
able DNA sequence variants, have been previously ex-
cluded in patients of the UDP cohort, in particular when
patients had undergone prior clinical exome testing.
Therefore, our patients require an exome sequencing
strategy optimized for agnostic testing, going beyond a
clinical routine analysis pipeline, which is optimized for
interpretable results and identifying variants in known
disease genes.
A typical exome analysis pipeline includes an unsuper-

vised variant filtration component. This may be followed
by manual BAM file inspection, manual bioinformatic
curation and expert clinical evaluation. Practice varies
with regard to the number of family members included
in exome sequencing and analysis. The value of family
trios is increasingly recognized [8, 11]; sequencing of all
available siblings has been a common practice in the
UDP [14].
To study the effect of included family members on

exome analysis, we performed a standard variant fil-
tration analysis on 45 families, while varying the fam-
ily composition. These families included the proband,
both unaffected parents and at least two additional
siblings (at least a quintet in total). Taking different
numbers of family members into account (Fig. 2), we

Fig. 1 Characteristics of the UDP patient cohort. a Percentage of pediatric cases (n = 11-28 per quarter year) with prior inconclusive exome
sequencing that applied to the UDP. b Number of HPO terms that are shared by a given number of patients (total n = 350 affected individuals).
The top five HPO terms that were used in more than 50 patients were spasticity, global developmental delay, gastroesophageal reflux, seizures
and short stature. c Family structures of nuclear families in the UDP cohort, n = 329
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filtered variants for segregation with disease, population
frequency and transcript effects, but did not filter for
known disease genes, in silico predictions of deleterious-
ness, or family-based linkage. The difference in the num-
ber of variants returned for manual evaluation was most
striking between a singleton and a trio analysis, with about
1,126 (range 886-1521) vs. 117 (range 59-265) variants
passing automated filtration, similar to the 10-fold reduc-
tion reported previously [11]. A large part of this effect is
attributable to a decrease in the number of heterozygous
variants. In a trio, such variants could be assessed for de
novo occurrence in light of parental genotypes and/or
phased correctly as compound heterozygous variant pairs.
The number of false positive homozygous recessive vari-
ants was greatly reduced by the awareness of parental ge-
notypes. Additional number of siblings beyond a trio
provided a further reduction in the average number of
variants down to 88 (range 22-209), 69 (range 8-171) and
54 (range 11-109) for quartets, quintets and sextets, re-
spectively. These reductions were obtained even without
mapping recombination sites [15], by which siblings can
exclude genomic regions from consideration and therefore
remove large numbers of false positive variants.
In our research setting, the increased filtration power of

additional informative meioses in family members balanced
against the effort required to obtain the correct affected sta-
tus, and the financial cost of sequencing and data process-
ing. We justified this approach as being worthwhile in
order to reduce the number of false positive variants when
analyzing individual families (n = 1), so that time and effort
could instead be used to reduce the extent of false negative
results and therefore to improve completeness of analysis.

Exome coverage
Capture and enrichment of the exome for medical se-
quencing limits most of the analysis to the protein cod-
ing sequences –about 1-2 % of all 3.2 billion base
positions in the human genome– where the majority of
previously documented disease-causing variants occur
[16]. To assess loss of data due to lack in exome capture,
we selected a subset of exomes that included 54 pro-
bands of the UDP cohort. Each member of this subset
was sequenced under the same conditions at one se-
quencing center, and aligned through the same pipeline.
When coverage is based on the targeted regions as

determined by the capture kit (TruSeq, about 61 Mb),
we observed a mean coverage of 76 reads and a me-
dian coverage of 57 reads. 85 % of targeted positions
were covered more than 20×, a coverage frequently used
as a minimal read depth requirement for confident geno-
typing of both alleles. Since capture kits differ in their tar-
get regions, we evaluated the coverage of all exonic
regions defined by CCDS (about 31 Mb), as a measure of
desired capture. Here we observed a mean coverage of 82
reads (range 44-130) and a median coverage of 61 reads
(range 32-110), with an average of 88 % (range 74-94) of
exonic positions covered more than 20× (Fig. 3a, b).
Next we examined coverage based on CCDS exons in-

stead of individual positions and grouped all exons into
categories based on the minimum number of reads oc-
curring in a given exon. This analysis showed that an
average of 2.2 % of exons (range 1.6-2.8) had no cover-
age at all, 2.1 % (range 1.6-2.8) of exons had partially no
coverage, 6 % (range 2-17) showed a minimum coverage
of fewer than 10 reads, and 12 % (range 2-32) fewer than
20 reads (Fig. 3c). In total, an average of 10 % of exons
(range 6-21) had a minimum coverage of fewer than 10
reads and 22 % (range 8-53) of exons had a read depth
of fewer than 20 reads in at least one position (Fig. 3d).
Of these low coverage exons, an average of more than
25 % (range 24-30) were in genes known to harbor
disease-causing or likely disease-causing variants
(HGMD classes “DM” and “DM?”). In addition, coverage
below 10 reads and below 20 reads was observed in
27 % (range 19-38) and 42 % (range 26-63) of first exons,
respectively (Fig. 3e), indicating a notable contribution
of first exons to the low coverage regions of exon se-
quencing, as generally recognized. When analyzed by
entire genes (total number n = 18.351 for females, n =
18.409 for males), an average of 56 % (range 39-78) and
76 % (range 51-94) of genes had a minimum coverage
below a depth of 10 and 20 reads, respectively (Fig. 3f ),
suggesting that low coverage occurred across the entire
length of genes.
To estimate the impact of insufficient coverage on the

diagnosis of known diseases, we queried the read depth
at positions of known disease-causing variants listed in

Fig. 2 Effects of family members on the number of variants
returned by computerized filtration. Variants of 36 quintets and 9
sextet families were analyzed with an increasing number of family
members. Bars show average number of variants that passed a basic
filtration algorithm for segregation with disease, population
frequency and transcript effects, based upon various
inheritance models
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HGMD (n = 118.861 positions for females, n = 118.949
positions for males). This subset of positions showed a
higher coverage with only 5 % (range 3-11) of known
disease-causing variant positions covered less than 10×,
and 11 % (range 4-31) were covered with fewer than 20
reads (Fig. 3g-i). Low coverage variant positions of a
read depth of less than 10× occurred in about 25 %
(range 17-38) of all HGMD genes and in 38 % (range
22-62) based on a coverage of less than 20 × .

In a next step we analyzed the consistency of coverage
across proband samples. Of 64,818 autosomal exons that
showed read depths below 10 reads, 8199 exons were af-
fected by low coverage in all 54 probands, of which 4406
exons were within the target sequence of the capture kit
used (list of exons in Additional file 1: Table S1). When
analyzed by genes, 1304 genes were covered with fewer
than 10 reads in all 54 probands in more than 25 % of
their exons. In these genes, all low coverage exons in

Fig. 3 Potential false negative space due to lack of coverage. a Mean and median coverage based on exonic CCDS positions (total about
31.9 Mb) in 54 exomes of probands used for coverage analysis. b Fraction of exonic positions as a function of coverage. c-f Coverage was based
on the minimum read depth that occurred in CCDS exons, grouped by exons (total about 190,000), first exons (total about 20,600) or genes (total
about 18,400). g-i The minimum number of mapped reads at each position of known HGMD variants (classes “DM” and “DM?”) was determined
by SAMtools and grouped by variant positions (total about 118,900) or genes (total about 4,000)
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841 genes were within the targeted region of the capture
kit used (list of genes in Additional file 1: Table S2).
Coverage below 10 reads in all exons occurred in 409
genes, of which 277 genes consisted of a single exon
only.
While it is possible to characterize the number of vari-

ants in known disease genes that are missed due to in-
complete capture, we hypothesize that variants in genes
not yet associated with disease may be missed due to
lack of coverage of one of the two alleles, especially if
strict requirements for read depth are applied during
data analysis.

Non-exonic variants
The majority of reported disease-causing variants reside
in coding regions or canonical splice sites at exon/intron
boundaries [16] but there are instances where deep in-
tronic variants have been associated with disease [17–19]
and genome sequencing has revealed evidence of selective
pressure on intergenic and intronic regions, suggesting
functional conservation [20]. Targeted re-analysis of can-
didate loci for non-coding variants has been successfully
attempted [21]. However, non-coding variants are also de-
tected as a result of off-target capture, and may be of high

quality [22]. Therefore we quantified the analytical poten-
tial of targeted and off-target non-exonic variants, while
exploring strategies to optimize the less-favorable signal to
noise characteristics.
We analyzed variants called in 54 probands and their

parents in non-exonic locations, defined as outside the
UCSC exon regions (Fig. 4). On average, about 156,000
non-exonic variants were called in each proband (range
from about 121,000 to 252,000). The median distance to
the nearest exon was 169 bases (range 142-298) and the
mean was 15,000 bases (range 11,600-25,700), with a max-
imal distance observed of 1.7 million bases on average.
About 70 % of variants were within a distance of 500 bases
from the nearest exon boundary (Fig. 4a). The number of
non-exonic variants dropped consistently at a distance of
about 300-500 bases from the nearest exon (2.47 to 2.69
on the logarithmic scale in Fig. 4b). Given an average
DNA libraries size of 280 bp, this cutoff appears to corres-
pond to the maximal distance between a non-coding vari-
ant and targeted exonic sequence that occurred on either
end of the same DNA fragment. This suggests that most
non-exonic variants were sequenced as flanking regions of
intended capture, rather than captured due to sequence
similarity or presented as artifacts due to misalignment.

Fig. 4 Prioritization of non-exonic variants. Non-exonic variants of 54 probands and their parents were evaluated. a The distance of non-exonic
variants to the nearest exon was determined based on UCSC exon regions and the average number of variants was grouped by distance. b The
average number of variants observed at a given distance to the nearest exon plotted over distance on a logarithmic scale. c Minor allele frequencies
estimated by a founder population comprised of 106 parents, excluding each proband’s own parents. Number of variants was averaged and graphed
per allele frequency group. d CADD scores [23] were calculated and the average number of non-coding variants were grouped by raw CADD
score. e Fraction of variants as a function of Phred-scaled CADD scores. f Average number of non-coding variants remaining for consideration
after each filtration or prioritization step
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To filter the large number of non-coding variants, we
estimated the minor allele frequencies based on a
founder population comprised of 106 parents. We found
that only 6 % of the variants seen in each proband were
absent from the founder population, which excluded
each proband’s own parents (Fig. 4c). Of variants present
in the founder population, only 6 % were rare at a 1 %
lower confidence interval limit of the estimated minor
allele frequency. Overall, variant filtration based on allele
frequency reduced the number of unique and rare non-
exonic variants to 19,000 per proband on average (range
from 7,500 – 89,000).
Prediction of deleteriousness is particularly difficult for

non-coding variants since most prediction tools are lim-
ited to non-synonymous codon changes or canonical
splice site positions. We tested the use of CADD scores
[23] on our non-coding variant set, since this approach
allows scoring of all SNVs and CNVs, not limited to
coding variants. Raw CADD scores below zero were
returned for 47 % of all non-coding variants, indicating
that these variants were not different from known be-
nign variation (Fig. 4d). When we analyzed Phred-scaled
CADD scores, we observed a mean score of 3.82, me-
dian of 2.84, a minimum score of 0.001 and a maximum
of 36.5 on average. Only 7 % of variants obtained a score
higher than 10 and only 1 % higher than 15 (Fig. 4e), in-
dicating that a very low number of non-coding variants
were actually predicted deleterious by CADD scores.
Therefore, CADD scores could be an approach to high-
light potentially interesting variants within the vast pool
of mostly benign, but poorly annotated non-coding vari-
ants. More focused tools to predict splice site changes
using multiple different algorithms and that can be in-
corporated into an automated computational pipeline
should be able to prioritize additional variants for
consideration.
Taking all information together, filtration based on al-

lele frequency reduced the number of variants from ini-
tially 156,000 non-exonic variants per proband to 19,000
(Fig. 4f ). Using a conservative approach to predict be-
nign variants by negative raw CADD scores reduced the
number of remaining variants to 9,400. Applying predic-
tion of deleteriousness, an average of 1,200 variants were
predicted damaging at a Phred-scaled CADD score of
10. When more stringent filters were applied, only 285
variants on average obtained a CADD score higher than
15 and only 40 variants on average scored higher than
20. Depending on the desired stringency, we found that
these filtration strategies generated a tractable number
of additions to a routine second pass analysis.

Medium-sized indel calling
The limitations of genome-scale data analysis to identify
structural variants is another known cause of false

negative results. Standard variant callers typically iden-
tify indels up to about 50 bases. Supplementing exome
diagnostics with SNP chip or array-CGH data is known
to detect indels larger than a few kilobases genome wide.
Therefore, a large range of medium-sized indels from 50
bases to a few kilobases remain unaccounted for in sub-
sequent variant evaluation pipelines, contributing to in-
complete analyses.
Many attempts have been made to address this issue

by calling indels from exome sequencing data with add-
itional methods [24–28], and such efforts have recently
been implemented in large scale exome research studies
[11]. While some programs examine read depth against
a reference population, Pindel [29] extracts unmapped
reads from BAM files and analyzes soft clipped bases of
read pairs for evidence of medium-sized structural vari-
ation. We used Pindel to quantify the extent of incom-
plete analysis resulting from missed indels in a cohort of
54 probands and their parents.
Pindel detected on the order of 33,000 structural vari-

ants per proband on average (range about 22,000 to
54,000), of up to +/- 16,000 bases in size (Fig. 5a). Half
of these indels occurred within the target region defined
by the capture kit and 50 bases of flanking regions
(Fig. 5b). On average, 63 % of all indels and 61 % of
indels within target regions were also detected by the
variant caller and were therefore redundant (Fig. 5d). A
breakdown by size showed that deletions of fewer than
50 bases and insertions of fewer than 10 bases were
identified by both Pindel and the genotype caller in 56 %
to 76 % of variants (Fig. 5c). The overlap of called vari-
ants dropped rapidly beyond deletions larger than 100
bases and insertions larger than 50 bases.
We also used Pindel to call indels in the probands’

parents and used their variants to estimate allele fre-
quencies. This analysis revealed that only 5 % of indels
in the probands were absent from the control population
(Fig. 5e). Of the indels that were present in the founder
population (excluding each proband’s own parents), 8 %
were rare at a 1 % lower confidence interval limit of the
estimated minor allele frequency. Thus, filtering all Pin-
del variants by allele frequency for unique or rare vari-
ants reduced the number of variants to about 4,200 on
average (range from 1,500 – 11,700).
When we analyzed phasing of all Pindel variants of the

proband, about 34 % of all variants appeared to be inher-
ited by one of the parents, 46 % occurred in both parents
and 20 % could not be associated with an inheritance pat-
tern (Fig. 5f). As expected, in a subset of variants that
are only detected by Pindel and that are rare in or
absent from the founder population, the percentage of
variants that are present in both parents is greatly re-
duced (12 %), and enriched for variants not detected
in the founder population (68 %).
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Combining all information gained on the indels called
by Pindel (Fig. 5g), we started with an average of 33,000
Pindel variants per proband. An average of 12,200 vari-
ants were detected by Pindel only and not by the stand-
ard variant caller, of which an average of 2,600 variants
were rare or unique indels in the proband by filtration
based on founder frequencies (of which 1,200 variants
map within target regions). This appears to be the lower
limit that purely frequency-based bioinformatics tools
can reach based on this cohort size, before variants are
evaluated for other parameters such as Mendelian inher-
itance models and prediction of deleteriousness. With
increased numbers and matched ethnicity of individuals

in the control population, the power of filtration of an-
cient and benign variants based on allele frequency will
improve and optimize computerized prioritization of
indels when included in a second-pass analysis pipeline.

Discussion
In most clinical situations when exome sequencing is or-
dered as a diagnostic test, it is necessary and sufficient to
limit the search parameters to well-defined areas of known
disease genes and predictable protein changes. However, if
such an attempt fails to reveal a molecular diagnosis and
an agnostic research effort is made to discover potential
new disease genes, non-Mendelian inheritance patterns,

Fig. 5 Calling medium sized indels with Pindel. Pindel [29] was used to detect structural variants in exome sequencing data of n = 54 probands.
a Average number of variants by size detected by Pindel within the target region +/- 50 bases or in all regions. b Percentage of variants within
or outside the target region. c Comparison of Pindel variants to the number of indels called by the variant caller broken down by variant size. d
Percentage of Pindel variants within or outside the target regions +/- 50 bases that were also called by the variant caller. e Estimated allele
frequencies based on a founder population of 106 parents. f Phasing of variants detected in the probands considering all variants or only variants
that were unique to Pindel and that were rare. g Average number of Pindel variants after each step of filtration left for continued evaluation
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multi-gene conditions or unusual pathogenicity, it is desir-
able to broaden the analytical range to more obscure
territories.
Widening search parameters to improve completeness

of analysis by including non-exonic variants and
medium sized indels may include the “true” variant that
may be missed otherwise, but at the expense of in-
creased noise. To handle the additional load of variants,
we used the genotype data of 106 unaffected parents as
a control cohort, under the assumption that the pro-
bands do not share the same rare condition. Although
the power of filtration against large control populations,
such as 1000 Genomes [30, 31], ESP (NHLBI GO Exome
Sequencing Project, URL: http://evs.gs.washington.edu/
EVS/) or the ExAC database (Exome Aggregation Con-
sortium, URL: http://exac.broadinstitute.org), is well rec-
ognized, we were impressed by the power of filtration
that a relatively small cohort of 106 individuals se-
quenced under the same technical conditions, could
provide for analyzing non-exonic variants and medium-
sized indels. The use of genome sequencing information
released with phase 3 of the 1000 Genomes project will
further improve our ability to interpret the biological
significance of SNVs and CNVs in non-exonic regions,
such as in introns, promoter regions, UTRs, enhancers,
intergenic regions and in transcribed non-coding DNA.
This is especially important when the search parameters
exceed coding regions and canonical splice sites, since
most tools to predict deleteriousness are typically limited
to these territories.
We characterized the lack of coverage in our exome

sequencing studies, which is a generally recognized
contributor of false negative results. The application of
genome sequencing is known to provide a more
homogenous coverage and therefore represents a true
advance in the attempt to analyze all genes [32, 33].
However, even this technology lacks coverage at difficult
to sequence, possibly non-mappable genomic regions
[34]. Other technical advances, such as low amplification
technologies (so called “PCR-free chemistry”), which
minimizes allele dropout, is only available with larger
DNA sample acquisition and whole genome sequencing
chemistry.
In current exome sequencing, even highly medically

important sets of genes, such as the 56 genes recom-
mended by the American College of Medical Genetics
and Genomics for clinical testing, can lack full coverage
[35, 36]. Spiking in extra baits enhances the capture of
known disease genes. Although coverage has improved
with newer capture kits [32], this approach appears inef-
ficient when trying to fully capture all known genes [37],
including those not yet associated with disease.
In addition to improved coverage, genome sequencing

has also proven useful in the detection of small and large

structural variants [38, 39], which may be missed by the
standard variant calling pipelines used in exome sequen-
cing. Advances in long read sequencing are hoped to
provide optimized identification of structural variants
and also allow detection of disease-causing tandem re-
peats [40–42].
In the future, it will be desirable to include other ap-

proaches to variant discovery into an analysis pipeline,
beyond classical models of SNVs and CNVs that alter
protein function. Examples include changes in DNA
methylation [43, 44], disease-causing mobile elements
[45] and the spatial organization of the genome [46–48],
for example the disruption of long-range enhancer func-
tion or perturbation of insulators of topologically associ-
ating domains.
Once a research based exome sequencing experiment

returns promising variants or novel disease gene candi-
dates, demonstration of causality remains a challenge
[10], especially given the typical n = 1 family situation.
Apart from functional studies to elucidate molecular
mechanisms, identification of other similarly affected
families will be key to validate research findings. Given
the limited number of patients seen at a single clinical
site, sharing data of both exome sequencing as well as
clinical features, especially in standardized form using
HPO terms that enable computerized phenotype match-
ing, will become increasingly important [49]. Addition-
ally, comparison of standardized phenotype information
to model organisms and integration of pathway analyses
have the potential to identify new disease genes for re-
search studies [50–52].

Conclusions
We explored strategies to improve completeness of ana-
lysis in a research setting and demonstrated that the
number of variants added is tractable when the search
parameters are expanded to include non-coding variants
and medium-size indels. Future applications of these ap-
proaches will establish to what degree these additional
efforts contribute to the number of solved cases, in light
of feasibility and efficiency, relative to the number of
cases with inconclusive clinical exomes referred for re-
search studies.

Methods
Patients
Patients of the UDP were enrolled in clinical protocol
76-HG-0238, “Diagnosis and Treatment of Patients with
Inborn Errors of Metabolism and Other Genetic Disor-
ders”, approved by the Institutional Review Board of the
National Human Genome Research Institute (NHGRI),
and gave written informed consent. Human Phenotype
Ontology terms (HPO) were used for standardization as
part of clinical phenotyping [12, 53]. The medical
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records of pediatric UDP applicants reviewed between
2013 and 2015 were screened to determine if exome or
genome sequencing had been performed prior to evalu-
ation by the UDP. To estimate family structures, a
manually curated pedigree file containing all UDP par-
ticipants who underwent molecular testing by SNP chip
and/or exome sequencing was analyzed.

Exome sequencing and analysis
DNA was extracted from whole blood using the FlexStar
system (Autogen). Libraries of ~280 bp and paired-end
index adapters were prepared according to Illumina’s
TruSeq V1 or V2 method and sequenced at the NIH
Intramural Sequencing center (NISC) on a HiSeq2000
sequencer (Illumina) using 101-bp paired-end reads. Al-
ternatively, 275-325 bp DNA libraries were constructed
using KAPA library preparation kit (KAPA), captured
with SeqCap EZ Exome plus UTR Lib capture kit (Nim-
blegen) and sequenced at NISC on a HiSeq2500 (Illu-
mina) using 126-bp paired-end reads. Other exomes
were captured using TruSeq kit (Illumina) and se-
quenced at Axeq (Rockville, MD). For all exome sequen-
cing experiments, short reads were aligned to human
reference genome GRCh37 using an in-house developed
pipeline based on Novoalign (Novocraft Technologies).
Variants were called with HaplotypeCaller and Genoty-
peGVCFs [54–56]. Annotations utilized snpEff [57] and
a combination of internal cohort statistics and publically
available data sources (NHLBI GO Exome Sequencing
Project (ESP), URL: http://evs.gs.washington.edu/EVS/,
1000Genomes [30]). Basic, computerized variant filtra-
tion was used to analyze the effects of family members
on the number of variants returned. In brief, rare, non-
synonymous, start-gain/loss, stop-gain/loss, frameshift,
canonical splice site variants and intronic variants (up to
20 bases from splice sites) were evaluated under homo-
zygous recessive, compound heterozygous, X-linked and
de novo dominant disease models in families of Euro-
pean descent. A cohort of 54 cases, comprising of the
proband and both parents, that were sequenced under
the same conditions at NISC using TruSeqV2 capture
was used for analysis of low coverage regions, non-
coding variants, and medium-sized indels.

Coverage analysis
Positions within target regions, exons as annotated by
the Consensus Coding Sequence project (CCDS)
[58–60] or variant positions annotated as disease-
causing in the Human Gene Mutation Database (release
2014-1, classes “DM” and “DM?”) [16] were queried for
read depth using SAMtools in 54 probands of the UDP
[61, 62]. For per base coverage analysis, read depth at
each unique position was considered. For exon- and
gene-based analysis, the minimum read depth that

occurred in a given exon was determined and used to
group into categories.

Non-exonic variants
Non-coding variants outside the regions defined by
UCSC exons (annotated in hg19 assembly by the Univer-
sity of California Santa Cruz [63]) were analyzed, while
left-normalizing multiallelic variants. The parents of the
54 probands served as a control population, excluding
parents of the proband who was examined (n = 106 indi-
viduals, 212 alleles for autosomal variants, 159 alleles for
X-chromosomal variants, and 54 alleles for Y-
chromosomal variants). Absence of an alternative allele
in the founders was treated as presence of a reference al-
lele. To hypothesize that a variant was too frequently
present in the control population to be causative for a rare
disease, a cutoff of 6 or more variant alleles was used for
autosomal alleles, which corresponds to a minor allele fre-
quency (MAF) of 0.0283 (95 % confidence interval (CI) of
0.013 to 0.0604 using population proportion interval esti-
mation [64]). For X-chromosomal variants, a cutoff at 5 or
more alleles was used (MAF of 0.0316, 95 % CI of 0.0136
to 0.0719) and 2 or more variant alleles for Y-
chromosomal variants (MAF of 0.037, 95 % CI of 0.0102
to 0.1253). Variants in the probands were annotated with
raw and Phred-scaled CADD v1.3 scores [23]. A negative
raw score was used to assume that a variant was benign.
Phred-scaled CADD scores were used to predict
deleteriousness.

Medium-sized structural variants in exome sequencing
Pindel [29] was used to detect medium-sized structural
variants compared to GRCh37 assembly in 54 probands
and their parents. The presence of supporting reads was
interpreted as a heterozygous variant allele. Structural
variants were compared to those called during pipeline
genotyping, applying left-normalization of multiallelic
variants. Parental data were used to determine the phase
of variants in the probands. The parents of 54 probands
served as a control population, excluding the parents of
the proband who was examined. Under the assumption
that all indels identified by Pindel are in heterozygous
state, we applied the thresholds as stated above.

Additional file

Additional file 1: Table S1. Coverage of exons in 54 probands. Table
S2. Genes with low coverage exons in all 54 probands. (XLSX 9613 kb)

Acknowledgements
We thank our patients and their families for their participation in the UDP,
and we appreciate the contributions of our dedicated clinical team
members. Special thanks to the bioinformatics team.

Du et al. BMC Medical Genomics  (2016) 9:56 Page 9 of 11

http://evs.gs.washington.edu/EVS/
dx.doi.org/10.1186/s12920-016-0216-3


Funding
This research is supported by the Intramural Research Program of the
National Human Genome Research Institute and the Common Fund of the
National Institutes of Health.

Availability of data and materials
All genomic data is in the process of being submitted to dbGaP. Once the
submission is complete, the authors would be happy to supply a specific
dbGaP Project ID on request.

Authors’ contributions
CD, BNP, CCL, TCM and DRM designed the study. CD, BNP, CJA and WPB
wrote code for data analysis. CD, BNP and DRA interpreted data. CD, WAG,
TCM and DRA wrote the manuscript. All authors reviewed and approved the
final manuscript.

Competing interests
The authors declare that they have no competing interest.

Consent for publication
Not applicable since this manuscript does not contain any individual
person’s data.

Ethics approval and consent to participate
Patients of the UDP were enrolled in clinical protocol 76-HG-0238, “Diagnosis
and Treatment of Patients with Inborn Errors of Metabolism and Other Gen-
etic Disorders”, approved by the Institutional Review Board of the National
Human Genome Research Institute (NHGRI), and gave written informed
consent.

Received: 30 November 2015 Accepted: 5 August 2016

References
1. Gahl WA, Boerkoel CF, Boehm M. The NIH Undiagnosed Diseases Program:

bonding scientists and clinicians. Disse models & mechanisms. 2012;5(1):3–5.
doi:10.1242/dmm.009258.

2. Gahl WA, Markello TC, Toro C, Fajardo KF, Sincan M, Gill F, et al. The
National Institutes of Health Undiagnosed Diseases Program: insights into
rare diseases. Genetics in medicine : official journal of the American College
of Medical Genetics. 2012;14(1):51–9. doi:10.1038/gim.0b013e318232a005.

3. Gahl WA, Tifft CJ. The NIH Undiagnosed Diseases Program: lessons learned.
Jama. 2011;305(18):1904–5. doi:10.1001/jama.2011.613.

4. Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, et al.
Targeted capture and massively parallel sequencing of 12 human exomes.
Nature. 2009;461(7261):272–6. doi:10.1038/nature08250.

5. Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve
HI, et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki
syndrome. Nat Genet. 2010;42(9):790–3. doi:10.1038/ng.646.

6. Chong JX, Buckingham KJ, Jhangiani SN, Boehm C, Sobreira N, Smith JD,
et al. The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges,
and Opportunities. Am J Hum Genet. 2015;97(2):199–215. doi:10.1016/j.ajhg.
2015.06.009.

7. Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, Ward PA, et al. Clinical
whole-exome sequencing for the diagnosis of mendelian disorders. N Engl
J Med. 2013;369(16):1502–11. doi:10.1056/NEJMoa1306555.

8. Farwell KD, Shahmirzadi L, El-Khechen D, Powis Z, Chao EC, Tippin Davis B,
et al. Enhanced utility of family-centered diagnostic exome sequencing with
inheritance model-based analysis: results from 500 unselected families with
undiagnosed genetic conditions. Genet Med. 2015;17(7):578–86. doi:10.
1038/gim.2014.154.

9. Markello TC, Han T, Carlson-Donohoe H, Ahaghotu C, Harper U, Jones M,
et al. Recombination mapping using Boolean logic and high-density SNP
genotyping for exome sequence filtering. Mol Genet Metab. 2012;105(3):
382–9. doi:10.1016/j.ymgme.2011.12.014.

10. MacArthur DG, Manolio TA, Dimmock DP, Rehm HL, Shendure J, Abecasis
GR, et al. Guidelines for investigating causality of sequence variants in
human disease. Nature. 2014;508(7497):469–76. doi:10.1038/nature13127.

11. Wright CF, Fitzgerald TW, Jones WD, Clayton S, McRae JF, van Kogelenberg
M, et al. Genetic diagnosis of developmental disorders in the DDD study: a

scalable analysis of genome-wide research data. Lancet. 2015;385(9975):
1305–14. doi:10.1016/S0140-6736(14)61705-0.

12. Robinson PN, Kohler S, Bauer S, Seelow D, Horn D, Mundlos S. The Human
Phenotype Ontology: a tool for annotating and analyzing human hereditary
disease. Am J Hum Genet. 2008;83(5):610–5. doi:10.1016/j.ajhg.2008.09.017.

13. Zhi D, Chen R. Statistical guidance for experimental design and data analysis of
mutation detection in rare monogenic mendelian diseases by exome
sequencing. PloS one. 2012;7(2):e31358. doi:10.1371/journal.pone.0031358.

14. Adams DR, Sincan M, Fuentes Fajardo K, Mullikin JC, Pierson TM, Toro C,
et al. Analysis of DNA sequence variants detected by high-throughput
sequencing. Human mutation. 2012;33(4):599–608. doi:10.1002/humu.22035.

15. Roach JC, Glusman G, Smit AF, Huff CD, Hubley R, Shannon PT, et al.
Analysis of genetic inheritance in a family quartet by whole-genome
sequencing. Science. 2010;328(5978):636–9. doi:10.1126/science.1186802.

16. Stenson PD, Mort M, Ball EV, Shaw K, Phillips A, Cooper DN. The
Human Gene Mutation Database: building a comprehensive mutation
repository for clinical and molecular genetics, diagnostic testing and
personalized genomic medicine. Hum Genet. 2014;133(1):1–9. doi:10.
1007/s00439-013-1358-4.

17. Agrawal A, Hamvas A, Cole FS, Wambach JA, Wegner D, Coghill C, et al. An
intronic ABCA3 mutation that is responsible for respiratory disease. Pediatr
Res. 2012;71(6):633–7. doi:10.1038/pr.2012.21.

18. Harland M, Mistry S, Bishop DT, Bishop JA. A deep intronic mutation in
CDKN2A is associated with disease in a subset of melanoma pedigrees.
Hum Mol Genet. 2001;10(23):2679–86.

19. Vache C, Besnard T, le Berre P, Garcia-Garcia G, Baux D, Larrieu L, et al. Usher
syndrome type 2 caused by activation of an USH2A pseudoexon: implications for
diagnosis and therapy. Hum Mutat. 2012;33(1):104–8. doi:10.1002/humu.21634.

20. Yu F, Lu J, Liu X, Gazave E, Chang D, Raj S, et al. Population genomic
analysis of 962 whole genome sequences of humans reveals natural
selection in non-coding regions. PloS One. 2015;10(3):e0121644. doi:10.
1371/journal.pone.0121644.

21. Mele C, Lemaire M, Iatropoulos P, Piras R, Bresin E, Bettoni S, et al.
Characterization of a New DGKE Intronic Mutation in Genetically Unsolved
Cases of Familial Atypical Hemolytic Uremic Syndrome. Clin J Am Soc
Nephrol: CJASN. 2015;10(6):1011–9. doi:10.2215/CJN.08520814.

22. Guo Y, Long J, He J, Li CI, Cai Q, Shu XO, et al. Exome sequencing generates
high quality data in non-target regions. BMC Genomics. 2012;13:194. doi:10.
1186/1471-2164-13-194.

23. Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. A general
framework for estimating the relative pathogenicity of human genetic
variants. Nat Genet. 2014;46(3):310–5. doi:10.1038/ng.2892.

24. de Ligt J, Boone PM, Pfundt R, Vissers LE, Richmond T, Geoghegan J, et al.
Detection of clinically relevant copy number variants with whole-exome
sequencing. Hum Mutat. 2013;34(10):1439–48. doi:10.1002/humu.22387.

25. Fromer M, Moran JL, Chambert K, Banks E, Bergen SE, Ruderfer DM, et al.
Discovery and statistical genotyping of copy-number variation from whole-
exome sequencing depth. Am J Hum Genet. 2012;91(4):597–607. doi:10.
1016/j.ajhg.2012.08.005.

26. Plagnol V, Curtis J, Epstein M, Mok KY, Stebbings E, Grigoriadou S, et al. A
robust model for read count data in exome sequencing experiments and
implications for copy number variant calling. Bioinformatics. 2012;28(21):
2747–54. doi:10.1093/bioinformatics/bts526.

27. Le Scouarnec S, Gribble SM. Characterising chromosome rearrangements:
recent technical advances in molecular cytogenetics. Heredity. 2012;108(1):
75–85. doi:10.1038/hdy.2011.100.

28. Challis D, Antunes L, Garrison E, Banks E, Evani US, Muzny D, et al. The
distribution and mutagenesis of short coding INDELs from 1,128 whole
exomes. BMC Genomics. 2015;16:143. doi:10.1186/s12864-015-1333-7.

29. Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: a pattern growth
approach to detect break points of large deletions and medium sized
insertions from paired-end short reads. Bioinformatics. 2009;25(21):2865–71.
doi:10.1093/bioinformatics/btp394.

30. Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, et al. A
map of human genome variation from population-scale sequencing.
Nature. 2010;467(7319):1061–73. doi:10.1038/nature09534.

31. Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE,
et al. An integrated map of genetic variation from 1,092 human genomes.
Nature. 2012;491(7422):56–65. doi:10.1038/nature11632.

32. Lelieveld SH, Spielmann M, Mundlos S, Veltman JA, Gilissen C. Comparison
of Exome and Genome Sequencing Technologies for the Complete Capture

Du et al. BMC Medical Genomics  (2016) 9:56 Page 10 of 11

http://dx.doi.org/10.1242/dmm.009258
http://dx.doi.org/10.1038/gim.0b013e318232a005
http://dx.doi.org/10.1001/jama.2011.613
http://dx.doi.org/10.1038/nature08250
http://dx.doi.org/10.1038/ng.646
http://dx.doi.org/10.1016/j.ajhg.2015.06.009
http://dx.doi.org/10.1016/j.ajhg.2015.06.009
http://dx.doi.org/10.1056/NEJMoa1306555
http://dx.doi.org/10.1038/gim.2014.154
http://dx.doi.org/10.1038/gim.2014.154
http://dx.doi.org/10.1016/j.ymgme.2011.12.014
http://dx.doi.org/10.1038/nature13127
http://dx.doi.org/10.1016/S0140-6736(14)61705-0
http://dx.doi.org/10.1016/j.ajhg.2008.09.017
http://dx.doi.org/10.1371/journal.pone.0031358
http://dx.doi.org/10.1002/humu.22035
http://dx.doi.org/10.1126/science.1186802
http://dx.doi.org/10.1007/s00439-013-1358-4
http://dx.doi.org/10.1007/s00439-013-1358-4
http://dx.doi.org/10.1038/pr.2012.21
http://dx.doi.org/10.1002/humu.21634
http://dx.doi.org/10.1371/journal.pone.0121644
http://dx.doi.org/10.1371/journal.pone.0121644
http://dx.doi.org/10.2215/CJN.08520814
http://dx.doi.org/10.1186/1471-2164-13-194
http://dx.doi.org/10.1186/1471-2164-13-194
http://dx.doi.org/10.1038/ng.2892
http://dx.doi.org/10.1002/humu.22387
http://dx.doi.org/10.1016/j.ajhg.2012.08.005
http://dx.doi.org/10.1016/j.ajhg.2012.08.005
http://dx.doi.org/10.1093/bioinformatics/bts526
http://dx.doi.org/10.1038/hdy.2011.100
http://dx.doi.org/10.1186/s12864-015-1333-7
http://dx.doi.org/10.1093/bioinformatics/btp394
http://dx.doi.org/10.1038/nature09534
http://dx.doi.org/10.1038/nature11632


of Protein-Coding Regions. Human Mutation. 2015;36(8):815–22. doi:10.
1002/humu.22813.

33. Meienberg J, Zerjavic K, Keller I, Okoniewski M, Patrignani A, Ludin K, et al.
New insights into the performance of human whole-exome capture
platforms. Nucleic Acids Res. 2015;43(11):e76. doi:10.1093/nar/gkv216.

34. Gudbjartsson DF, Helgason H, Gudjonsson SA, Zink F, Oddson A, Gylfason A,
et al. Large-scale whole-genome sequencing of the Icelandic population.
Nat Genet. 2015;47(5):435–44. doi:10.1038/ng.3247.

35. Green RC, Berg JS, Grody WW, Kalia SS, Korf BR, Martin CL, et al. ACMG
recommendations for reporting of incidental findings in clinical exome and
genome sequencing. Genet Med. 2013;15(7):565–74. doi:10.1038/gim.2013.73.

36. Park JY, Clark P, Londin E, Sponziello M, Kricka LJ, Fortina P. Clinical exome
performance for reporting secondary genetic findings. Clin Chem. 2015;
61(1):213–20. doi:10.1373/clinchem.2014.231456.

37. Meynert AM, Ansari M, FitzPatrick DR, Taylor MS. Variant detection sensitivity
and biases in whole genome and exome sequencing. BMC Bioinformatics.
2014;15:247. doi:10.1186/1471-2105-15-247.

38. Brand H, Pillalamarri V, Collins RL, Eggert S, O'Dushlaine C, Braaten EB, et al.
Cryptic and complex chromosomal aberrations in early-onset
neuropsychiatric disorders. Am J Hum Genet. 2014;95(4):454–61. doi:10.
1016/j.ajhg.2014.09.005.

39. Gilissen C, Hehir-Kwa JY, Thung DT, van de Vorst M, van Bon BW, Willemsen
MH, et al. Genome sequencing identifies major causes of severe intellectual
disability. Nature. 2014;511(7509):344–7. doi:10.1038/nature13394.

40. Usdin K. The biological effects of simple tandem repeats: lessons from the
repeat expansion diseases. Genome research. 2008;18(7):1011–9. doi:10.
1101/gr.070409.107.

41. Zavodna M, Bagshaw A, Brauning R, Gemmell NJ. The accuracy, feasibility
and challenges of sequencing short tandem repeats using next-generation
sequencing platforms. PloS One. 2014;9(12), e113862. doi:10.1371/journal.
pone.0113862.

42. English AC, Salerno WJ, Hampton OA, Gonzaga-Jauregui C, Ambreth S,
Ritter DI, et al. Assessing structural variation in a personal genome-towards
a human reference diploid genome. BMC Genomics. 2015;16:286. doi:10.
1186/s12864-015-1479-3.

43. Lv J, Liu H, Su J, Wu X, Liu H, Li B, et al. DiseaseMeth: a human disease
methylation database. Nucleic Acids Res. 2012;40(Database issue):D1030–5.
doi:10.1093/nar/gkr1169.

44. Robertson KD. DNA methylation and human disease. Nat Rev Genet. 2005;
6(8):597–610. doi:10.1038/nrg1655.

45. Solyom S, Kazazian Jr HH. Mobile elements in the human genome:
implications for disease. Genome Med. 2012;4(2):12. doi:10.1186/gm311.

46. Bickmore WA. The spatial organization of the human genome. Annu
Rev Genomics Hum Genet. 2013;14:67–84. doi:10.1146/annurev-genom-
091212-153515.

47. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. Topological domains in
mammalian genomes identified by analysis of chromatin interactions.
Nature. 2012;485(7398):376–80. doi:10.1038/nature11082.

48. Lupianez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, Klopocki E, et al. Disruptions
of topological chromatin domains cause pathogenic rewiring of gene-enhancer
interactions. Cell. 2015;161(5):1012–25. doi:10.1016/j.cell.2015.04.004.

49. Sobreira N, Schiettecatte F, Valle D, Hamosh A. GeneMatcher: A Matching
Tool for Connecting Investigators with an Interest in the Same Gene.
Human mutation. 2015. doi:10.1002/humu.22844.

50. Robinson PN, Kohler S, Oellrich A, Wang K, Mungall CJ, Lewis SE, et al. Improved
exome prioritization of disease genes through cross-species phenotype
comparison. Genome Res. 2014;24(2):340–8. doi:10.1101/gr.160325.113.

51. Buske OJ, Girdea M, Dumitriu S, Gallinger B, Hartley T, Trang H et al.
PhenomeCentral: A Portal for Phenotypic and Genotypic Matchmaking
of Patients with Rare Genetic Diseases. Human Mutat. 2015. doi:10.1002/
humu.22851.

52. Bone WP, Washington NL, Buske OJ, Adams DR, Davis J, Draper D, et al.
Computational evaluation of exome sequence data using human and
model organism phenotypes improves diagnostic efficiency. Genetics in
medicine : official journal of the American College of Medical Genetics.
2015. doi:10.1038/gim.2015.137.

53. Kohler S, Doelken SC, Mungall CJ, Bauer S, Firth HV, Bailleul-Forestier I, et al.
The Human Phenotype Ontology project: linking molecular biology and
disease through phenotype data. Nucleic Acids Res. 2014;42(Database
issue):D966–74. doi:10.1093/nar/gkt1026.

54. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al.
The Genome Analysis Toolkit: a MapReduce framework for analyzing next-
generation DNA sequencing data. Genome Res. 2010;20(9):1297–303. doi:10.
1101/gr.107524.110.

55. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A
framework for variation discovery and genotyping using next-generation
DNA sequencing data. Nat Genet. 2011;43(5):491–8. doi:10.1038/ng.806.

56. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-
Moonshine A et al. From FastQ data to high confidence variant calls: the
Genome Analysis Toolkit best practices pipeline. Current protocols in
bioinformatics / editoral board, Andreas D Baxevanis [et al.]. 2013;11(1110):
11 0 1- 0 33. doi:10.1002/0471250953.bi1110s43.

57. Cingolani P, Platts A, le Wang L, Coon M, Nguyen T, Wang L, et al. A
program for annotating and predicting the effects of single nucleotide
polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster
strain w1118; iso-2; iso-3. Fly. 2012;6(2):80–92. doi:10.4161/fly.19695.

58. Farrell CM, O'Leary NA, Harte RA, Loveland JE, Wilming LG, Wallin C,
et al. Current status and new features of the Consensus Coding
Sequence database. Nucleic Acids Res. 2014;42(Database issue):D865–72.
doi:10.1093/nar/gkt1059.

59. Pruitt KD, Harrow J, Harte RA, Wallin C, Diekhans M, Maglott DR, et al. The
consensus coding sequence (CCDS) project: Identifying a common protein-
coding gene set for the human and mouse genomes. Genome research.
2009;19(7):1316–23. doi:10.1101/gr.080531.108.

60. Harte RA, Farrell CM, Loveland JE, Suner MM, Wilming L, Aken B et al.
Tracking and coordinating an international curation effort for the CCDS
Project. Database : the journal of biological databases and curation. 2012;
2012:bas008. doi:10.1093/database/bas008.

61. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The
Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):
2078–9. doi:10.1093/bioinformatics/btp352.

62. Li H. A statistical framework for SNP calling, mutation discovery, association
mapping and population genetical parameter estimation from sequencing
data. Bioinformatics. 2011;27(21):2987–93. doi:10.1093/bioinformatics/btr509.

63. Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, et al.
The UCSC Table Browser data retrieval tool. Nucleic Acids Res. 2004;
32(Database issue):D493–6. doi:10.1093/nar/gkh103.

64. Newcombe RG. Interval estimation for the difference between independent
proportions: comparison of eleven methods. Stat Med. 1998;17(8):873–90.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Du et al. BMC Medical Genomics  (2016) 9:56 Page 11 of 11

http://dx.doi.org/10.1002/humu.22813
http://dx.doi.org/10.1002/humu.22813
http://dx.doi.org/10.1093/nar/gkv216
http://dx.doi.org/10.1038/ng.3247
http://dx.doi.org/10.1038/gim.2013.73
http://dx.doi.org/10.1373/clinchem.2014.231456
http://dx.doi.org/10.1186/1471-2105-15-247
http://dx.doi.org/10.1016/j.ajhg.2014.09.005
http://dx.doi.org/10.1016/j.ajhg.2014.09.005
http://dx.doi.org/10.1038/nature13394
http://dx.doi.org/10.1101/gr.070409.107
http://dx.doi.org/10.1101/gr.070409.107
http://dx.doi.org/10.1371/journal.pone.0113862
http://dx.doi.org/10.1371/journal.pone.0113862
http://dx.doi.org/10.1186/s12864-015-1479-3
http://dx.doi.org/10.1186/s12864-015-1479-3
http://dx.doi.org/10.1093/nar/gkr1169
http://dx.doi.org/10.1038/nrg1655
http://dx.doi.org/10.1186/gm311
http://dx.doi.org/10.1146/annurev-genom-091212-153515
http://dx.doi.org/10.1146/annurev-genom-091212-153515
http://dx.doi.org/10.1038/nature11082
http://dx.doi.org/10.1016/j.cell.2015.04.004
http://dx.doi.org/10.1002/humu.22844
http://dx.doi.org/10.1101/gr.160325.113
http://dx.doi.org/10.1002/humu.22851
http://dx.doi.org/10.1002/humu.22851
http://dx.doi.org/10.1038/gim.2015.137
http://dx.doi.org/10.1093/nar/gkt1026
http://dx.doi.org/10.1101/gr.107524.110
http://dx.doi.org/10.1101/gr.107524.110
http://dx.doi.org/10.1038/ng.806
http://dx.doi.org/10.1002/0471250953.bi1110s43
http://dx.doi.org/10.4161/fly.19695
http://dx.doi.org/10.1093/nar/gkt1059
http://dx.doi.org/10.1101/gr.080531.108
http://dx.doi.org/10.1093/database/bas008
http://dx.doi.org/10.1093/bioinformatics/btp352
http://dx.doi.org/10.1093/bioinformatics/btr509
http://dx.doi.org/10.1093/nar/gkh103

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Patients
	Ascertainment of family members
	Exome coverage
	Non-exonic variants
	Medium-sized indel calling

	Discussion
	Conclusions
	Methods
	Patients
	Exome sequencing and analysis
	Coverage analysis
	Non-exonic variants
	Medium-sized structural variants in exome sequencing

	Additional file
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	References

