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The spatial path following control problem of autonomous underwater vehicles (AUVs) is addressed in this paper. In order to
realize AUVs’ spatial path following control under systemic variations and ocean current, three adaptive neural network controllers
which are based on the Lyapunov stability theorem are introduced to estimate uncertain parameters of the vehicle’s model and
unknown current disturbances. These controllers are designed to guarantee that all the error states in the path following system
are asymptotically stable. Simulation results demonstrated that the proposed controller was effective in reducing the path following
error and was robust against the disturbances caused by vehicle’s uncertainty and ocean currents.

1. Introduction

The research of AUV has been a hot topic in recent years with
the development of marine robotics. Voluminous literature,
for example [1–3], has been presented on the subject of
designing path following controllers for AUVs. In order to
design an automatic path following control system for AUVs,
several problems must be solved. Among them the most
difficult and challenging is that AUV’s dynamics are highly
nonlinear and the hydrodynamic coefficients of vehicles are
difficult to be accurately estimated a priori since the variations
of these coefficients with different operating conditions. In
addition to vehicle dynamics, Caharija et al. [4] pointed out
that the sea currents affect the vehicles significantly which are
the lack of actuation in sway. As a universal phenomenon,
the single AUV’s spatial path following problem is a basis for
formation coordinated control of multiple AUVs [5, 6].

Hereinabove, it is shown that modelling inaccuracy is
primary difficult to achieve oriented results. The data driven
fault diagnosis and process monitoring methods based on
input and output data could be an effective way in real-
time implementation where the physical model is hard to
obtain [7–9]. And when it comes to system uncertainty,
robust control could be used to attenuate disturbances in a
relatively suboptimal extent. For example, load disturbance

in the modelling of vehicles could be restricted to a satis-
fied expectation using the robust H

∞
PID controller [10].

Compared with robust control theory, adaptive strategy is an
effective method of dealing with optimal control problems
in vehicle control systems [11, 12]. Wang et al. [13] designed
an adaptive PID controller for the path tracking system.
From the simulation results, it was known that the proposed
controller could not satisfy the tracking characteristics during
automation performance. Based on Lyapunov stability theory
and backstepping, Lapierre and Soetanto [14] proposed a
path following controller for the motion control system of
an AUV. It was demonstrated that the control characteristics
of this kind of controller was relied on the accuracy of the
hydrodynamic model. Chen and Wang [15] presented an
adaptive control law with a parameter projection mechanism
to track the desired vehicle longitudinal motion in the
presence of tire-road friction coefficient uncertainties and
actively injected braking excitation signals. The simulation
results demonstrated that the proposed method was valuable
for autonomous vehicle systems. A parameter-dependent
adaptive H

∞
controller was constructed in [16] to guarantee

robust asymptotic stability of the linear parameter-varying
systems. And numerical examples were carried out to verify
the effective impact on the attenuation in system disturbance.
Li et al. [17] found an adaptive controller using a new
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neural network model, which was effective to improve the
control precision by 30% in the case of system with random
disturbance. To compensate the uncertainties in robot control
systems, the radial basis functional (RBF) neural network
was introduced to enhance system stability and transient
performance [18].

In this paper, we propose an adaptive neural network
control method for spatial path following control of an
AUV. Three lightly interacting subsystems are introduced to
fulfil this mission. RBF neural network (NN) is introduced
to estimate unknown terms including inaccuracies of the
vehicle. Adaptive laws are chosen to guarantee optimal
estimation of the weight of NN to make the approximation
more accurate. The control performance of the closed-loop
systems are guaranteed by appropriately choosing the design
parameters. Based on the Lyapunov stability theorem, the
proposed controllers are designed to guarantee all the error
states in the subcontrol systems which are asymptotically
stable.

The paper is organized as follows. Section 2 formulates
the vehicle dynamics for an underactuated AUV in the
six-degree-of-freedom (6-DOF) form. Section 3 develops
three adaptive neural network controllers to solve the path
following problem with uncertain dynamics and external
disturbance, such as sea currents. The proposed controllers’
stability is analysed by Lyapunov theory in this section.
The simulation results using the proposed controllers are
illustrated in Section 4. Finally, Section 5 contains the main
conclusions and describes some problems that warrant fur-
ther investigation.

2. Problem Formulation

2.1. Vehicle Dynamics. The dynamic model of the AUV in
the three dimensional space is described in this section. See
details in Bian et al. [19]. The vehicle which we studied in
this paper measures 7.45 × 2.32 × 1.97m. It is equipped
with two main thrusters for propulsion, which are mounted
symmetrically about its longitudinal axis in the horizon-
tal plane. A cruciform tail including two different control
surfaces is fixed right behind the thrusters to provide an
enlarged torque around the transverse axis in the body fixed
frame, which is helpful in enhancing the ability of spatial
path following control. This vehicle is underactuated for the
lack of propellers about its normal axis and transverse axis.
The maximum designed speed of the vehicle with respect to
the water is 3.08m/s approximately. An outline of the vehicle
with respect to the earth-fixed coordinate and body-fixed
coordinate is shown in Figure 1.

According to the criteria underwater vehicle motion
model in Fossen [20], this 6-DOF model can be described as
follows.

Dynamic equation:

M ̇^ + C (^) ^ +D (^) ^ = 𝜏. (1)

Kinematic equation:

�̇� = J (𝜂) ^, (2)
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Figure 1: Employed coordinate frame systems.

where 𝜂 = [𝜂
1
, 𝜂
2
]
𝑇, ^ = [^

1
, ^
2
]
𝑇, 𝜂
1
= [𝑥, 𝑦, 𝑧]

𝑇, 𝜂
2
=

[𝜑, 𝜃, 𝜙]
𝑇, ^
1
= [𝑢, V, 𝑤]𝑇, and ^

2
= [𝑝, 𝑞, 𝑟]

𝑇.
The symbols 𝜑, 𝜃, 𝜙, p, q, and r denote the roll, pitch,

and yaw angles and velocities, respectively; x, y, z, u, v,
and w are the surge, sway, and heave displacements and
velocities, respectively.Thematrix J(𝜂) = diag {J

1
(𝜂
2
), J
2
(𝜂
2
)}

is the transformationmatrix from the body-fixed coordinated
frame to the earth-fixed coordinated frame; M = M𝑇 >

0 is the mass and inertia matrix; C(^) is the Coriolis and
centripetal matrix; D(^) is the damping matrix; 𝜏 is the
control input, including force and moments generated by
propellers and hydroplanes.

2.2. Spatial Path Following. Spatial path following problems
of AUV can be solved by a dynamic task and a geometric task,
whose objectives are to make the vehicle sail at an expected
speed and move to the proposed three-dimensional path.

The former process of path following problem can be
briefly stated as follows. Given a spatial path Γ, the goal is to
design some feedback control law which yields the control
forces for the vehicle’s thrusters so that its centre of mass
would converge asymptotically to a desired path by forcing
its speed to track a desired speed assignment. The latter one
can be described as below: considering the AUV depicted
in Figure 2, where P is an arbitrary point on the path and
Q denotes its centre of mass. The objective is to design the
controllers which force the vehicle’s position to converge to
the desired path by driving the course angle and depth to
converge to desired ones.

3. Controller Design

The objective is to realize the path following for AUVs in
three dimensions. Consider Healey and Lienard [21], and
according to practical operational applications in AUVs,
the 6-DOF nonlinear equations of motion can be separated
into three lightly interacting subsystems, including diving,
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Figure 2: Spatial path following control problem.

steering, and speed control. Our research will focus on
dealing with the problem of spatial path following through
the three subsystems.

3.1. Speed Control. For control design purposes, the inter-
actions from the other degrees of freedom is neglected; the
speed control model could be given by

�̇� =
1

(𝑚 − 𝑋
�̇�
)
[𝑋
𝑢𝑢
𝑢
2

+ 𝑋prop + 𝑑𝑢] , (3)

where 𝑋
�̇�
and 𝑋

𝑢𝑢
are dimensional hydrodynamic coef-

ficients in surge; 𝑋prop is thrusters’ force; 𝑑
𝑢
represents

modelling inaccuracies and external disturbances.
Define

𝑓
𝑢
= 𝑋
𝑢𝑢
𝑢
2

+ 𝑑
𝑢
. (4)

Then, (4) can be rewritten as

�̇� =
1

(𝑚 − 𝑋
�̇�
)
(𝑋prop + 𝑓𝑢) , (5)

where 𝑋prop is the forward force generated by the two main
thrusters.

To deal with the uncertain terms, a RBF NN is chosen to
estimate 𝑓

𝑢
which is described as

𝑓
𝑢
= 𝑊
∗

𝑢
Φ
𝑢
+ 𝜀
𝑢
, (6)

where 𝑊∗
𝑢
is an optimized weight estimation of the neural

network;Φ
𝑢
is the basis function; 𝜀

𝑢
is its estimation error. An

identification diagram of the RBF neural network is shown in
Figure 3.

Assume

𝑋prop = −�̂�
𝑢
Φ
𝑢
− 𝑘
𝑢
𝑢, (7)

where 𝑘
𝑢
> 0; �̂�

𝑢
is the weight estimation of the neural

network.
Choose a Lyapunov function

𝑉
𝑢
=
1

2
𝑢
2

+
1

2
�̃�
2

𝑢
, (8)

where �̃�
𝑢
= 𝑊
𝑢
− �̂�
𝑢
.
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Figure 3: Diagram of RBF neural network for identification.

Equation (8)’s derivative can be calculated as

�̇�
𝑢
= 𝑢�̇� + �̃�

𝑢

̇̃
𝑊
𝑢
= 𝑢�̇� + �̃�

𝑢

̇̃
𝑊
𝑢

= 𝑢[
𝑋
𝑢𝑢
𝑢
2

(𝑚 − 𝑋
�̇�
)
+

𝑋prop

(𝑚 − 𝑋
�̇�
)
+

𝑑
𝑢

(𝑚 − 𝑋
�̇�
)
] + �̃�

𝑢

̇̃
𝑊
𝑢

=
𝑢

(𝑚 − 𝑋
�̇�
)
[𝑋
𝑢𝑢
𝑢
2

+ 𝑋prop + 𝑑𝑢] + �̃�𝑢
̇̃

𝑊
𝑢

=
𝑢

(𝑚 − 𝑋
�̇�
)
[𝑊
𝑢
Φ
𝑢
+ 𝜀
𝑢
+ 𝑋prop] + �̃�𝑢

̇̃
𝑊
𝑢
.

(9)

Combined with (7) and (9),

�̇�
𝑢
=

𝑢

(𝑚 − 𝑋
�̇�
)
[𝑊
𝑢
Φ
𝑢
+ 𝜀
𝑢
− �̂�
𝑢
Φ
𝑢
− 𝑘
𝑢
𝑢] + �̃�

𝑢

̇̃
𝑊
𝑢

=
𝑢�̃�
𝑢
Φ
𝑢

(𝑚 − 𝑋
�̇�
)
+

𝑢𝜀
𝑢

(𝑚 − 𝑋
�̇�
)
−

𝑘
𝑢
𝑢
2

(𝑚 − 𝑋
�̇�
)
+ �̃�
𝑢

̇̃
𝑊
𝑢
.

(10)

An adaptive law is designed as follows:

̇̂
𝑊
𝑢
=

̇̃
𝑊
𝑢
= −

𝑢Φ
𝑢

(𝑚 − 𝑋
�̇�
)
+ 𝜆 (�̂�

𝑢
−𝑊
𝑢0
) , (11)

where 𝜆
𝑢
> 0; 𝑊

𝑢0
is the initial weight value of the neural

network. Then (9) can be changed as

�̇�
𝑢
=

𝑢𝜀
𝑢

(𝑚 − 𝑋
�̇�
)
−

𝑘
𝑢
𝑢
2

(𝑚 − 𝑋
�̇�
)
+ �̃�
𝑢
(

𝑢Φ
𝑢

(𝑚 − 𝑋
�̇�
)
+

̇̃
𝑊
𝑢
)

=
𝑢𝜀
𝑢

(𝑚 − 𝑋
�̇�
)
−

𝑘
𝑢
𝑢
2

(𝑚 − 𝑋
�̇�
)
+ �̃�
𝑢
𝜆
𝑢
(�̂�
𝑢
−𝑊
𝑢0
) .

(12)

Because 𝜀 is small enough, |𝑢| < 3.1m/s,𝑚−𝑋
�̇�
≫ 0, and

(𝑢/(𝑚 − 𝑋
�̇�
))𝜀 can be considered as small positive constant.

In (12),

�̃�
𝑢
𝜆
𝑢
(�̂�
𝑢
−𝑊
𝑢0
)

= �̃�
𝑢
�̂�
𝑢
𝜆
𝑢
− �̃�
𝑢
𝑊
𝑢0
𝜆
𝑢

= −
𝜆
𝑢

2


�̃�
𝑢



2

𝐹
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𝜆

2


�̂�
𝑢
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2

𝐹

+
𝜆
𝑢

2

𝑊𝑢 −𝑊𝑢0


2

𝐹
.

(13)
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Based on Lyapunov stability theorem, it is provided that
if one of the inequations in (14) is true, (15) would come
true which guarantees the speed error converge to a small
neighbourhood zero domain.

𝜆
𝑢

2


�̃�
𝑢



2

𝐹

≥
𝜆
𝑢

2

𝑊𝑢 −𝑊𝑢0


2

𝐹
,

𝜆
𝑢

2


�̂�
𝑢
−𝑊
𝑢0



2

𝐹

≥
𝜆
𝑢

2

𝑊𝑢 −𝑊𝑢0


2

𝐹
,

(14)

�̇�
𝑢
≤ −𝛾
𝑢
𝑉
𝑢
+ 𝜎
𝑢
, (15)

where 𝛾
𝑢
> 0; 𝜎

𝑢
is a small positive constant.

3.2. Diving Control. Consider the vehicle dynamics referred
in Silvestre and Pascoal [22], and for the sake of diving control
design, it is defined as follows:

𝑑𝑧 = −𝑢
0
(𝜃 − sin 𝜃) + (𝑢

0
− 𝑢) sin 𝜃

+ 𝑤 cos 𝜃,

𝑏 = (𝐼
𝑦
−
1

2
𝜌𝐿
5

𝑀


̇𝑞
)

−1

,

𝑓
𝑞
= 𝑏 [

1

2
𝜌𝐿
5

𝑀


𝑞|𝑞|
𝑞
𝑞
 +

1

2
𝜌𝐿
4

𝑀


𝑢𝑞
𝑢𝑞

+
1

2
𝜌𝐿
3

𝑀


𝑢𝑢
𝑢
2

] ,

𝑀
𝑇𝑦
=
1

2
𝜌𝐿
3

𝑀


𝛿𝑠
𝑢
2

𝛿
𝑠
.

(16)

If the surge speed is 𝑢 = 𝑢
0
, the depth control model can

be simplified as

�̇� = −𝑢
0
𝜃 + 𝑑𝑧,

̇𝜃 = 𝑞,

̇𝑞 = 𝑓
𝑞
+ 𝑏𝑀
𝑇𝑦
,

𝑌 = 𝑧.

(17)

To be convenient for controller design, (17) can be
rewritten as

[
[
[

[

̇𝜍
1

̇𝜍
2

̇𝜍
3

𝑌

]
]
]

]

=

[
[
[
[
[
[
[

[

𝜍
2
+ 𝑑𝜍
1

𝜍
3

−𝑢
0
𝑓
𝑞
+ (−𝑢

0
𝑏𝑀
𝑇𝑦
)

𝜍
1

]
]
]
]
]
]
]

]

=

[
[
[
[
[

[

𝑓 (𝜍
1
, 𝜍
2
)

𝑓
2
(𝜍
3
)

𝑓
3
− 𝑏


𝑀
𝑇𝑦

𝜍
1

]
]
]
]
]

]

, (18)

where 𝜍 = [𝜍
1
, 𝜍
2
, 𝜍
3
]
𝑇

= [𝑧, −𝑢
0
𝜃, −𝑢
0
𝑞]
𝑇.

In this section the backstepping techniques are adopted
based on iterative methodology, where a virtual control input
is introduced to ensure that the diving error can be converged
to zero. And based on the Lyapunov stability theorem, an
adaptive neural network controller is designed to guarantee

that all the error states in the diving control system are
asymptotically stable.

From (18), amore simplified pure-feedback form is shown
as follows:

[

[

̇𝜍
1

̇𝜍
2

̇𝜍
3

]

]

=

[
[
[

[

𝑓 (𝜍
1
, 𝜍
2
)

𝑓
2
(𝜍
3
)

𝑓
3
− 𝑏


𝑀
𝑇𝑦

]
]
]

]

. (19)

Step 1. Given a desired depth 𝜍
𝑑1
, the depth error is described

as

�̇�
1
= 𝜍
1
− 𝜍
𝑑1

= 𝑓
1
(𝜍
1
, 𝜍
2
, 𝑢) − ̇𝜍

𝑑1
.

(20)

Define a virtual control variable:

V
1
= −𝜍
𝑑1
+ 𝐾
1
�̇�
1
. (21)

From 𝜕V
1
/𝜕𝜍
2
= 0, we can know

𝜕 [𝑓
1
(𝜍
1
, 𝜍
2
, 𝑢) + V

1
]

𝜕𝜍
2

> 𝜀 > 0. (22)

When we take 𝜍
2
as the input of the virtual control

variable, there must exist a 𝜍
2
= 𝛼
∗

1
(𝜍
1
, V
1
, 𝑢) satisfying

𝑓
1
(𝜍
1
, 𝛼
∗

1
, 𝑢) + V

1
= 0. (23)

Referring to themean value theorem of Lagrange, 𝛾
1
(0 <

𝛾
1
< 1) can be found which yields

𝑓
1
(𝜍
1
, 𝜍
2
, 𝑢) = 𝑓

1
(𝜍
1
, 𝛼
∗

1
, 𝑢) + 𝛾

1
(𝜍
2
, 𝛼
∗

1
) , (24)

where 𝛾
1
:= 𝑔
1
(𝜍
1
, 𝜍
2𝛾
1

, 𝑢), 𝜍
2𝛾
1

= 𝛾
1
𝜍
2
+ (1 − 𝛾

1
)𝛼
∗

1
.

Combined with (21) and (24), (20) can be rewritten as

�̇�
1
= −𝐾
1
𝑍
1
+ 𝛾
1
(𝜍
2
− 𝛼
∗

1
) . (25)

Then 𝛼
∗

1
can be estimated by RBF neural network as

follows:

𝛼
∗

1
= 𝑊
∗𝑇

Φ(𝑍
1
) + 𝜀. (26)

Consider𝑍
2
= 𝜍
2
−𝛼
1
and 𝛼
1
= −𝑐
1
𝑍
1
+�̂�
𝑇

Φ(𝑍
1
), where

�̂� is to be the estimation of𝑊∗. Then (25) becomes

�̇�
1
= −𝐾
1
𝑍
1
+ 𝛾
1
(𝑍
2
+ 𝛼
1
− 𝛼
∗

1
)
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1
𝑍
1
+ 𝛾
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[𝑍
2
− 𝑐
1
𝑍
1
+ �̃�
𝑇

Φ(𝑍
1
) − 𝜀] ,

(27)

where �̃� = �̂� −𝑊
∗.

Choose a Lyapunov function:

𝑉
1
=

1

2𝛾
1

𝑍
2

1
+
1

2
�̃�
𝑇

Γ
1
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The derivative of (28) can be calculated as

�̇�
1
= −

𝐾
1

𝛾
1

𝑍
2

1
+ 𝑍
1
𝑍
2
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With the adaptive law,
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1
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1
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1
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where 𝜎 is a small positive constant.

Step 2. Consider
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Choose another Lyapunov function:
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The derivative of (33) can be calculated as
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Step 3. Define 𝜍
3
= 𝑍
3
− 𝛼
2
.

It can be calculated as

�̇�
3
= 𝑓
𝑞
− 𝑏


𝑀
𝑇𝑦
− �̇�
2
. (35)

And, we can obtain

𝑀
∗

𝑇𝑦
= −𝑍
2
− 𝑐
3
𝑍
3
−
1

𝑏

(�̇�
2
− 𝑓
𝑞
) . (36)

Then the unknown term (1/𝑏


)𝑓
𝑞
can be estimated by

RBF NN, and the ideal optimal control law can be written as

𝑀
∗

𝑇𝑦
= −𝑍
2
− 𝑐
3
𝑍
3
+𝑊
∗

2
Φ(𝑍
3
) −

�̇�
2

𝑏

+ 𝜀
2
. (37)

Finally, we obtain the actual control input:

𝑀
𝑇𝑦
= −𝑍
2
− 𝑐
3
𝑍
3
−
�̇�
2

𝑏

+ �̂�
2
Φ(𝑍
3
) . (38)

From (35)–(37), it can be derived that

�̇�
3
= −𝐾
3
𝑍
3
− 𝑏


[−𝑍
2
− 𝑐
3
𝑍
3
−
�̇�
2

𝑏

+ �̃�
𝑇

2
Φ(𝑍
3
) − 𝜀
2
] .

(39)

Consider a Lyapunov function:

𝑉
3
= 𝑉
2
−

1

2𝑏

𝑍
2

3
+
1

2
�̃�
𝑇

2
Γ
2
�̃�
2
. (40)

We can obtain its derivative

�̇�
3
= 𝑉
2
− 𝑍
2
𝑍
3
− 𝑐
3
𝑍
2

3
+ �̃�
2
Φ(𝑍
3
) 𝑍
3
+ �̃�
𝑇

2
Γ
2

̇̂
𝑊
2
, (41)

where ̇̂
𝑊
2
= Γ
2
[−Φ(𝑍

3
)𝑍
3
− 𝜎
3
�̂�
2
] and 𝜎

3
> 0.

As what we did in Step 1, (41) can be calculated as

�̇�
3
< −

3

∑

𝑗=1

𝑐
∗

𝑗0
𝑍
2

𝑗
−

3

∑

𝑗=1

𝜎
𝑗


�̂�
𝑗



2
+

3

∑

𝑗=1

𝜎
𝑗


𝑊
∗

𝑗



2
+

3

∑

𝑗=1

𝜀
𝑗

2
, (42)

where 𝑐∗
30
:= 𝑐
30
> 0.

Consider the Lyapunov stability theorem, it can be
concluded that all the signals in the diving control system
are bounded. Furthermore, the output tracking error of the
system will converge to a small neighbourhood zero domain
by appropriately choosing control parameters.

3.3. Guidance Law and Steering Control

3.3.1. Line-of-Sight Guidance. Referring to Fossen [20] and
Oh and Sun [23], we briefly introduce Line-of-Sight guidance
law in this section for path following in the horizontal plane
and discuss its application for straight lines and circular arcs.

Calculate the angle between the proposed path and the
north of earth-fixed coordinate in Figure 4:

𝛼
𝑘
:= arctan 2 (𝜂

𝑘+1
− 𝜂
𝑘
, 𝜉
𝑘+1

− 𝜉
𝑘
) ∈ [−𝜋, 𝜋] . (43)

Considering the cross track error 𝑒
𝛾
(𝑡) and a look-ahead

distance Δ, the desired course angle for the steering control
system can be computed as

𝛾
𝑑
= 𝛼
𝑘
+ arctan(

−𝑒
𝛾

Δ
) = 𝛼

𝑘
+ 𝛾
𝑒
, (44)

where Δ = 𝑛𝐿 (𝑛 = 2∼5).
When it comes to the circular arcs in Figure 5, we can

obtain the guidance law just as (44) in form.

3.3.2. Steering Controller Design. Referring to the vehicle
dynamics in horizontal plane in [24] and considering the
advantage of steering controller design, we define

𝑋
1
= 𝜓, 𝑋

2
= �̇�. (45)

The kinetics model of the AUV in horizontal plane can be
simplified as

[
[

[

�̇�
1

�̇�
2

𝑌
𝜓

]
]

]

=
[
[

[

𝑋
2

𝑓
𝜓
(𝜐) + 𝑏

𝜓
𝛿
𝑟
+ 𝑑
𝜓

𝑋
1

]
]

]

, (46)

where 𝜐 := 𝑔
𝜓
(𝑢, V, 𝑟) includes the nonlinear terms with 𝑢, V,

and 𝑟 in the steering equation; 𝑑
𝜓
is the disturbance satisfied

with |𝑑
𝜓
| ≤ 𝜀
0
, 𝜀
0
> 0.
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Consider a heading track error:

𝑒
𝜓
= 𝑌
𝜓
− 𝑌
𝜓𝑑
, (47)

where the desired course angle 𝛾
𝑑
= 𝑌
𝜓𝑑
.

Choose𝐾 ∈ 𝑅 which makes (48) a stabilized system:

ℎ (𝑠) = 𝑠 + 𝐾. (48)

Then the derivative of the steering error system can be
written as follows:

̇𝑒
𝜓
= A𝑒
𝜓
+ B [𝑓

𝜓
(𝜐) + 𝑏

𝜓
𝜏 − �̈�
𝜓𝑑
+ K𝑒
𝜓
+ 𝑑
𝜓
] , (49)

where 𝐴 = −𝐾 and 𝐵 = 1.

Then we can find 𝑃 > 0 and 𝑄 ≥ 0 which make the
following Lyapunov stable equation solvable:

𝐴
𝑇

𝑃 + 𝑃𝐴 = −𝑄. (50)

On the assumption that 𝑓
𝜓
(𝜐) and 𝑏

𝜓
are known and

𝑑
𝜓
= 0, a linear controller can be obtained as (51) using pole-

assignment method:

𝑢
𝜓
= −𝑏
−1

𝜓
(𝑓
𝜓
(𝜐) − �̈�

𝜓𝑑
+ K𝑒
𝜓
) . (51)

Combined with (46), we can find

̇𝑒
𝜓
+ K𝑒
𝜓
= 0. (52)

For𝐾 is chosen appropriately according to (48), it can be
derived that lim

𝑡→∞
𝑒
𝜓
(𝑡) = 0.

In fact, 𝑓
𝜓
(𝜐) and 𝑏

𝜓
are uncertain, and 𝑑

𝜓
does exist. To

deal with the uncertain terms, a RBFNN is chosen to estimate
𝑓
𝜓
(𝜐):

𝑓
𝜓
(𝜐) = 𝑊

∗

Φ (𝜐) + 𝜀
𝜓
, (53)

where 𝑊∗ is an optimized weight estimation of the neural
network; Φ(𝜐) is a vector of Gaussian function Φ(𝜐) =

exp (‖𝜐 − 𝑐
0
‖
2

/𝑏
0

2

), 𝑐
0
∈ 𝑅 is its centre, and 𝑏

0
is the width

of the basis function.
If the weight estimation of neural network �̂� is uniformly

bounded, a positive constant 𝑤 can be found, which satisfies
‖�̂�‖ < 𝑤

0
.

For 𝜀
𝜓
is the estimation error of the RBF NN, then

𝑓
𝜓
(𝜐) − 𝑓

𝜓
(𝜐) = 𝜀

𝜓
. (54)

Meanwhile, consider a weight error for the RBF NN:

�̃� = 𝑊
∗

− �̂�. (55)

Combined with (49), (54), and (55), it can be calculated
as

̇𝑒
𝜓
= 𝐴𝑒
𝜓
+ 𝐵 [𝑓

𝜓
(𝜐) + �̂�

𝜓
𝛿
𝑟
− �̈�
𝜓𝑑
+ 𝐾𝑒
𝜓

+ (𝑓
𝜓
(𝜐) − 𝑓

𝜓
(𝜐))

+ (𝑏
𝜓
− �̂�
𝜓
) 𝛿
𝑟
+ 𝑑
𝜓
(𝑡)]

= 𝐴𝑒
𝜓
+ 𝐵 [𝑓

𝜓
(𝜐) + �̂�

𝜓
𝛿
𝑟
− �̇�
𝜓𝑑
+ 𝐾𝑒
𝜓

+Δ𝑓
𝜓
+ �̃�𝜙 (𝜐) + �̃�

𝜓
𝛿
𝑟
+ 𝑑
𝜓
] .

(56)

In order to compensate for estimation error and cur-
rent disturbance as shown in (56), a virtual control input
described as (17) is introduced as

] = −𝜅

𝐵
𝑇

𝑃𝑒
𝜓


𝐵
𝑇
𝑃𝑒
𝜓


+ 𝜆
𝜓

, (57)

where 𝜅 = 𝑃 + 𝜀
𝜓
and 𝜅 ≥ |Δ𝑓

𝜓
| + |𝑑
𝜓
|; 𝜆
𝜓
is a small positive

constant.
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Herein, (56) can be rewritten as follows:

̇𝑒
𝜓
= 𝐴𝑒
𝜓
+ 𝐵 [Δ𝑓

𝜓
+ �̃�𝜙 (𝜉) + �̃�

𝜓
𝜏
𝜓
+ 𝑑
𝜓
+ ]] . (58)

Introduce adaptive laws:

̇̂
𝑊 = 𝛾

1
Φ (𝜉) 𝐵𝑃𝑒

𝜓
,

̇̂
𝑏
𝜓
= 𝛾
2
𝜏
𝜓
𝐵𝑃𝑒
𝜓
, (59)

where 𝛾
1
and 𝛾
2
are positive constants.

To deal with the problem of stability, a Lyapunov function
(60) is chosen to guarantee the proposed adaptive NN
controller satisfying that the signals in the steering control
system are bounded:

𝑉
𝜓
=
1

2
𝑃𝑒
2

𝜓
+

1

2𝛾
1

�̃�
2

+
1

2𝛾
2

�̃�
2

𝜓
. (60)

The differentiation of (60) can be calculated as

�̇�
𝜓
= 𝑒
𝜓
̇𝑒
𝜓
𝑃 +

1

𝛾
1

�̃�
̇̃

𝑊 +
1

𝛾
2

�̃�
𝜓

̇̃
𝑏
𝜓

= 𝑒
𝜓
𝑃𝐵 (Δ𝑓

𝜓
+ 𝑑
𝜓
+ �̃�𝜙 (𝜐) + �̃�

𝜓
𝛿
𝑠
+ ])

+
1

𝛾
1

�̃�
̇̃

𝑊 +
1

𝛾
2

�̃�
𝜓

̇̃
𝑏
𝜓
.

(61)

With a combination of (59) and (61), it can be derived that

�̇�
𝜓
= 𝑒
𝜓
𝑃𝐵 (Δ𝑓

𝜓
+ 𝑑
𝜓
+ ]) . (62)

Moreover, because

𝑒
𝑇

𝜓
𝑃𝐵 (Δ𝑓

𝜓
+ 𝑑
𝜓
+ ])

≤

𝐵
𝑇

𝑃𝑒
𝜓


(

Δ𝑓
𝜓


+

𝑑
𝜓


) + 𝑒
𝑇

𝜓
𝑃𝐵]

=

𝐵
𝑇

𝑃𝑒
𝜓


(

Δ𝑓
𝜓


+

𝑑
𝜓


) − 𝜅

(𝐵
𝑇

𝑃𝑒
𝜓
)
2


𝐵
𝑇
𝑃𝑒
𝜓


+ 𝜆
𝜓

≤

𝐵
𝑇

𝑃𝑒
𝜓


(

Δ𝑓
𝜓


+

𝑑
𝜓


) − 𝜅


𝐵
𝑇

𝑃𝑒
𝜓



2


𝐵
𝑇
𝑃𝑒
𝜓


+ 𝜆
𝜓

(63)

and ‖𝐵𝑇𝑃𝑒
𝜓
‖
2

/(‖𝐵
𝑇

𝑃𝑒
𝜓
‖ + 𝜆
𝜓
) > ‖𝐵

𝑇

𝑃𝑒
𝜓
‖ − 𝜆
𝜓
are true, (62)

can be calculated as

�̇�
𝜓
≤

𝐵
𝑇

𝑄𝑒
𝜓


(

Δ𝑓
𝜓


+

𝑑
𝜓


− 𝜅


𝐵
𝑇

𝑃𝑒
𝜓


− 𝜆
𝜓
) . (64)

It is known that 𝜅 ≥ |Δ𝑓
𝜓
| + |𝑑
𝜓
|; then we can obtain

�̇�
𝜓
≤ −𝜅𝜆

𝜓
≤ 0. (65)

Similar to the derivation of diving controller, it can be
concluded that all the signals in the steering control system
are bounded. Furthermore, the output tracking error of the
system will converge to a small neighbourhood zero domain
by appropriately choosing control parameters.

Finally, the control input can be given by

𝑢
𝜓
= −�̂�
−1

𝜓
(𝑓
𝜓
(𝜐) − �̇�

𝜓𝑑
+ K𝑒
𝜓
− ]) . (66)

4. Simulation Results

In order to validate the proposed controller, it is assessed
in the C/C++ simulation environment with a full nonlinear
model for the designed vehicle. It is assumed that the states of
the system are updated with a period of T = 0.1 s (seconds).
Considering jacket healthy state detection which is a regular
task for offshore platform, a spiral three-dimensional path
is programmed to complete the detection job. In order to
fulfil this mission successfully, the control objective is going
to achieve a high tracking precisionwith the proposed control
method.

Two simulations are carried out to demonstrate the
advantage of the proposed method, including path follow-
ing conditions without sea current and undersea current,
where the unvarying current is set to be heading east with
0.25m/s. The vehicle is initially rest at a random position
(𝑥, 𝑦, 𝑧) = (0m, 35m, 0.5m) with an unspecified attitude
(𝜑, 𝜃, 𝜓) = (0

∘

, 0
∘

, 90
∘

). The desired forward speed is 1.8m/s.
The gains and parameters for the adaptive neural network
speed controller are 𝜆

𝑢
= 1.2, 𝑘

𝑢
= 2.5, and 𝛾

𝑢
= 1.8,

while the ANN steering controller’s initial values are set as
follows: 𝑐

1
= 5, 𝑐

2
= 12, 𝑐

3
= 10, 𝑏 = 3.8386𝑒 − 005,

Γ
1
= Γ
2
= diag {1.5}, and 𝜎

1
= 𝜎
3
= 0.5. The parameters

for the diving control system are chosen as𝐾 = 2.8, 𝜆
𝜓
= 0.1,

𝛾
1
= 2, and 𝛾

2
= 1.5. And the initial weights of RBF NN for

the three subsystems are chosen as zero.
Figures 6–9 show the simulation results for spatial path

following between different ocean circumstances. It is shown
that the proposed mission under disturbance of current
or not could be achieved by the designed adaptive neural
network controllers. It is clear that the proposed method is
suitable to follow the spatial path with a random position
and attitude, which is very practical in jacket healthy state
detection mission.

Figure 6 is the response of spatial path following under
different circumstances in three-dimensional space, where S
means the start point and E is the end of the mission. We can
see that the performances in the two simulations are good in
general. It can be seen that the two tracks are identical with
the same initial values for controllers’ compensation to the
uncertain dynamics and ocean current.

From Figure 7, it is shown that the position track errors
during the jacket detection missions are gradually converged
to zero. Combined with Figures 7 and 8, we can clearly see
that although the overshoots have a little increase at the 67th
second and the 54th one, which indicate the presence of
ocean current in the process, the errors decrease to zero very
quickly using the proposed controllers, which was designed
to guarantee the errors in the spatial path following systems
to be restricted to a small value gradually. In the meanwhile,
when it is compared to the surge speed responses under
different circumstances in Figure 9, it is evident that the
fluctuant speed is the primary reason responsible for the
overshoots in the spatial path following.

The simulation results obtained illustrate that the pro-
posed methodology is effective and reduces the path fol-
lowing errors. Moreover, it is relatively simple to apply this
proposed control in simulation.
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Figure 6: Spatial path following under different circumstances.
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Figure 7: Position track errors in the horizontal plane.

5. Conclusions

The objective of this paper was to accurately follow a given
path in the presence of systemic variations and ocean current.
On one hand, three lightly interacting subsystems, including
diving, steering, and speed control, were proposed to simplify
the controller design for the spatial path following with 6-
DOF nonlinear equations. On the other hand, those three
controllers were designed to guarantee that all the error states
in the spatial path following system were asymptotically sta-
ble by using adaptive neural networkmethod.The simulation
results illustrated that the proposed methodology was effec-
tive and attenuated the path following error under current.
Future work will address the problems of path following
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Figure 8: Depth track errors in the vertical plane.
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Figure 9: Surge speed errors under different circumstances.

under more common spatial curves. The problem of external
disturbance about varying sea currents also warrants further
research.
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