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Many structures are subjected to variable amplitude loading in engineering practice.The foundation of fatigue life prediction under
variable amplitude loading is how to deal with the fatigue damage accumulation. A nonlinear fatigue damage accumulation model
to consider the effects of load sequences was proposed in earlier literature, but the model cannot consider the load interaction
effects, and sometimes it makes a major error. A modified nonlinear damage accumulation model is proposed in this paper to
account for the load interaction effects. Experimental data of two metallic materials are used to validate the proposed model. The
agreement between the model prediction and experimental data is observed, and the predictions by proposed model are more
possibly in accordance with experimental data than that by primary model and Miner’s rule. Comparison between the predicted
cumulative damage by the proposedmodel and an existingmodel shows that the proposedmodel predictions canmeet the accuracy
requirement of the engineering project and it can be used to predict the fatigue life of welded aluminum alloy joint of Electric
Multiple Units (EMU); meanwhile, the accuracy of approximation can be obtained from the proposed model though more simple
computing process and less material parameters calling for extensive testing than the existing model.

1. Introduction

Many mechanical components experiencing cyclic loading
with variable amplitude are prone to fail due to fatigue; thus,
fatigue life prediction of these mechanical components has
become a focal research issue. Fatigue life prediction sub-
jected to variable amplitude loading is a complex problem in
engineering practices. Compared to constant amplitude load-
ing, it is much more intractable to deal with this sort of prob-
lem. Among the problems of fatigue life prediction, one of the
most important and rudimentary ones is the modeling of
fatigue damage accumulation [1].

Currently, the models used to describe fatigue damage
accumulation can be classified into two categories: the linear
and nonlinear approaches. Palmgren-Miner rule (just the
Miner’s rule for short) is the epitome of linear damage accu-
mulation approach and receives extensive usage in engineer-
ing machinery due to its simplicity [2]. The drawback of the
Miner’s rule is the hypothesis that damage accumulation has
nothing to do with the load conditions, the load sequences,

the interaction between various loads, and the damage
induced by stresses below the fatigue limit [3]. To remedy the
drawback of the Miner’s rule, many fatigue damage accumu-
lation methods have been proposed and a majority of these
models are based on nonlinear accumulation laws.

The nonlinear fatigue damage accumulation models can
be classified into the following categories: damage curve
based approaches [4], continuum damage mechanics models
[5–8], interaction between various loads considered models
[9–11], energy based methods [12–16], physical properties
degradation based model [14, 17, 18], ductility exhaustion
based methods [19, 20], and thermodynamic entropy based
theories [21, 22]. Detailed comments on these models can be
found in [23].

In general, load sequences and interaction effects are two
important issues in the fatigue damage accumulation. A non-
linear fatigue damage accumulation model which is on the
basis of damage curve approach explains the influence of load
sequences very well, but there is little illustration about load
interaction effects. The purpose of this paper is to propose
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a modified nonlinear fatigue damage accumulation model
based ondamage curve approach to consider the load interac-
tion effects.The structure of this paper is organized as follows.
A nonlinear fatigue damage accumulation model proposed
by Manson and Halford [4] is briefly introduced and the
comparison between predicted results through this model
and experimental data of two metallic materials is made to
provide a fundamental basis for proposing amodifiedmodel.
Then, the same sets of experimental data are used to validate
the proposed model under two-level load conditions. Finally,
comparison analysis of predictions by the proposed model
and two existing models is carried out for further validating
the accuracy of the modified model.

2. Nonlinear Fatigue Damage Accumulation
Model Based on Damage Curve Approach

2.1. Nonlinear Fatigue Damage Accumulation Model Based on
Damage Curve Approach. Early in 1954, Marco and Starkey
[24] proposed a nonlinear fatigue damage accumulation
model; subsequently, a lot of research work had been car-
ried out and the approaches also were continuously being
improved. A damage accumulation model based on damage
curve approach proposed by Manson and Halford (just the
Manson-Halford model for short) is investigated in this
section; the effects of load sequences under two-level loading
are explained very well by this model.The detailed derivation
process can be found in [4]; only a brief introduction is given
in this section.

Manson and Halford obtained the expression of crack
length through detailed deducing, which can be expressed by
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The nonlinear fatigue damage accumulationmodel under
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According to the damage characteristic of materials, the
accumulated damage at point 𝐴 is equal to that at point 𝐵.
Through equating (3), the following expression can be
obtained; that is, tomake the damage increase from 0 to point
𝐵 along with the damage curve Γ

2
, the following cycle ratio is

needed:
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Similarly, the total cycle ratio after the action of the
loading stress 𝜎
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Assuming that the sum of (6) is equal to unity, fatigue
failure occurs. By analogy, the damage accumulation rule
under multilevel loading can be described as
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where the subscripts 1, 2, 3, . . . , 𝑖 − 1, 𝑖 are the sequence
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When the loading stress applied at all levels is equal to
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be simplified into the Miner’s rule.

For Manson-Halford model, the exponent parameter 𝛼 is
a key factor which can produce more accurate results if 𝛼 is
determined adequately. The detailed deterministic process of
exponent parameter𝛼 and thematerial constant 0.4was given
by Manson and Halford based on the concept of effective
microcosmic crack growth [4].

2.2. Comparison of Experimental Data and the Model Predic-
tion Results. In this section, the predicted damage results of
two different materials are obtained using Manson-Halford
model. Twomaterials, that is, 45 and 16Mn steels, respectively,
are used and tests are carried out under two-level loading,
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Table 1: Experimental data and the predicted results of 45 steel.

Loading stress level/Mpa Load sequences 𝑛
1

𝑛
1
/𝑁
𝑓1

𝑛
2

𝑛
2
/𝑁
𝑓2

(E.) 𝑛
2
/𝑁
𝑓2

(P.) Error/%

331.46–284.4 High-low
12,500 0.250 250,400 0.5008 0.4241 −15.32
25,000 0.500 168,300 0.3366 0.2411 −28.37
37,500 0.750 64,500 0.1290 0.1082 −16.12

284.4–331.46 Low-high
12,500 0.250 37,900 0.7580 0.9693 27.88
250,000 0.500 38,900 0.7780 0.8247 6.00
375,000 0.750 43,400 0.8680 0.5145 −40.73

Table 2: Experimental data and the predicted results of 16Mn steel.

Loading stress level/Mpa Load sequences 𝑛
1

𝑛
1
/𝑁
𝑓1

𝑛
2

𝑛
2
/𝑁
𝑓2

(E.) 𝑛
2
/𝑁
𝑓2

(P.) Error/%

562.9–392.3 High-low
1000 0.2520 56,300 0.7154 0.3411 −37.43
1700 0.4284 476,000 0.6048 0.2263 −62.57
2450 0.6174 22,900 0.2910 0.1358 −53.33

372.65–392.3 Low-high
64,400 0.240 62,800 0.7980 0.9028 13.13
116,000 0.433 62,900 0.7990 0.7449 −6.77
150,000 0.560 23,300 0.2960 0.6118 106.69

that is, high-low and low-high loading. For 45 steel, the
high-low loading spectrum is 331.46–284.4Mpa, while the
low-high loading spectrum is 284.4–331.46Mpa. For 16Mn
steel, the high-low and low-high loading spectra are 562.9–
392.3Mpa and 372.65–392.3Mpa, respectively. More details
can be found in [25–27].

According to (7) and (8), the damage accumulationmodel
under two-level loading can be expressed as
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where 𝑛
1
, 𝑛
2
indicate the number of cycles at the 1st and 2nd

loading stress levels, and 𝑁
𝑓1

and 𝑁
𝑓2

represent the fatigue
failure life at the corresponding load levels, respectively.

Thus, the cycle ratio predictions at the 2nd loading stress
level can be obtained from (9) and (10).The experimental data
and the model prediction results are listed in Tables 1 and 2.
The abbreviations in these two tables are explained as follows:
the “E.” and “P.” represent experimental andmodel prediction
results, respectively.

Comparing the experimental data with themodel predic-
tion results of Manson-Halfordmodel, it is obvious that most
predicted results are close to the experimental data. As shown
in Figures 1 and 2, it should be noted that they are relatively
close to practical situation. It needs to be pointed out that in
this paper, the “𝐴-𝐵”-shaped format in the figures indicates
that the loading stress level changes from “𝐴Mpa” to “𝐵Mpa.”
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Figure 1: Comparison of Manson-Halford model prediction results
and experimental data for 45 steel.

3. A Modified Nonlinear Fatigue
Damage Accumulation Model Considering
the Load Interaction Effects

As shown in Tables 1 and 2, the Manson-Halford model
prediction results are relatively close to the experimental data.
However, it should be noted that there is a large difference
between the experimental data and predicted value for 16Mn
steel. Meanwhile, under high-low loading conditions, the
predicted results are lower than experiment data, and most
predictions are larger than practical value under low-high
loading conditions. This may be caused by considering
load sequences only without laying enough emphasis on
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Figure 2: Comparison ofManson-Halfordmodel prediction results
and experimental data for 16Mn steel.

the influence of load interaction.Therefore, Manson-Halford
model will be modified in this paper to consider the load
interaction effects and aforementioned problems.

Based onManson-Halfordmodel, Xu et al. [28] suggested
that the exponent parameter 𝛼

𝑖−1,𝑖
should be modified to

include load amplitude and effective stress related to loading
path, whereas in (7)-(8), only the effects of load sequences
had been taken into account.Moreover, in view of the current
situation that some existing models, such as Corten-Dolan
model and Freudenthal-Heller model, are in the form of
load amplitude ratio to consider the load interaction effects
[10, 29], hence refer to the models in [10, 28, 29], to consider
the effects of load interaction and error distribution, the
exponent parameter 𝛼

𝑖−1,𝑖
can be modified as
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Then the damage accumulation model under two-level
loading can be described as

(

𝑛
1

𝑁
𝑓1

)

𝛼

+

𝑛
2

𝑁
𝑓2

= 1, (12)

where

𝛼 = (

𝑁
𝑓1

𝑁
𝑓2

)

0.4⋅min{𝜎1/𝜎2 ,𝜎2/𝜎1}

. (13)

For high-low loading conditions, 0 < 𝑁
𝑓1
/𝑁
𝑓2

< 1; then
0 < 𝛼 < 1; therefore, the damage caused by the 2nd loading
stress level should meet the following expression:

𝑛
2

𝑁
𝑓2

= 1 − (

𝑛
1

𝑁
𝑓1

)

𝛼

< 1 −

𝑛
1

𝑁
𝑓1

. (14)

Hence, the cumulative damage under high-low loading con-
ditions is

𝑛
1

𝑁
𝑓1

+

𝑛
2

𝑁
𝑓2

=

𝑛
1

𝑁
𝑓1

+ 1 − (

𝑛
1

𝑁
𝑓1

)

𝛼

< 1. (15)

Similarly, for low-high loading conditions,𝑁
𝑓1
/𝑁
𝑓2

> 1,
𝛼 > 1; then 𝑛

2
/𝑁
𝑓2

= 1− (𝑛
1
/𝑁
𝑓1
)
𝛼
> 1− (𝑛

1
/𝑁
𝑓1
); thus, the

cumulative damage under low-high loading conditions is

𝑛
1

𝑁
𝑓1

+

𝑛
2

𝑁
𝑓2

=

𝑛
1

𝑁
𝑓1

+ 1 − (

𝑛
1

𝑁
𝑓1

)

𝛼

> 1. (16)

Therefore, the model mentioned above reflects the non-
linearity of damage accumulation and takes the effects of load
sequences and load interaction into account simultaneously.

4. Validation of the Proposed Model

4.1. Validation Study 1. Theexperimental data adopted here is
still the data sets used in Section 2.The comparison of experi-
mental data and the model prediction results by theManson-
Halford model and proposed model can be seen in Figures
3 and 4 (“M-H model” refers to Manson-Halford model and
“P. model” represents the proposed model). The results show
that nearly 80% of proposed model predictions are better
than that by the Manson-Halford model, and the inaccuracy
under high-low and low-high loading conditions has been
both reduced; this indicates that the predictions by proposed
model aremore possibly in accordance with the experimental
data. Furthermore, Figure 3 shows the predicted results by
the Miner’s rule for 45 steel; it can be seen that the errors
between the prediction results by proposed model and
experimental value are smaller than that by Miner’s rule.
Thus, the proposed model has a better prediction than the
Manson-Halford model and Miner’s rule.

4.2. Validation Study 2. Nowadays, the requirements of high
speed are the prospects and development trends of railway
passenger, and the high-speed railway also has become an
important symbol of modernization of national railway. As
a kind of green transportation, the safety and reliability
problems of high-speed train are concerned by researchers,
although the advantages are well known to everyone. At
present, all high-speed passenger car bogie frame and car
body have steel and aluminum alloy welded structures, since
the self-weight of train structure needs to be considerably
reduced, but due to the harsh load conditions and the inher-
ent weld defect such as geometric irregularity nonmetallic
inclusion, residual stress, and heat-affected zone (HAZ),
welded joints have been turned into the major failure areas of
high-speed train structures [30]. Aluminum alloy materials
are widely used in the structures of trains, ships, construc-
tions, and so forth because of their low density, high strength,
and inoxidability. Therefore, it is of great significance for
better fatigue-life prediction of high-speed train and making
sure of its safe operation to figure out an appropriate fatigue
damage accumulation method for welded aluminum alloy
joint.
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Table 3: Experimental data and comparison results of cumulative damage predictions by the proposed model and existing model for butt
joint.

Load mode 𝜎
1
/Mpa 𝜎

2
/Mpa 𝑛

1
/103 𝑛

2
/103 𝑁

𝑓1
𝑁
𝑓2

𝐷 (by the existing model [31]) 𝐷 (by the proposed model)
Mode 1 104 74 109.9 797.6 549,300 1,540,100 0.9260 0.8988
Mode 2 89 74 176.1 1029.2 880,500 1,540,100 1.0810 0.9372
Mode 3 74 89 770.1 545.6 1,540,100 880,500 0.9290 1.0660
Mode 4 74 104 770.1 418.9 1,540,100 549,300 1.0140 1.1053

Table 4: Experimental data and comparison results of cumulative damage predictions by the proposed model and existing model for fillet
joint.

Load mode 𝜎
1
/Mpa 𝜎

2
/Mpa 𝑛

1
/103 𝑛

2
/103 𝑁

𝑓1
𝑁
𝑓2

𝐷 (by the existing model in [31]) 𝐷 (by the proposed model)
Mode 5 93 73 309.9 587.5 619,800 1,546,100 1.0140 0.9056
Mode 6 83 73 476.1 681.1 952,300 1,546,100 1.0270 0.9426
Mode 7 73 83 509.2 708.2 1,546,100 952,300 0.9930 1.0614
Mode 8 73 93 773.0 426.4 1,546,100 619,800 1.0670 1.1029
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Figure 3: Comparison of prediction results of the proposed model,
Miner’s rule, and experimental data for 45 steel.

In the light of the above, experimental data of welded
aluminum alloy joint of Electric Multiple Units (EMU) are
used in this section to verify the applicability of the proposed
model in the fields of high-speed train. There are two sorts
of welded aluminum alloy joint used in this section, that is,
butt joint and fillet joint, and the tests are also carried out
under two-level loading. The experimental data of EMU are
listed in Tables 3 and 4. In addition, comparison between the
experimental data and predictions by proposed model and
an existing model is carried out for further validating the
accuracy of the proposed model.

According to the existing model proposed in [31], the
fatigue damage curve is

𝐷 = (

𝑛

𝑁

)

1+(log
1/2
(𝜎/𝜎𝑠))

𝑡

. (17)
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Figure 4: Comparison of prediction results of the proposed model
and experimental data for 16Mn steel.

Hence, the damage accumulation model under two-level
loading is given by

𝐷 =

2

∑

𝑖=1

𝐷
𝑖
= [

𝑛
2

𝑁
𝑓2

+ (

𝑛
1

𝑁
𝑓1

)

𝑎1/𝑎2

]

𝑎2

,

𝑎
1
= 1 + (log

1/2

𝜎
1

𝜎
𝑠

)

𝑡

,

𝑎
2
= 1 + (log

1/2

𝜎
2

𝜎
𝑠

)

𝑡

,

(18)

where 𝐷 is the cumulative damage, 𝑎
𝑖
is the life damage

exponent under the 𝑖th level load, 𝑛
1
, 𝑛
2
and 𝑁

𝑓1
, 𝑁
𝑓2

represent the same meaning as mentioned above, 𝜎
𝑠
refers to

material yield strength, and 𝑡 reflects the influence degree of
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load sequences effects of the specimen, its determination is
by means of fitting according to experimental data

As aformentioned, the cumulative damage can be cal-
culated in different way, unlike the modified model. The
comparison results of cumulative damage predictions by the
existingmodel and proposedmodel are shown inTables 3 and
4.

From Tables 3 and 4, it is obvious that the cumulative
damage predictions by the proposed model exceed unity
under low-high loading conditions, andwhen the load ampli-
tude changes from high to low level, the value is less than
unity; this verifies the nonlinearity effect of damage accumu-
lation. Moreover, note that the prediction errors of the pro-
posed model are within the range of 20%; this can meet the
accuracy requirement of the engineering project, so the pro-
posed model can accurately predict the value of critical dam-
age and it can be used to determine the fatigue-life of welded
aluminum alloy joint of Electric Multiple Units (EMU).
Furthermore, the prediction results of cumulative damage
calculated by these two models are relatively close to each
other; thus, the inaccuracy of these two models predictions
is also much close. This shows that cumulative damage pre-
dictions by the proposedmodel correspond approximately to
the prediction results by the existing model but do not need
some precise parameters related to material property and
required experimental data regression. Therefore, using the
proposed model, fatigue life prediction can be obtained with
high-precision, simple computing process and less material
parameters than the existing model.

5. Conclusion and Discussion

A modified model is presented in this paper for considering
load interaction and load sequences effects on the basis of
a nonlinear cumulative damage model, that is, Manson-
Halford model. The main achievements and conclusions can
be summarized as follows.

(1) The exponent parameter in Manson-Halford model
has beenmodified to consider the effects of load inter-
action, which can be characterized by introducing the
ratio of applied load amplitude.

(2) The experimental data of 45 steel and 16Mn steel
are used to validate the accuracy of the modified
model through comparing with the predicted results
of Manson-Halford model and the proposed model.
Through comparative analysis, it is worth noting
that the inaccuracy of the proposed model has been
reduced not only under high-low loading conditions
but also to the contrary, and nearly 80% of proposed
model predictions are better than that by Manson-
Halford model. On the other hand, the inaccuracy
caused by the proposed model is smaller than that
by Miner’s rule for 45 steel; therefore, fatigue life
prediction by the proposed model is more possibly in
accordance with the practical situation thanManson-
Halford model and Miner’s rule.

(3) Comparing cumulative damage predictions by the
proposed model with the results through an existing

model, it can be found that the prediction results of
the proposed model can reflect the nonlinearity of
damage accumulation, and this proposed model in
this paper is applicable to determine the fatigue life
of welded aluminum alloy joint of Electric Multiple
Units (EMU) because it can be used to accurately
predict the value of critical damage. Meanwhile, there
is good consistency among these two models; that
is, fatigue life prediction can be obtained with high-
precision, simple computing process and lessmaterial
parameters than the existing model.

Although the results are quite close to the experimental
data, all validations are carried out under two-level loading,
thus there is a requirement for demonstrating the validation
under multi-level and random loading conditions.
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