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This paper focuses on the global exponential synchronization problem of nonlinearly coupled complex dynamical networks with
time-varying coupling delays. Several simple and generic global exponential synchronization criteria are derived based on the
Lyapunov stability theory and the Dini derivatives using the Halanay and generalized Halanay inequalities. These criteria rely on
systemparameters alone and can be used conveniently in practical applications. In addition, the systemparameters do not satisfy the
conditions of the proposed criteria.That is, the system itself cannot synchronize. However, system synchronization can be achieved
by adding the appropriate feedback controllers, thereby providing a practical and effective control method for complex dynamical
networks. An estimationmethod of exponential convergence rate is also presented. Finally, the effectiveness of the proposed criteria
is verified through numerical simulations.

1. Introduction

Complex dynamical networks have attracted considerable
attention in the past several decades because of their potential
applications in diverse fields, such as science, engineering,
and societal systems [1–4]. In fact, a variety of real-world sys-
tems, such as the Internet, food webs, and ecological, neural,
and social networks, can be described by complex dynamical
networks. Consequently, synchronization, which is a typical
collective behavior of complex dynamical networks, has
become active popular research topic. Synchronization in
dynamical networks has been extensively investigated by
researchers from various fields [5–13].

Research on the synchronization of complex networks
has two main aspects. In some cases, complex dynamical
networks can achieve synchronization through their topo-
logical structure, communication quality, and the interaction
of the intrinsic dynamical behavior of their nodes [14–
17]. Wang and Chen [14, 15] were the first to propose a

method for measuring synchronization capability by calcu-
lating eigenvalues; that is, synchronization will be achieved
if the coupling strength is adequate. A previous study [16]
utilized a novel Lyapunov–Krasovskii function and the Kro-
necker product and discussed synchronization problems for
an array of coupled complex discrete-time networks. Huang
et al. [17] introduced the complex dynamical network model
with partial information transmission, for which certain
synchronization criteria were derived by using an efficient
decomposition method. However, the synchronization cri-
teria in most existing works contain unknown parameters,
thereby making system synchronization difficult for workers
to verify.

A control action is introduced in the dynamical node
to drive a complex dynamical network into synchronization
if the network cannot synchronize by itself. Researchers
have proposed several effective control methods, and signif-
icant conclusions have been obtained [18–25]. Guaranteed
cost synchronization for complex networks was addressed
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in [18] by designing a dynamic feedback controller with
guaranteed cost synchronization. Zhou et al. [19] investigated
the local and global adaptive synchronizations of uncertain
complex dynamical networks.Their hypotheses and adaptive
controller design for network synchronization are rather
simple in form. The global exponential synchronization of
complex-valued dynamical networks with multiple time-
varying delays and stochastic perturbations were considered
in [20] in the design of a time-delayed impulsive control
scheme. Cheng et al. [21] found that complex networks
with theWatts–Strogatz or scale-free BA random topological
architecture can be synchronized more easily than regular
systems by pin-controlling fewer nodes. Intermittent pinning
controllers were applied in [22] to synchronize interacting
clusters of linearly coupled heterogeneous linear systems
and nonlinear oscillators under a general coupling topology.
These studies use the coupling matrix between nodes to
affect synchronization, thereby creating the advantage of
fully utilizing the information between nodes. Deficiency
increases the number of adjustment parameters that affect
system synchronization.Thus, verifying system synchroniza-
tion can be difficult. However, system synchronization can
be verified easily using a method based on these findings.
This method relies only on the parameters of the system itself
and does not need any other adjustment parameter, thereby
reducing delays and providing convenience for controller
design.However, few results on this study have been reported.

The key to studying complex networks is building a net-
work model that can exactly describe a real network system.
Delays should be considered in establishing a network model
because of the finite speed of information transmission and
traffic congestion [26, 27]. Time delay commonly changes
over time during dynamic change. Fixed delay is an ideal state
of time-varying delay. Therefore, time-varying delay should
be considered when studying complex networks [28–32].

Inspired by the above discussion, this paper aims to
investigate the global exponential synchronization of a class
of complex dynamical networks with time-varying delay. We
consider a complex network model composed of nonlinear
coupling nodes and has unknown but bounded nonlinear
vector functions and time-varying delayed and nondelayed
couplings. Several simple global exponential synchronization
criteria are derived from the Lyapunov stability theory and
the Dini derivatives using the Halanay and generalized
Halanay inequalities.These criteria rely on systemparameters
alone and can be used conveniently in practical applications.
In addition, the system parameters do not satisfy the condi-
tions of the proposed criteria, that is, the system itself cannot
achieve synchronization. However, the system can be driven
to synchronize by adding appropriate feedback controllers.
These conditions provide a practical and effective control
method for complex network systems. Finally, the validity of
the proposed scheme is verified by numerical simulations.

The rest of this paper is organized as follows. Section 2
introduces the complex dynamical network model and pro-
vides certain preliminaries. Section 3 presents the criteria for
ensuring the global exponential synchronization of complex
dynamical networks with time-varying delay and an esti-
mation method for exponential convergence rate. Section 4

presents the numerical simulations used to validate the
proposed scheme. Finally, Section 5 concludes this paper.

2. Problem Formulation and Preliminaries

A complex network with 𝑁 identical time-varying delayed
dynamical nodes with nonlinear couplings is considered.
Each node of the network has 𝑛 dimensions. The state of the𝑖th node can be described as follows:

𝑥̇𝑖 (𝑡) = 𝑓 (𝑥𝑖 (𝑡)) + 𝑐1 𝑁∑
𝑗=1

𝑐𝑖𝑗𝑔𝑗 (𝑥𝑗 (𝑡))
+ 𝑐2 𝑁∑
𝑗=1

𝑑𝑖𝑗𝑔𝑗 (𝑥𝑗 (𝑡 − 𝜏 (𝑡))) , 𝑖 = 1, 2, . . . , 𝑁, (1)

where 𝑥𝑖(𝑡) = (𝑥𝑖1(𝑡), 𝑥𝑖2(𝑡), . . . , 𝑥𝑖𝑛(𝑡))𝑇 ∈ 𝑅𝑛 is the state
vector of the 𝑖th node, 𝑓(𝑥) ∈ 𝑅𝑛 is a continuously nonlinear
vector-valued function that describes the dynamics of a node,
and 𝑔(𝑥) ∈ 𝑅𝑛 is a continuous nonlinear coupling function.
The coupling time delay 𝜏(𝑡) is unknown but is bounded by
a known constant, that is, 0 ≤ 𝜏(𝑡) ≤ 𝜏, where positive
constants 𝑐1 and 𝑐2 are the coupling strengths. 𝐶 = (𝑐𝑖𝑗)𝑁×𝑁
and 𝐷 = (𝑑𝑖𝑗)𝑁×𝑁 are the coupling configuration matrices.
If node 𝑖 and 𝑗 (𝑗 ̸= 𝑖) are connected, then 𝑐𝑖𝑗 > 0, 𝑑𝑖𝑗 > 0;
otherwise, 𝑐𝑖𝑗 = 0, 𝑑𝑖𝑗 = 0. The diagonal elements of matrices𝐶 and𝐷 are defined as 𝑐𝑖𝑖 = −∑𝑁𝑗=1,𝑗 ̸=𝑖 𝑐𝑖𝑗, 𝑑𝑖𝑖 = −∑𝑁𝑗=1,𝑗 ̸=𝑖 𝑑𝑖𝑗.
Definition 1. Generally, when 𝑡 → ∞, 𝑥1(𝑡), 𝑥2(𝑡), . . . ,𝑥𝑁(𝑡) → 𝑠(𝑡). 𝑠(𝑡) ∈ 𝑅𝑛 is the solution of the following
isolated node system (2). The complex dynamic system (1)
synchronizes with the homogenous trajectorẏ𝑠 (𝑡) = 𝑓 (𝑠 (𝑡)) . (2)

Let 𝑒𝑖(𝑡) = 𝑥𝑖(𝑡)−𝑠(𝑡) be the synchronization error.We obtain
the error system on the basis of network (1) and (2) as follows:̇𝑒𝑖 (𝑡) = 𝑥̇𝑖 (𝑡) − ̇𝑠 (𝑡)

= 𝑓𝑖 (𝑥𝑖 (𝑡)) − 𝑓 (𝑠 (𝑡)) + 𝑐1 𝑁∑
𝑗=1

𝑐𝑖𝑗𝜙𝑗 (𝑒𝑗 (𝑡))
+ 𝑐2 𝑁∑
𝑗=1

𝑑𝑖𝑗𝜙𝑗 (𝑒𝑗 (𝑡 − 𝜏 (𝑡))) ,
(3)

where 𝜙𝑗(𝑒𝑗(𝑡)) = 𝑔𝑗(𝑥𝑗(𝑡)) − 𝑔(𝑠(𝑡)), 𝜙𝑗(𝑒𝑗(𝑡 − 𝜏(𝑡))) =𝑔𝑗(𝑥𝑗(𝑡 − 𝜏(𝑡))) − 𝑔(𝑠(𝑡 − 𝜏(𝑡))).
Definition 2. |𝑥𝑖(𝑡)| = (|𝑥𝑖1(𝑡)|, |𝑥𝑖2(𝑡)|, . . . , |𝑥𝑖𝑛(𝑡)|)𝑇 ∈ 𝑅𝑛,𝑖 = 1, 2, . . . , 𝑁, where |𝑥| denotes the absolute value of 𝑥.
Definition 3. A positive constant 𝛾 and vector𝑀 = (𝑚1, 𝑚2,. . . , 𝑚𝑛)𝑇 > 0 exist if the vector function 𝑒𝑖(𝑡) = (𝑒𝑖1(𝑡), 𝑒𝑖2(𝑡),. . . , 𝑒𝑖𝑛(𝑡))𝑇 ∈ 𝑅𝑛 satisfies󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝑀 exp (−𝛾𝑡) . (4)
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The error system (3) is globally and exponentially stable,
which implies that the complex dynamical network (1)
achieves global exponential synchronization.

Remark 4. If the state vector of the error system (3) satisfies
the conditions of Definition 3, then ‖𝑒𝑖(𝑡)‖ = √𝑒𝑖𝑇(𝑡)𝑒𝑖(𝑡),
where ‖⋅‖ indicates the Euclidean norm, is globally and expo-
nentially stable.

Definition 5 (see [33]). TheDini derivatives of𝑓 at 𝑡0 ∈ (𝛼, 𝛽)
for the vector-valued function 𝑓 : (𝛼, 𝛽) → 𝑅, 𝑡 → 𝑓(𝑡) are
defined as

𝐷+𝑓 (𝑡0) = lim
𝑡→𝑡0

+

sup
𝑓 (𝑡) − 𝑓 (𝑡0)𝑡 − 𝑡0 (5)

Definition 6 (see [33]). Amatrix𝐴 = (𝑎𝑖𝑗)𝑁×𝑁 is called an𝑀-
matrix if it satisfies 𝑎𝑖𝑖 > 0, 𝑎𝑖𝑗 ≤ 0, 𝑖 ̸= 𝑗, 𝐴−1 ≥ 0. According
to the𝑀-matrix property, a constant 𝜃𝑗 > 0 exists such that∑𝑁𝑗=1 𝜃𝑗𝑎𝑖𝑗 > 0, 𝑖 = 1, 2, . . . , 𝑁.
Assumption 7. Thenonlinear function𝑓(𝑥𝑖),𝑔(𝑥𝑖) is assumed
to satisfy the uniform semi-Lipschitzian condition, where
constants 𝜎𝑖 and 𝑙𝑖 satisfy

0 ≤ 𝑓 (𝜉1) − 𝑓 (𝜉2)𝜉1 − 𝜉2 ≤ 𝜎𝑖, 𝑖 = 1, 2, . . . , 𝑁,
0 ≤ 𝑔 (𝜉1) − 𝑔 (𝜉2)𝜉1 − 𝜉2 ≤ 𝑙𝑖, 𝑖 = 1, 2, . . . , 𝑁. (6)

3. Main Results

3.1. Global Exponential Synchronization of System (1)Using the
Halanay Inequality

Lemma 8 (Halanay [34]). Let 𝑤(𝑡) : [𝑡0 − 𝜏,∞) → [0,∞) be
a continuous function, where constants 𝑎 > 𝑏 > 0 exist such
that 𝑤̇ (𝑡) ≤ −𝑎𝑤 (𝑡) + 𝑏𝑤 (𝑡) (7)

holds for 𝑡 ≥ 𝑡0, in which 𝑤(𝑡) = sup𝑡−𝜏≤𝑠≤𝑡𝑤(𝑠), 𝜏 ≥ 0, and
then 𝑤 (𝑡) ≤ 𝑤 (𝑡0) exp {−𝛾 (𝑡 − 𝑡0)} , 𝑡 ≥ 𝑡0, (8)

where 𝛾 > 0 is the unique positive solution of the following
equation: 𝛾 = 𝑎 − 𝑏 exp {𝛾𝜏} . (9)

Theorem 9. Supposing that Assumption 7 holds and satisfies
the condition

min
1≤𝑖≤𝑁

(𝜀𝑐1𝑙𝑖) > max
1≤𝑖≤𝑁

(𝜎𝑖 + 𝑁∑
𝑗=1,𝑗 ̸=𝑖

𝑐1𝑙𝑖𝑐𝑖𝑗) + 2max
1≤𝑖≤𝑁

𝑐2𝜆𝑙𝑖, (10)

where 𝜆 is the maximum eigenvalue of the matrix 𝐷 =(𝑑𝑖𝑗)𝑁×𝑁, then the complex dynamical network (1) can achieve

global exponential synchronization. 𝜇/2 is the convergence
rate, where 𝜇 is the unique positive solution of the equation,𝜇 = 𝑎 − 𝑏 exp(𝜇𝑡), 𝑎 = 2(min1≤𝑖≤𝑁(𝜀𝑐1𝑙𝑖) − max1≤𝑖≤𝑁(𝜎𝑖 +∑𝑁𝑗=1,𝑗 ̸=𝑖 𝑐1𝑙𝑖𝑐𝑖𝑗 + 𝑐2𝜆𝑙𝑖/2)), 𝑏 = max1≤𝑖≤𝑁𝑐2𝜆𝑙𝑖.
Proof. The Lyapunov function is constructed as follows:

𝑉 (𝑡) = 12 𝑁∑
𝑖=1

𝑒𝑖𝑇 (𝑡) 𝑒𝑖 (𝑡) . (11)

Taking the derivative of 𝑉(𝑡) with respect to time 𝑡 along the
solutions of error system (3) yields

𝑉̇ (𝑡) = 𝑁∑
𝑖=1

𝑒𝑖𝑇 (𝑡) (𝑓 (𝑥𝑖 (𝑡)) − 𝑓 (𝑠 (𝑡)))
+ 𝑐1 𝑁∑
𝑖=1

𝑁∑
𝑗=1,𝑗 ̸=𝑖

𝑐𝑖𝑗𝑒𝑖𝑇 (𝑡) 𝜙𝑖 (𝑒𝑖 (𝑡))
+ 𝑐1 𝑁∑
𝑖=1

𝑐𝑖𝑖𝑒𝑖𝑇 (𝑡) 𝜙𝑖 (𝑒𝑖 (𝑡))
+ 𝑐2 𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑑𝑖𝑗𝑒𝑖𝑇 (𝑡) 𝜙𝑗 (𝑒𝑗 (𝑡 − 𝜏 (𝑡))) .
(12)

Assuming 𝑐11 = 𝑐22 = ⋅ ⋅ ⋅ = 𝑐𝑁𝑁 = −𝜀 < 0, the assumption
on the coupling matrix 𝐶 is not conservative. This because if𝐾 = (𝑘𝑖𝑗)𝑁×𝑁 is any squarematrix that satisfies the conditions
of the defined coupling configurationmatrices, that is, 𝑘𝑖𝑗 ≥ 0,𝑖 ̸= 𝑗, 𝑘𝑖𝑖 = −∑𝑁𝑗=1,𝑗 ̸=𝑖 𝑘𝑖𝑗 and 𝑘𝑖𝑖 ̸= 0 (𝑖 = 1, 2, . . . , 𝑁),
then all diagonal entries of the matrix 𝐾̃ = (𝑘̃𝑖𝑗)𝑁×𝑁 = (𝑘𝑖𝑗/∑𝑁𝑗=1,𝑗 ̸=𝑖 𝑘𝑖𝑗)𝑁×𝑁 are easily verified as −1, and thus we can
design the coupling matrix as 𝐶 = 𝜀𝐾̃.

Using Assumption 7 (2𝑥𝑇𝑦 ≤ 𝑥𝑇𝑥+𝑦𝑇𝑦, ∀𝑥, 𝑦 ∈ 𝑅𝑛), the
following inequalities can be estimated:

𝑉̇ (𝑡) ≤ 𝑁∑
𝑖=1

𝜎𝑖𝑒𝑖𝑇 (𝑡) 𝑒𝑖 (𝑡) + 𝑐1 𝑁∑
𝑖=1

𝑁∑
𝑗=1,𝑗 ̸=𝑖

𝑙𝑖𝑐𝑖𝑗𝑒𝑖𝑇 (𝑡) 𝑒𝑗 (𝑡)
− 𝜀𝑐1 𝑁∑
𝑖=1

𝑙𝑖𝑒𝑖𝑇 (𝑡) 𝑒𝑖 (𝑡)
+ 𝑐2 𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑙𝑖𝑑𝑖𝑗𝑒𝑖𝑇 (𝑡) 𝑒𝑗 (𝑡 − 𝜏 (𝑡)) ≤ −(min
1≤𝑖≤𝑁

(𝜀𝑐1𝑙𝑖)
− max
1≤𝑖≤𝑁

(𝜎𝑖 + 𝑁∑
𝑗=1,𝑗 ̸=𝑖

𝑐1𝑙𝑖𝑐𝑖𝑗)) 𝑁∑
𝑗=1

𝑒𝑗𝑇 (𝑡) 𝑒𝑗 (𝑡)
+ max
1≤𝑖≤𝑁

𝑐2𝜆𝑙𝑖2 𝑁∑
𝑗=1

𝑒𝑗𝑇 (𝑡) 𝑒𝑗 (𝑡) + max
1≤𝑖≤𝑁

𝑐2𝜆𝑙𝑖2
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⋅ 𝑁∑
𝑗=1

𝑒𝑗𝑇 (𝑡 − 𝜏 (𝑡)) 𝑒𝑗 (𝑡 − 𝜏 (𝑡)) ≤ −2(min
1≤𝑖≤𝑁

(𝜀𝑐1𝑙𝑖)
− max
1≤𝑖≤𝑁

(𝜎𝑖 + 𝑁∑
𝑗=1,𝑗 ̸=𝑖

𝑐1𝑙𝑖𝑐𝑖𝑗) + max
1≤𝑖≤𝑁

𝑐2𝜆𝑙𝑖2 )𝑉 (𝑡)+ max
1≤𝑖≤𝑁

𝑐2𝜆𝑙𝑖𝑉 (𝑡) = −𝑎𝑉 (𝑡) + 𝑏𝑉 (𝑡) ,
(13)

where 𝑉(𝑡) = (1/2)∑𝑁𝑖=1 𝑒𝑖𝑇(𝑡)𝑒𝑖(𝑡), 𝑒𝑖(𝑡) = sup𝑡−𝜏≤𝑠≤𝑡𝑒𝑖(𝑠).
According to the conditions of Theorem 9 and Lemma 8,

we obtain

𝑉 (𝑡) ≤ 𝑉 (𝑡0) exp {−𝜇 (𝑡 − 𝑡0)} , (14)

where 𝜇 is the unique positive solution of the equation 𝜇 =𝑎 − 𝑏 exp(𝜇𝑡)
Thus, we obtain

√ 𝑁∑
𝑖=1

𝑒𝑖𝑇 (𝑡) 𝑒𝑖 (𝑡)
≤ √ 𝑁∑
𝑖=1

𝑒𝑖𝑇 (𝑡0) 𝑒𝑖 (𝑡0)exp {−𝜇2 (𝑡 − 𝑡0)} .
(15)

Hence, the zero of the error system (3) is globally and expo-
nentially stable. This completes the proof of Theorem 9.

Remark 10. Recently, significant effort has been devoted
to the study of the synchronization of complex dynamical
networks [11–25]. However, the synchronization criteria in
most of the existing studies contain unknown parameters,
thereby making system synchronization difficult for workers
to verify. In this study, a method for verifying system
synchronization is obtained in Theorem 9 by constructing
a simple Lyapunov function. The method relies only on the
parameters of the system itself and does need any other
adjustment parameter, thereby reducing delays and providing
convenience for controller design.

3.2. Global Exponential Synchronization of System (1) Using
Generalized Halanay Inequalities

Lemma 11 (see [35]). For any vector function 𝑥(𝑡), 𝑦(𝑡) ∈ 𝑅𝑛,𝑥(𝑡) = sup𝑡−𝜏≤𝑠≤𝑡𝑥(𝑠) and 𝑦(𝑡) = sup𝑡−𝜏≤𝑠≤𝑡𝑦(𝑠) satisfy the
following condition:

(1) 𝑥(𝑡) < 𝑦(𝑡), 𝑡0 − 𝜏 ≤ 𝑡 ≤ 𝑡0.
(2) 𝐷+𝑦(𝑡) > 𝐹(𝑡, 𝑦(𝑡), 𝑦(𝑡)), 𝑡 ≥ 𝑡0 ≥ 0; 𝐷+𝑥(𝑡) ≤𝐹(𝑡, 𝑥(𝑡), 𝑥(𝑡)), 𝑡 ≥ 𝑡0 ≥ 0, where 𝐹(𝑡, 𝑥(𝑡), 𝑥(𝑡)) =(𝐴+𝐵)𝑥(𝑡)+𝐶𝑥(𝑡),𝐴 < 0, is a diagonal matrix.Then,𝑥(𝑡) ≤ 𝑦(𝑡), 𝑡 ≥ 𝑡0.

Theorem 12. If Assumption 7 holds and 𝑀 = −(𝑝𝑖𝑖 + 𝑞𝑖𝑗 +𝑟𝑖𝑗)𝑁×𝑁 is an𝑀-matrix, in which𝑝𝑖𝑖 = −𝜀𝑐1𝑙𝑖 + 𝜎𝑖;
𝑞𝑖𝑗 = {{{𝑐1𝑙𝑗𝑐𝑖𝑗, 𝑖 ̸= 𝑗0, 𝑖 = 𝑗;𝑟𝑖𝑗 = 𝑐2𝑙𝑗 󵄨󵄨󵄨󵄨󵄨𝑑𝑖𝑗󵄨󵄨󵄨󵄨󵄨 , 𝑖, 𝑗 = 1, 2, . . . , 𝑁,

(16)

then the complex dynamical network (1) can achieve global
exponential synchronization.

Proof. Taking the Dini derivative of |𝑒𝑖(𝑡)|, we obtain𝐷+ 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 = ̇𝑒𝑖 sgn 𝑒𝑖≤ 󵄨󵄨󵄨󵄨𝑓𝑖 (𝑥𝑖 (𝑡)) − 𝑓 (𝑠 (𝑡))󵄨󵄨󵄨󵄨
+ 𝑐1 𝑁∑
𝑗=1,𝑗 ̸=𝑖

𝑐𝑖𝑗 󵄨󵄨󵄨󵄨󵄨𝜙𝑗 (𝑒𝑗 (𝑡))󵄨󵄨󵄨󵄨󵄨 + 𝑐1𝑐𝑖𝑖 󵄨󵄨󵄨󵄨𝜙𝑖 (𝑒𝑖 (𝑡))󵄨󵄨󵄨󵄨
+ 𝑐2 𝑁∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑑𝑖𝑗󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝜙𝑗 (𝑒𝑗 (𝑡 − 𝜏 (𝑡)))󵄨󵄨󵄨󵄨󵄨
≤ (−𝜀𝑐1𝑙𝑖 + 𝜎𝑖) 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 + 𝑁∑

𝑗=1,𝑗 ̸=𝑖

𝑐1𝑙𝑗𝑐𝑖𝑗 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨
+ 𝑁∑
𝑗=1

𝑐2𝑙𝑗 󵄨󵄨󵄨󵄨󵄨𝑑𝑖𝑗󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨
= 𝑝𝑖𝑖 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 + 𝑁∑

𝑗=1

𝑞𝑖𝑗 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 + 𝑁∑
𝑗=1

𝑟𝑖𝑗 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨
= 𝐹 (𝑡, 𝑒 (𝑡) , 𝑒 (𝑡)) , 𝑖 = 1, 2, . . . , 𝑁.

(17)

From the property of 𝑀-matrix, constants 𝛿 > 0, 𝜃𝑗 > 0,
(𝑗 = 1, 2, . . . , 𝑁) exist such that

𝑝𝑖𝑖𝜃𝑖 + 𝑁∑
𝑗=1

(𝑞𝑖𝑗 + 𝑟𝑖𝑗) 𝜃𝑗 < −𝛿, 𝑖 = 1, 2, . . . , 𝑁. (18)

Let 0 < 𝛼 ≪ 1, we can obtain

𝛼𝜃𝑖 + 𝑝𝑖𝑖𝜃𝑖 + 𝑁∑
𝑗=1

(𝑞𝑖𝑗𝜃𝑗 + 𝑟𝑖𝑗𝜃𝑗 exp (𝛼𝜏)) < 0. (19)

When 𝑡 ∈ [𝑡0 − 𝜏, 𝑡0], let 𝑅 ≫ 1, such that𝑅𝜃𝑖 exp (−𝛼𝑡) > 1. (20)

For any vector Υ = (Υ1, Υ2, . . . , Υ𝑁)𝑇 > 0, we construct a
vector function

𝑞𝑖 (𝑡) = 𝑅𝜃𝑖 [[
𝑁∑
𝑗=1

𝑒𝑗 (𝑡0) + Υ]] exp {−𝛼 (𝑡 − 𝑡0)} . (21)
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Taking the Dini derivative of |𝑞𝑖(𝑡)|, we obtain𝐷+ 󵄨󵄨󵄨󵄨𝑞𝑖 (𝑡)󵄨󵄨󵄨󵄨
= −𝛼𝑅𝜃𝑖 [[

𝑁∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡0)󵄨󵄨󵄨󵄨󵄨 + Υ]] exp {−𝛼 (𝑡 − 𝑡0)} .
(22)

Substituting (19) into (22) yields

𝐷+ 󵄨󵄨󵄨󵄨𝑞𝑖 (𝑡)󵄨󵄨󵄨󵄨 > [[𝑝𝑖𝑖𝜃𝑖 +
𝑁∑
𝑗=1

(𝑞𝑖𝑗𝜃𝑗 + 𝑟𝑖𝑗𝜃𝑗 exp (𝛼𝜏))]]
⋅ 𝑅[[
𝑁∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡0)󵄨󵄨󵄨󵄨󵄨 + Υ]] exp {−𝛼 (𝑡 − 𝑡0)}
= 𝑝𝑖𝑖𝜃𝑖𝑅[[

𝑁∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡0)󵄨󵄨󵄨󵄨󵄨 + Υ]] exp {−𝛼 (𝑡 − 𝑡0)}
+ 𝑁∑
𝑗=1

𝑞𝑖𝑗𝜃𝑗𝑅[[
𝑁∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡0)󵄨󵄨󵄨󵄨󵄨 + Υ]] exp {−𝛼 (𝑡 − 𝑡0)}
⋅ 𝑁∑
𝑗=1

𝑟𝑖𝑗𝜃𝑗𝑅[[
𝑁∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡0)󵄨󵄨󵄨󵄨󵄨 + Υ]] exp {−𝛼 (𝑡 − 𝑡0)}
⋅ exp (𝛼𝜏) ≥ 𝑝𝑖𝑖 󵄨󵄨󵄨󵄨𝑞𝑖 (𝑡)󵄨󵄨󵄨󵄨 + 𝑁∑

𝑗=1

𝑞𝑖𝑗 󵄨󵄨󵄨󵄨󵄨𝑞𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨
+ 𝑁∑
𝑗=1

𝑟𝑖𝑗 󵄨󵄨󵄨󵄨󵄨𝑞𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 = 𝐹 (𝑡, 𝑞 (𝑡) , 𝑞 (𝑡)) .

(23)

According to (20), when 𝑡 ∈ [𝑡0 − 𝜏, 𝑡0], we can derive

󵄨󵄨󵄨󵄨𝑞𝑖 (𝑡)󵄨󵄨󵄨󵄨 = 𝑅𝜃𝑖 [[
𝑁∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡0)󵄨󵄨󵄨󵄨󵄨 + Υ]] exp {−𝛼 (𝑡 − 𝑡0)}
> 𝑁∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡0)󵄨󵄨󵄨󵄨󵄨 + Υ.
(24)

It is obvious that |𝑒𝑖(𝑡)| ≤ ∑𝑁𝑗=1 |𝑒𝑗(𝑡0)|+Υ, 𝑡 ∈ [𝑡0−𝜏, 𝑡0]; thus󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 < 󵄨󵄨󵄨󵄨𝑞𝑖 (𝑡)󵄨󵄨󵄨󵄨 , 𝑡 ∈ [𝑡0 − 𝜏, 𝑡0] . (25)

In view of (17), (23), and (25) and by using Lemma 11, we can
derive󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 < 󵄨󵄨󵄨󵄨𝑞𝑖 (𝑡)󵄨󵄨󵄨󵄨

= 𝑅𝜃𝑖 [[
𝑁∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡0)󵄨󵄨󵄨󵄨󵄨 + Υ]] exp {−𝛼 (𝑡 − 𝑡0)} ,𝑡 ≥ 𝑡0.
(26)

Let Υ → 0+, ∑𝑁𝑖=1 𝑅𝜃𝑖 = 𝜉𝑖, and we obtain

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝜉𝑖 [[
𝑁∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡0)󵄨󵄨󵄨󵄨󵄨]] exp {−𝛼 (𝑡 − 𝑡0)} , 𝑡 ≥ 𝑡0, (27)

where 𝜉𝑖, 𝛼 are positive constants. According to Definition 3,
the error system (3) is globally and exponentially stable,
which implies that global exponential synchronization is
achieved. This completes the proof of Theorem 12.

Remark 13. Several synchronization criteria for the system
are derived by constructing Lyapunov functions andusing the
Halanay inequality [36, 37]. However, these synchronization
criteria contain unknown parameters. In this paper, we
avoid such issues by building the Lyapunov function. The
Dini derivative loosen the requirements of the system state
function; that is, it does not require the state function to
be derivable. Moreover, certain points of the system are
not derivable if the system is under discontinuous con-
trol. A direct solution of the error vector function for the
Dini derivative can reduce the conservativeness of condi-
tions. Moreover, a synchronization criterion is obtained in
Theorem 12 by using generalized Halanay inequalities. The
synchronization criterion relies only on the parameters of the
system itself and does not contain any unknown adjustment
parameter. Thus, our model provides convenience for practi-
cal applications.

Remark 14. In this paper, we provide conservative estimates
of the size of 𝛼 as it cannot be confirmed (Theorem 12);
however, exact values are preferred.

Theorem 15. Supposing that the condition ofTheorem 12 holds
and constants 𝜍 > 0 exist such that 𝑀̃ = −(𝑝𝑖𝑖 + 𝑞𝑖𝑗 + 𝑟𝑖𝑗)𝑁×𝑁
is still an𝑀-matrix, one can derive

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝜉𝑖 [[
𝑁∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡0)󵄨󵄨󵄨󵄨󵄨]] exp {−𝜍 (𝑡 − 𝑡0)} ,𝑖 = 1, 2, . . . , 𝑁, 𝑡 ≥ 𝑡0,
(28)

where

𝑝𝑖𝑖 = −𝜀𝑐1𝑙𝑖 + 𝜎𝑖 + 𝜍;
𝑞𝑖𝑗 = {{{

𝑐1𝑙𝑗𝑐𝑖𝑗, 𝑖 ̸= 𝑗0, 𝑖 = 𝑗;
𝑟𝑖𝑗 = 𝑐2𝑙𝑗 󵄨󵄨󵄨󵄨󵄨𝑑𝑖𝑗󵄨󵄨󵄨󵄨󵄨 , 𝑖, 𝑗 = 1, 2, . . . , 𝑁.

(29)
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and then the complex dynamical network (1) can achieve global
exponential synchronization with 𝜍 as the convergence rate.
Proof. Let |𝑦𝑖(𝑡)| = |𝑒𝑖(𝑡)| exp(𝜍𝑡), 𝑖 = 1, 2, . . . , 𝑁. Taking the
Dini derivative of |𝑦𝑖(𝑡)|, we obtain𝐷+ 󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝜍 exp (𝜍𝑡) 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 + exp (𝜍𝑡)𝐷+ 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨

≤ exp (𝜍𝑡)(𝜍 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 + 𝑝𝑖𝑖 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 + 𝑁∑
𝑗=1

𝑞𝑖𝑗 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨
+ 𝑁∑
𝑗=1

𝑟𝑖𝑗 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨) ≤ 𝑝𝑖𝑖 󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)󵄨󵄨󵄨󵄨 + 𝑁∑
𝑗=1

𝑞𝑖𝑗 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨
+ 𝑁∑
𝑗=1

𝑟𝑖𝑗 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 .
(30)

UsingTheorem 12, we obtain

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝜉𝑖 [[
𝑁∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡0)󵄨󵄨󵄨󵄨󵄨]] exp {−𝛼 (𝑡 − 𝑡0)} , 𝑡 ≥ 𝑡0. (31)

Thus

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝜉𝑖 [[
𝑁∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡0)󵄨󵄨󵄨󵄨󵄨]] exp {(−𝛼 − 𝜍) (𝑡 − 𝑡0)}
≤ 𝜉𝑖 [[

𝑁∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡0)󵄨󵄨󵄨󵄨󵄨]] exp {−𝜍 (𝑡 − 𝑡0)} .
(32)

This completes the proof of Theorem 15.

If system (1) does not satisfy the conditions of the above
theorem, that is, the system cannot achieve synchronization
by itself, we can apply the appropriate controller to achieve
synchronization.

Remark 16. On the basis of Theorem 12, we provide a simple
and feasible method for calculating the exponential conver-
gence rate in Theorem 15.

3.3. Global Exponential Synchronization of the Controlled
System (1). The controlled complex dynamical network can
be described as

𝑥̇𝑖 (𝑡) = 𝑓 (𝑥𝑖 (𝑡)) + 𝑐1 𝑁∑
𝑗=1

𝑐𝑖𝑗𝑔𝑗 (𝑥𝑗 (𝑡))
+ 𝑐2 𝑁∑
𝑗=1

𝑑𝑖𝑗𝑔𝑗 (𝑥𝑗 (𝑡 − 𝜏 (𝑡))) + 𝑢𝑖 (𝑡) ,
𝑖 = 1, 2, . . . , 𝑁;

(33)

the controller 𝑢𝑖(𝑡) (𝑖 = 1, 2, . . . , 𝑁) is designed as follows:

𝑢𝑖 (𝑡) = −𝑘𝑖𝑥𝑖 (𝑡) , (34)

where 𝑘𝑖 > 0 is the adaptive feedback gain to be designed.
We obtain the error system on the basis of network (33)

and (2) as follows:

̇𝑒𝑖 (𝑡) = 𝑥̇𝑖 (𝑡) − ̇𝑠 (𝑡)
= 𝑓 (𝑥𝑖 (𝑡)) − 𝑓 (𝑠 (𝑡)) + 𝑐1 𝑁∑

𝑗=1

𝑐𝑖𝑗𝜙𝑗 (𝑒𝑗 (𝑡))
+ 𝑐2 𝑁∑
𝑗=1

𝑑𝑖𝑗𝜙𝑗 (𝑒𝑗 (𝑡 − 𝜏 (𝑡))) − 𝑘𝑖𝑥𝑖 (𝑡) ,
(35)

where 𝜙𝑖(𝑒𝑖(𝑡)) = 𝑔𝑖(𝑥𝑖(𝑡))−𝑔𝑖(𝑠(𝑡)), 𝜙𝑖(𝑒𝑖(𝑡−𝜏(𝑡))) = 𝑔𝑖(𝑥𝑖(𝑡−𝜏(𝑡))) − 𝑔𝑖(𝑠(𝑡 − 𝜏(𝑡))).
Theorem 17. Supposing that Assumption 7 holds and satisfies
the following condition:

min
1≤𝑖≤𝑁

𝑘𝑖 + min
1≤𝑖≤𝑁

(𝜀𝑐1𝑙𝑖) > max
1≤𝑖≤𝑁

(𝜎𝑖 + 𝑁∑
𝑗=1,𝑗 ̸=𝑖

𝑐1𝑙𝑖𝑐𝑖𝑗)
+ 2max
1≤𝑖≤𝑁

𝑐2𝜆𝑙𝑖2 ,
(36)

where 𝜆 is the maximum eigenvalue of the matrix 𝐷 =(𝑑𝑖𝑗)𝑁×𝑁, then the complex dynamical network (33) can achieve
global exponential synchronization.𝜇/2 is the convergence rate,
where 𝜇 is the same as in Theorem 9.

A similar approach inTheorem 9 can be used for its proof.

Theorem 18. Supposing that Assumption 7 holds and 𝑀 =−(𝑝𝑖𝑖 + 𝑞𝑖𝑗 + 𝑟𝑖𝑗)𝑁×𝑁 is an𝑀-matrix, where

𝑝𝑖𝑖 = −𝑘𝑖 − 𝜀𝑐1𝑙𝑖 + 𝜎𝑖;
𝑞𝑖𝑗 = {{{

𝑐1𝑙𝑗𝑐𝑖𝑗, 𝑖 ̸= 𝑗0, 𝑖 = 𝑗;
𝑟𝑖𝑗 = 𝑐2𝑙𝑗 󵄨󵄨󵄨󵄨󵄨𝑑𝑖𝑗󵄨󵄨󵄨󵄨󵄨 , 𝑖, 𝑗 = 1, 2, . . . , 𝑁,

(37)

then the complex dynamical network (33) can achieve global
exponential synchronization.

A similar approach in Theorem 12 can be used for its
proof.
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Theorem 19. Supposing that the condition ofTheorem 18 holds
and constants 𝜍 > 0 exist such that 𝑀̃ = −(𝑝̃𝑖𝑖 + 𝑞𝑖𝑗 + 𝑟𝑖𝑗)𝑁×𝑁
is still an𝑀-matrix, one can derive

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝜉𝑖 [[
𝑁∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡0)󵄨󵄨󵄨󵄨󵄨]] exp {−𝜍 (𝑡 − 𝑡0)} ,𝑖 = 1, 2, . . . , 𝑁, 𝑡 ≥ 𝑡0,
(38)

where 𝑝𝑖𝑖 = −𝑘𝑖 − 𝜀𝑐1𝑙𝑖 + 𝜎𝑖 + 𝜍;
𝑞𝑖𝑗 = {{{

𝑐1𝑙𝑗𝑐𝑖𝑗, 𝑖 ̸= 𝑗0, 𝑖 = 𝑗;
𝑟𝑖𝑗 = 𝑐2𝑙𝑗 󵄨󵄨󵄨󵄨󵄨𝑑𝑖𝑗󵄨󵄨󵄨󵄨󵄨 , 𝑖, 𝑗 = 1, 2, . . . , 𝑁.

(39)

The complex dynamical network (33) can then achieve global
exponential synchronization with 𝜍 as the convergence rate.

A similar approach in Theorem 15 can be used for its
proof.

Remark 20. We provide several synchronization criteria for
adding the controller inTheorems 17, 18, and 19.The feedback
gain 𝑘𝑖 of the controllers is related only to the inherent
parameters of the system.

4. Numerical Simulation

A dynamical network model with 10 dynamical nodes is
considered. The state of the 𝑖th node is as presented in (1).
Without loss of generality, we choose the system parameters
that satisfy Theorem 15, that is, 𝑐1 = 𝑐2 = 1, 𝜎 = 2, 𝑙 = 2 after
considering the coupling matrices:

𝐶

=
((((((((((((((((
(

−4 1 0 0 1 0 0 0 1 11 −4 1 1 1 0 0 0 0 00 1 −4 1 0 1 0 0 1 00 1 1 −4 0 0 1 1 0 01 1 0 0 −4 1 0 0 0 10 0 1 0 1 −4 0 1 0 10 0 0 1 0 0 −4 1 1 10 0 0 1 0 1 1 −4 1 01 0 1 0 0 0 1 1 −4 01 0 0 0 1 1 1 0 0 −4

))))))))))))))))
)

,

𝐷

=
(((((((((((((((((((((
(

−3 1 0 0 0 0 0 1 1 00 −2 1 0 0 0 1 0 0 01 0 −1 0 0 0 0 0 0 00 0 0 −1 1 0 0 0 0 10 0 0 1 −3 0 1 1 0 00 0 0 0 0 −1 0 0 0 10 0 0 0 1 1 −3 0 0 01 1 0 0 1 0 0 −3 0 00 0 0 0 0 0 0 0 −1 11 0 0 0 0 0 1 0 0 −2

)))))))))))))))))))))
)

.

(40)

Figure 1 illustrates the trajectories of a system error.The error
states are exponentially stable at zero equilibrium points,
thereby implying that global exponential synchronization
was obtained by the dynamic nodes of the complex dynamical
network with time-varying delays.

The parameters of the system are adjusted such that the
conditions of Theorem 15 are not established. Figures 2, 4,
and 6 show the trajectories of an error system with unstable
error states. According toTheorem 19, we added the feedback
controller (34) to the time-varying delay complex network
(33). Figures 3, 5, and 7 show the obtained trajectories of
the error system. When the control gain 𝑘𝑖 > 5, the
complex dynamical network can achieve global exponential
synchronization.

5. Conclusion

In this study, several simple and generic synchronization
criteria are derived to guarantee that a complex dynamical
network achieves global exponential synchronization. These
criteria do not contain unknown parameters related to the
intrinsic parameters of the system. The specific form of
time delay is unknown, thereby making practical application
convenient. If the system cannot establish synchronization
by itself, adding appropriate feedback controllers would
ensure that sufficient conditions for system synchroniza-
tion are obtained. The gain of the controllers is related
only to the intrinsic parameters of the system itself. The
estimation of exponential convergence rate has also been
studied. Hence, a method for estimating the exponential
convergence rate is also presented in this paper. For instance,
solving transcendental equation (9) to obtain the exponen-
tial convergence rate is easier using related mathematical
software. Theorems 15 and 19 also illustrate a simple and
feasible method for calculating the exponential convergence
rate.
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Figure 1: Synchronization error system that satisfies the conditions.
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Figure 2: Synchronization error 𝑒𝑖1 that does not satisfy the conditions.
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Figure 3: Synchronization error 𝑒𝑖1 of adding controllers.
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Figure 4: Synchronization error 𝑒𝑖2 that does not satisfy the
conditions.
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Figure 5: Synchronization error 𝑒𝑖1 of adding controllers.
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Figure 6: Synchronization error 𝑒𝑖3 that does not satisfy the
conditions.
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Figure 7: Synchronization error 𝑒𝑖3 of adding controllers.
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