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This paper is concerned with the adaptive fuzzy control problem for a class of twin-roll strip casting systems. By using fuzzy logic
systems (FLSs) to approximate the compounded nonlinear functions, a novel robust output tracking controller with adaptation
laws is designed based on the high gain observer. First, the nonlinear dynamic equations for the roll gap and the molten steel
level are constructed, respectively. Then, the mean value theorem is employed to transform the nonaffine nonlinear systems to
the corresponding affine nonlinear systems. Moreover, it is also proved that all the closed-loop signals are bounded and the
systems output tracking errors can converge to the desired neighborhoods of the origin via the Lyapunov stability analysis. Finally,
simulation results, based on semiexperimental system dynamic model and parameters, are worked out to show the effectiveness of
the proposed adaptive fuzzy design method.

1. Introduction

As is well known, the strip casting combines two processes of
continuous casting and hot rolling into a single production;
consequently, it brings in a lot of advantages including lower
investment cost, energy saving, less space requirements.More
specifically, compared with the conventional continuous
casting [1], the production line and the production cost of
the twin-roll strip casting process are significantly shortened
and reduced, respectively. Meanwhile, due to a high cooling
rate for the strip casting, the mechanical properties of
metallicmaterials can be increased [2]. Nevertheless, the strip
casting process is always with nonlinear uncertainty, external
disturbance, and coupled behaviors, and the roll gap and
the molten steel level control problems are still important
research topics to guarantee steel strip quality.

In [3], the model of the continuous casting process with
various nonlinearities was proposed, and the corresponding
controller was also designed.The authors in [4] developed an

adaptive algorithm for the mould level control of a continu-
ous steel slab casting. The modeling and control problem for
a class of twin-roll strip casting system was studied in [5].
Correspondingly, some successful adaptive fuzzy or neural
network approaches for the molten steel level control have
been studied (see, e.g., [6–8] and the references therein) in the
casting process. Recently, based on the perturbation method,
a decoupling control strategy in [9] was proposed to obtain a
uniform sheet thickness and keep a constant roll separating
force in the strip casting process. By using twin-roll casting
technology (TRC), the optimized process parameters and
their effects on TRC of 7050 aluminum alloys strips were
studied in [10].

It should be pointed out that, in most of the results about
nonlinear systems, the considered parameter uncertainties
and disturbances satisfy matching condition [11, 12]. Besides,
the above-mentioned control approaches require that all the
states of the systems are available; thus they cannot be applied
to nonaffine nonlinear system with unmeasured states. In
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particular, for the roll gap and the molten steel level control
of twin-roll strip casting process, it is difficult to measure
the rates of change of the roll gap and the molten steel
level by using proper sensors. In [13], the adaptive fuzzy
tracking control problem for a class of uncertain nonaffine
nonlinear systems with nonsymmetric dead-zone inputs was
investigated; however, the proposed approaches can only
handle the SISO nonaffine nonlinear systems rather than
MIMO systems with complex coupling terms. To the best
knowledge of the authors, it is the first time the adaptive fuzzy
tracking control is developed for MIMO nonaffine nonlinear
casting systems with immeasurable states, which are very
meaningful and more practical.

The above considerations motivate our study work. Espe-
cially, inspired by [8, 13], by means of fuzzy approxima-
tion technique, the adaptive fuzzy output tracking control
problem for a class of twin-roll strip casting systems is
considered.Moreover, comparedwith the existing results, the
main contributions of this paper are as follows: (1)The novel
fuzzy tracking controllers with adaptation laws are designed
by using fuzzy logic systems to approximate the compound
nonlinear functions. (2) In order to handle the nonaffine
coupling terms, the implicit function theorem and the mean
value theorem are invoked, respectively. It is thus that the
MIMO nonaffine nonlinear system can be transformed into
the corresponding affine nonlinear system by this way. (3) By
making use of adaptive mechanism driven by the estimation
states obtained from the high gain observer, the influence of
nonlinear parameter uncertainties and external disturbances
is restrained effectively. It is also shown that the output
tracking errors of the roll gap and the molten steel level
can converge to the desired neighborhoods via the Lyapunov
stability analysis.

The rest of the paper is organized as follows. In Section 2,
the mathematical model for the strip casting process is
given. The adaptive fuzzy output tracking control problem
is addressed in Section 3. Simulations and experimental
analysis are then provided in Section 4 to verify the effective-
ness of the proposed approach. Finally, Section 5 draws the
conclusions.

2. System Model for the Strip Casting Process

2.1. Molten Metal Level Equation. In this subsection, a dia-
gram of the strip casting process is shown in Figure 1, and
the corresponding mathematical model for the molten steel
leveling dynamics is described as in [8]. Concretely, the
following dynamic equation can be derived from (1)–(4) in
[8]

𝑑𝑥ℎ𝑑𝑡 = 𝐹−1 (𝑥𝑔, 𝑥ℎ) 𝐿−1 (𝑄in − 𝑄out − 𝐿𝑥ℎ 𝑑𝑥𝑔𝑑𝑡 ) , (1)

where 𝑅 is the roll radius, 𝐿 is the length of the roll cylinders,𝑄in and 𝑄out are the input flow and output flow of the pool
between the two rolls, respectively, and 𝐹(𝑥𝑔, 𝑥ℎ) = 𝑥𝑔 +2𝑅−2√𝑅2 − 𝑥2

ℎ
.

In addition, for convenience, the input flow𝑄in is taken as𝑄in = 𝑘(𝑡)𝑢, where 𝑢 is the control input, and the gain 𝑘(𝑡) is
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Figure 1: Schematic diagram of the twin-roll casting process.

determined empirically. The output flow 𝑄out can be derived
from the product of roll surface tangential velocity V, roll gap𝑥𝑔, and the length of the roll cylinder 𝐿; that is, 𝑄out = 𝐿𝑥𝑔V.
So the molten metal level equation (1) is rewritten as

𝑑𝑥ℎ𝑑𝑡 = 𝐹−1 (𝑥𝑔, 𝑥ℎ) 𝐿−1 (𝑘𝑢 − 𝐿𝑥𝑔V − 𝐿𝑥ℎ
𝑑𝑥𝑔𝑑𝑡 ) . (2)

By introducing the coordinate transformations 𝑥11 = 𝑥𝑔,𝑥12 = 𝑑𝑥𝑔/𝑑𝑡, 𝑥21 = 𝑥ℎ, and 𝑥22 = 𝑑𝑥ℎ/𝑑𝑡, it follows from (2)
that the following MIMO nonaffine nonlinear system can be
obtained:

𝑥̇𝑖1 = 𝑥𝑖2
𝑥̇𝑖2 = 𝑓𝑖 (𝑥, 𝑢𝑖) + 𝑑𝑖
𝑦𝑖 = 𝑥𝑖1, 𝑖 = 1, 2,

(3)

where 𝑥 = [𝑥1, 𝑥2]𝑇 and 𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2]𝑇 stand for the
state variables, 𝑑𝑖 is the unknown disturbance, 𝑦𝑖 and 𝑢𝑖
denote the system output and the control input of the 𝑖th
subsystem, respectively, and 𝑓𝑖(𝑥, 𝑢𝑖) is the unknown and
smooth nonaffine nonlinear function with 𝑢𝑖 being electric
servomotor control.

Remark 1. Applying Newton’s Second Law, it is easy to obtain
that 𝑓1(𝑥, 𝑢1) = (1/𝑀)(𝐾𝑢1 − 𝑓𝑀(𝑥)) with 𝑀 being the
mass of roll,𝑓𝑀(𝑥) being viscous resistance, and 𝑢1 being ser-
vomotor control. At the same time, the nonaffine nonlinear
function 𝑓2(𝑥, 𝑢2) can be derived by taking derivative of (2).

The objective of this paper is to design an adaptive fuzzy
output feedback controller 𝑢𝑖 such that all the closed-loop
error signals are uniformly ultimately bounded, and the
system output 𝑦𝑖 tracks a reference trajectory 𝑦𝑑𝑖 within a
desired compact set in the presence of unknown nonaffine
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nonlinear coupling term.Then, to ensure the feasibility of the
considered problem, the necessary assumptions are required
for the nonaffine nonlinear system (3).

Assumption 2. The desired reference trajectory 𝑦𝑑𝑖 is known
and smooth, and its derivative is also continuous. That is,
there exist unknown positive constants 𝑑𝑖, ̇𝑑𝑖, and ̈𝑑𝑖 such that|𝑦𝑑𝑖(𝑡)| ≤ 𝑑𝑖, | ̇𝑦𝑑𝑖(𝑡)| ≤ ̇𝑑𝑖, and | ̈𝑦𝑑𝑖(𝑡)| ≤ ̈𝑑𝑖, respectively.
Assumption 3 (see [13]). For all 𝑥 ∈ R4 and 𝑢𝑖 ∈ R in the 𝑖th
subsystem (3), there always exist positive constants𝑓𝑖1 and𝑓𝑖2
such that the following inequality holds:

0 < 𝑓𝑖1 ≤ 𝜕𝑓𝑖 (𝑥, 𝑢𝑖)𝜕𝑢𝑖 ≤ 𝑓𝑖2, 𝑖 = 1, 2. (4)

Assumption 4. The external disturbance 𝑑𝑖 is bounded; that
is, there exists an unknown positive constant 𝑑∗𝑖 such that|𝑑𝑖(𝑡)| ≤ 𝑑∗𝑖 .
Remark 5. It can be seen that Assumptions 2 and 4 are
quite standard in most of the references for nonlinear
tracking control, whichmeans that the external disturbances,
the reference signals, and their derivatives are bounded.
Assumption 3 is used to decouple the nonaffine nonlinear
term for the 𝑖th subsystem, which implies that the change rate
of the control input gain is bounded.

2.2. Fuzzy Logic Systems (FLSs). Generally speaking, for
an FLS, it consists of four parts: the knowledge base, the
singleton fuzzifier, product inference, and center average
defuzzifier, respectively. First, construct the knowledge base
for FLS with the following IF-THEN rules:

𝑅𝑖: If𝑋1 is 𝐹𝑖1 and . . . and𝑋𝑛 is 𝐹𝑖𝑛.
Then 𝑌 is 𝐵𝑖, 𝑖 = 1, 2, . . . , 𝑁.

Next, the FLS with the singleton fuzzifier, product infer-
ence, and center average defuzzifier can be expressed as

𝑌 (𝑋) = ∑
𝑁
𝑖=1 𝜃𝑖∏𝑛𝑗=1𝜇𝐹𝑖𝑗 (𝑋𝑗)

∑𝑁𝑖=1 [∏𝑛𝑗=1𝜇𝐹𝑖𝑗 (𝑋𝑗)]
, (5)

where𝑋 = [𝑋1, 𝑋2, . . . , 𝑋𝑛]𝑇 ∈ R𝑛, 𝜇𝐹𝑖𝑗 is the membership of
𝐹𝑖𝑗, and 𝜃𝑖 = max𝑌∈R[𝜇𝐵𝑖(𝑌)]. Let

𝜙𝑖 (𝑋) = ∏𝑛𝑗=1𝜇𝐹𝑖𝑗 (𝑋𝑗)
∑𝑁𝑖=1 [∏𝑛𝑗=1𝜇𝐹𝑖𝑗 (𝑋𝑗)]

, 𝑖 = 1, 2, . . . , 𝑁, (6)

𝜙(𝑋) = [𝜙1(𝑋), 𝜙2(𝑋), . . . , 𝜙𝑁(𝑋)]𝑇, and 𝜃 = [𝜃1, 𝜃2, . . . ,𝜃𝑁]𝑇. Hence, the FLS can be rewritten in the following form:

𝑌 (𝑋) = 𝜃𝑇𝜙 (𝑋) . (7)

Lemma 6 (see [14]). Let 𝐹(𝑋) be a continuous function
defined on a compact set Ω𝑋. Then, for any given constant

𝜖 > 0, there exists a FLS 𝑌(𝑋) in the form of (7) such that

sup
𝑋∈Ω𝑋

|𝐹 (𝑋) − 𝑌 (𝑋)| = 󵄨󵄨󵄨󵄨󵄨𝐹 (𝑋) − 𝜃𝑇𝜙 (𝑋)󵄨󵄨󵄨󵄨󵄨 < 𝜖. (8)

Similar to [13], the optimal parameter vectors 𝜃∗ of FLS
are defined as

𝜃∗ = argmin
𝜃∈Ω𝜃

[ sup
𝑋∈Ω𝑋

󵄨󵄨󵄨󵄨󵄨𝐹 (𝑋) − 𝜃𝑇𝜙 (𝑋)󵄨󵄨󵄨󵄨󵄨] , (9)

where Ω𝜃 and Ω𝑋 are compact regions for 𝜃 and 𝑋, respec-
tively. Furthermore, from Lemma 6, the fuzzy approximation
error 𝛿∗(𝑋) is defined as

𝐹 (𝑋) = 𝜃∗𝑇𝜙 (𝑋) + 𝛿∗ (𝑋) , ∀𝑋 ∈ Ω𝑋 ⊂ R
𝑛. (10)

3. Adaptive Tracking Controller Design and
Stability Analysis

3.1. Adaptive Tracking Controller Design. In this subsection,
we shall present an adaptive fuzzy control scheme only based
on output variable.Therefore, the high gain observer is intro-
duced to design adaptive output fuzzy tracking controller, and
the corresponding lemma is given as follows.

Lemma 7 (see [15]). Consider the following linear system:

𝜖𝑖𝑧̇𝑖1 = 𝑧𝑖2,
𝜖𝑖𝑧̇𝑖2 = −𝜇𝑖1𝑧𝑖2 − 𝑧𝑖1 + 𝑦𝑖, 𝑖 = 1, 2, (11)

where 𝜖𝑖 > 0 is a sufficiently small constant and the parameter𝜇𝑖1 is appropriately chosen such that 𝑠2 + 𝜇𝑖1𝑠 + 1 is an
Hurwitz polynomial. If the output function 𝑦𝑖 and its 𝑘th
time derivatives 𝑦(𝑘)𝑖 are bounded, that is, there exist positive
constants 𝑌𝑖0, 𝑌𝑖𝑘 satisfying |𝑦𝑖| ≤ 𝑌𝑖0, |𝑦(𝑘)𝑖 | ≤ 𝑌𝑖𝑘, then it is
obtained that

𝜂𝑖𝑘 fl 𝑧𝑖𝑘𝜖𝑘−1𝑖 − 𝑦𝑘−1𝑖 = −𝜖𝑖𝜙(𝑘)𝑖 , 𝑘 = 1, 2, (12)

where 𝜙𝑖 fl 𝑧𝑖2 + 𝜇𝑖1𝑧𝑖1 and 𝜙(𝑘)𝑖 represents the 𝑘th time
derivative of 𝜙𝑖. Moreover, if all the observer states satisfy that|𝑧𝑖𝑘| ≤ 𝑧𝑖𝑘 with 𝑧𝑖𝑘 > 0, then there exist 𝜂𝑖𝑘 > 0 such that|𝜂𝑖𝑘| ≤ 𝜖𝑖𝜂𝑖𝑘.

According to Lemma 6, the estimation of unmeasurable
state vector is defined as

𝑥𝑖 = [𝑥𝑖1, 𝑧𝑖2𝜖𝑖 ]
𝑇 = [𝑥𝑖1, 𝑥𝑖2]𝑇 , 𝑖 = 1, 2. (13)

Next, to facilitate control system design from nonaffine form
to affine form, the tracking error and the filtered tracking
error are defined as 𝑒𝑖 = 𝑥𝑖 − 𝑥𝑖𝑑 = [𝑒𝑖1, 𝑒𝑖2]𝑇 ∈ R2 and 𝑒𝑖𝑠 =[𝜆𝑖, 1]𝑒𝑖, respectively, where 𝑥𝑖𝑑 = [𝑦𝑖𝑑, ̇𝑦𝑖𝑑]𝑇 is the reference
state vector and 𝜆𝑖 is appropriately chosen coefficient such
that 𝑠+𝜆𝑖 is anHurwitz polynomial; that is, 𝑒𝑖 → 0 as 𝑒𝑖𝑠 → 0.
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Then, taking the derivative of 𝑒𝑖𝑠 gives
̇̂𝑒𝑖𝑠 = 𝑓𝑖 (𝑥, 𝑢𝑖) − ̈𝑦𝑖𝑑 + ̇̃𝑥𝑖2 + [0, 𝜆𝑖] 𝑒𝑖 + 𝑑𝑖, (14)

where 𝑥𝑖2 = 𝑥𝑖2 +𝑥𝑖2. By using Assumption 3 and the implicit
function theorem [16], there exists a unique and continuous
ideal control 𝑢∗𝑖 = 𝑈𝑖(𝑥) ∈ Ω𝑢𝑖 such that 𝑓𝑖(𝑥, 𝑢∗𝑖 ) =𝑓𝑖(𝑥, 𝑈𝑖(𝑥)) = 0 for all 𝑥 ∈ Ω𝑥, where Ω𝑥 and Ω𝑢𝑖 are
two compact sets. By adding and subtracting 𝛾𝑖𝑒𝑖𝑠 in (14) and
applying it to the mean value theorem, we have

̇̂𝑒𝑖𝑠 = 𝑓𝑖 (𝑥, 𝑢∗𝑖 ) + 𝜕𝑓𝑖 (𝑥, 𝑢
0
𝑖 )𝜕𝑢𝑖 (𝑢𝑖 − 𝑢∗𝑖 ) + 𝛾𝑖𝑒𝑖𝑠 − ̈𝑦𝑖𝑑

+ ̇̃𝑥𝑖2 + [0, 𝜆𝑖] 𝑒𝑖 + 𝑑𝑖 − 𝛾𝑖𝑒𝑖𝑠
= 𝜇𝑖𝑢𝑖 − 𝜕𝑓𝑖 (𝑥, 𝑢

0
𝑖 )𝜕𝑢𝑖 𝑢∗𝑖 + (𝜕𝑓𝑖 (𝑥, 𝑢

0
𝑖 )𝜕𝑢𝑖 − 𝜇𝑖)𝑢𝑖

+ 𝛾𝑖𝑒𝑖𝑠 + [0, 𝜆𝑖] 𝑒𝑖 − ̈𝑦𝑖𝑑 + ̇̃𝑥𝑖2 + 𝑑𝑖 + 𝛾𝑖𝑒𝑖𝑠
+ [0, 𝜆𝑖] 𝑒𝑖 − 𝛾𝑖𝑒𝑖𝑠,

(15)

where 𝑢0𝑖 is some point between zero and 𝑢𝑖, 𝛾𝑖 > 0, 𝜇𝑖 > 0,𝑒𝑖 = 𝑒𝑖 + 𝑒𝑖, and 𝑒𝑖𝑠 = 𝑒𝑖𝑠 + 𝑒𝑖𝑠.
Denote the nonlinear functions 𝐻𝑖(𝑥, 𝑒𝑖) = (𝜕𝑓𝑖(𝑥, 𝑢0𝑖 )/𝜕𝑢𝑖)𝑢∗𝑖 − (𝜕𝑓𝑖(𝑥, 𝑢0𝑖 )/𝜕𝑢𝑖 − 𝜇𝑖)𝑢𝑖 − 𝛾𝑖𝑒𝑖𝑠 − [0, 𝜆𝑖]𝑒𝑖; it follows

from (10) that𝐻𝑖(𝑥, 𝑒𝑖) can be approximated by the following
form:

𝐻𝑖 (𝑥, 𝑒𝑖) = 𝜃∗𝑇𝑖 𝜙𝑖 (𝑥, 𝑒𝑖) + 𝛿∗𝑖 (𝑥, 𝑒𝑖) (16)

for all (𝑥, 𝑒𝑖) ∈ Ω𝑥 × Ω𝑒𝑖 with Ω𝑒𝑖 being a compact set.
Consequently, substituting (16) into (15) yields

̇̂𝑒𝑖𝑠 = 𝜇𝑖𝑢𝑖 − 𝜃∗𝑇𝑖 𝜙𝑖 (𝑥, 𝑒𝑖) + 𝐷𝑖 (𝑡) − 𝛾𝑖𝑒𝑖𝑠, (17)

where 𝐷𝑖(𝑡) = −𝛿∗𝑖 (𝑥, 𝑒𝑖) − ̈𝑦𝑖𝑑 + ̇̃𝑥𝑖2 + 𝑑𝑖 + 𝛾𝑖𝑒𝑖𝑠 + [0, 𝜆𝑖]𝑒𝑖.
From Lemma 7 and using Assumptions 2 and 4, it can be
concluded that there exists an unknown upper bound 𝐷∗𝑖
such that |𝐷𝑖(𝑡)| ≤ 𝐷∗𝑖 .
Remark 8. For the 𝑖th nonaffine nonlinear subsystem (3),
Assumption 3 plays an important role in the controller
design. The reason is that the implicit function theorem
is employed to transform the nonaffine nonlinear coupling
term into the corresponding affine term based on this
assumption. In addition, the similar decoupling method in
[13] has been developed; however, it is required that less
adjustable parameters are used for the controller design in
this paper.

Moreover, the adaptive fuzzy tracking controller is
designed for the 𝑖th subsystem as follows:

𝑢𝑖 = 𝜇−1𝑖 (−𝛼𝑖𝑒𝑖𝑠 + 𝜃𝑇𝑖 𝜙𝑖 (𝑥, 𝑒𝑖)

− 𝑒𝑖𝑠𝐷2𝑖𝑒𝑖𝑠𝐷𝑖 tanh (𝑒𝑖𝑠/𝛿𝑖) + 𝛿𝑖)
(18)

with adaptation laws

̇̂𝜃𝑖 = −Γ𝑖 (𝜙𝑖 (𝑥, 𝑒𝑖) 𝑒𝑖𝑠 + 𝜎𝑖𝜃𝑖) ,
̇̂𝐷𝑖 = −𝛽𝑖𝜎𝑖𝐷𝑖 + 𝛽𝑖 󵄨󵄨󵄨󵄨𝑒𝑖𝑠󵄨󵄨󵄨󵄨 ,

(19)

where 𝜃𝑖 and 𝐷𝑖 are the estimate values of 𝜃∗𝑖 and 𝐷∗𝑖 ,
respectively, and Γ𝑖 = Γ𝑇𝑖 > 0, 𝛼𝑖, 𝛿𝑖, 𝛽𝑖, 𝜎𝑖, 𝑖 = 1, 2, are positive
design parameters.

3.2. Stability Analysis. In this subsection, the stability of
the resulting closed-loop system is given in the following
theorem.

Theorem 9. Consider the MIMO nonaffine nonlinear sys-
tem (3) with unmeasurable states, under the condition that
Assumptions 2–4 hold and the estimation states can be obtained
from the high gain observer (11). On the compact set Ω𝑥 × Ω𝑒𝑖 ,
the adaptive fuzzy tracking controller (18) and the parameter
updated laws (19) are constructed; then all the closed-loop sys-
tem error signals are uniformly ultimately bounded. Moreover,
the parameter estimation errors 𝐷𝑖, 𝜃𝑖 and tracking error 𝑒𝑖𝑠
remain as the compact setsΩ𝐷̃𝑖 ,Ω𝜃𝑖 , andΩ𝑒𝑖𝑠 in the sense that

Ω𝑒𝑖𝑠 = {𝑒𝑖𝑠 ∈ R | 󵄨󵄨󵄨󵄨𝑒𝑖𝑠󵄨󵄨󵄨󵄨 ≤ √Ω𝑖}
Ω𝐷̃𝑖 = {𝐷𝑖 ∈ R | 󵄨󵄨󵄨󵄨󵄨𝐷𝑖󵄨󵄨󵄨󵄨󵄨 ≤ √𝛽𝑖Ω𝑖}
Ω𝜃𝑖 = {𝜃𝑖 ∈ R𝑛 | 󵄩󵄩󵄩󵄩󵄩𝜃𝑖󵄩󵄩󵄩󵄩󵄩 ≤ √ Ω𝑖𝜆min (Γ−1𝑖 )} , 𝑖 = 1, 2,

(20)

whereΩ𝑖 = 2(𝑉𝑖|𝑡=0 + 𝜌𝑖2/𝜌𝑖1) with 𝜌𝑖1 and 𝜌𝑖2 defined as
𝜌𝑖1 fl min{2(𝛼𝑖 + 𝛾𝑖 − 12) , 𝜎𝑖 − 1/𝜓𝑖𝜆max (Γ−1𝑖 ) , (𝜎𝑖 − 2𝜅𝜏

∗
𝑖 )

⋅ 𝛽𝑖} ,

𝜌𝑖2 fl (𝛼𝑖 + 𝛾𝑖)2 𝜏∗2𝑖2 + 𝜏∗2𝑖 𝜓𝑖2 + 2 󵄩󵄩󵄩󵄩𝜃∗𝑖 󵄩󵄩󵄩󵄩 + 𝛿𝑖 + 2𝜏∗𝑖 𝐷∗𝑖
+ 𝜎𝑖2 󵄩󵄩󵄩󵄩𝜃∗𝑖 󵄩󵄩󵄩󵄩2 + (2𝜅𝜏∗𝑖 + 𝜎𝑖2 )𝐷∗2𝑖 .

(21)

Proof. Define the Lyapunov function 𝑉𝑖(𝑒𝑖𝑠, 𝜃𝑖, 𝐷𝑖) as
𝑉𝑖 (𝑒𝑖𝑠, 𝜃𝑖, 𝐷𝑖) = 12𝑒2𝑖𝑠 + 12𝛽−1𝑖 𝐷2𝑖 + 12𝜃𝑇𝑖 Γ−1𝑖 𝜃𝑖, (22)

where𝐷𝑖 = 𝐷𝑖−𝐷∗𝑖 and 𝜃𝑖 = 𝜃𝑖−𝜃∗𝑖 , 𝑖 = 1, 2, are the parameter
estimation errors. Taking the derivative of 𝑉𝑖 yields

𝑉̇𝑖 = 𝑒𝑖𝑠 ̇𝑒𝑖𝑠 + 𝛽−1𝑖 𝐷𝑖 ̇̃𝐷𝑖 + 𝜃𝑇𝑖 Γ−1𝑖 ̇̃𝜃𝑖
= 𝑒𝑖𝑠 (𝜇𝑖𝑢𝑖 − 𝜃∗𝑇𝑖 𝜙𝑖 (𝑥, 𝑒𝑖) + 𝐷𝑖 (𝑡) − 𝛾𝑖𝑒𝑖𝑠)
+ 𝛽−1𝑖 𝐷𝑖 ̇̃𝐷𝑖 + 𝜃𝑇𝑖 Γ−1𝑖 ̇̃𝜃𝑖.

(23)
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By substituting (18) into (23), one can obtain that

𝑉̇𝑖 = − (𝛼𝑖 + 𝛾𝑖) 𝑒𝑖𝑠𝑒𝑖𝑠 + 𝜃𝑇𝑖 𝜙𝑖 (𝑥, 𝑒𝑖) 𝑒𝑖𝑠
− 𝑒𝑖𝑠𝑒𝑖𝑠𝐷2𝑖𝑒𝑖𝑠𝐷𝑖 tanh (𝑒𝑖𝑠/𝛿𝑖) + 𝛿𝑖 − 𝜃

∗𝑇
𝑖 𝜙𝑖 (𝑥, 𝑒𝑖) 𝑒𝑖𝑠

+ 𝑒𝑖𝑠𝐷𝑖 + 𝛽−1𝑖 𝐷𝑖 ̇̃𝐷𝑖 + 𝜃𝑇𝑖 Γ−1𝑖 ̇̃𝜃𝑖
≤ − (𝛼𝑖 + 𝛾𝑖) 𝑒2𝑖𝑠 − (𝛼𝑖 + 𝛾𝑖) 𝑒𝑖𝑠𝑒𝑖𝑠
+ (𝜃𝑇𝑖 𝜙𝑖 (𝑥, 𝑒𝑖) − 𝜃∗𝑇𝑖 𝜙𝑖 (𝑥, 𝑒𝑖)) 𝑒𝑖𝑠
− 𝑒2𝑖𝑠𝐷2𝑖𝑒𝑖𝑠𝐷𝑖 tanh (𝑒𝑖𝑠/𝛿𝑖) + 𝛿𝑖
+ 𝑒𝑖𝑠𝑒𝑖𝑠𝐷2𝑖𝑒𝑖𝑠𝐷𝑖 tanh (𝑒𝑖𝑠/𝛿𝑖) + 𝛿𝑖 + 𝑒𝑖𝑠𝐷𝑖 − 𝑒𝑖𝑠𝐷𝑖
+ 𝛽−1𝑖 𝐷𝑖 ̇̃𝐷𝑖 + 𝜃𝑇𝑖 Γ−1𝑖 ̇̃𝜃𝑖,

(24)

where 𝑒𝑖𝑠 = 𝑒𝑖𝑠 − 𝑒𝑖𝑠. Using the adaptive control laws (19), (24)
becomes

𝑉̇𝑖 ≤ − (𝛼𝑖 + 𝛾𝑖) 𝑒2𝑖𝑠 − (𝛼𝑖 + 𝛾𝑖) 𝑒𝑖𝑠𝑒𝑖𝑠
+ (𝜃𝑇𝑖 𝜙𝑖 (𝑥, 𝑒𝑖) − 𝜃∗𝑇𝑖 𝜙𝑖 (𝑥, 𝑒𝑖)) 𝑒𝑖𝑠
− 𝑒2𝑖𝑠𝐷2𝑖𝑒𝑖𝑠𝐷𝑖 tanh (𝑒𝑖𝑠/𝛿𝑖) + 𝛿𝑖
+ 𝑒𝑖𝑠𝑒𝑖𝑠𝐷2𝑖𝑒𝑖𝑠𝐷𝑖 tanh (𝑒𝑖𝑠/𝛿𝑖) + 𝛿𝑖 +

󵄨󵄨󵄨󵄨𝑒𝑖𝑠󵄨󵄨󵄨󵄨 𝐷∗𝑖 + 󵄨󵄨󵄨󵄨𝑒𝑖𝑠󵄨󵄨󵄨󵄨 𝐷∗𝑖
− 𝜎𝑖𝐷𝑖𝐷𝑖 + 󵄨󵄨󵄨󵄨𝑒𝑖𝑠󵄨󵄨󵄨󵄨 𝐷𝑖 − 𝜃𝑇𝑖 𝜙𝑖 (𝑥, 𝑒𝑖) 𝑒𝑖𝑠 − 𝜎𝑖𝜃𝑇𝑖 𝜃𝑖.

(25)

Invoking inequalities 0 ≤ 𝑏 tanh(𝑏/𝑎) ≤ |𝑏|,∀𝑏 ∈ R, 𝑎 > 0
and |𝑏| ≤ 𝑏 tanh(𝑏/𝑎) + 𝜅𝑎, ∀𝑏 ∈ R, 𝑎 > 0, 𝜅 = 0.2785 given
in [17], it follows from (25) that

𝑉̇𝑖 ≤ − (𝛼𝑖 + 𝛾𝑖) 𝑒2𝑖𝑠 − (𝛼𝑖 + 𝛾𝑖) 𝑒𝑖𝑠𝑒𝑖𝑠
+ (𝜃𝑇𝑖 𝜙𝑖 (𝑥, 𝑒𝑖) − 𝜃∗𝑇𝑖 𝜙𝑖 (𝑥, 𝑒𝑖)) 𝑒𝑖𝑠 +

󵄨󵄨󵄨󵄨𝑒𝑖𝑠󵄨󵄨󵄨󵄨 𝐷𝑖𝛿𝑖󵄨󵄨󵄨󵄨𝑒𝑖𝑠󵄨󵄨󵄨󵄨 𝐷𝑖 + 𝛿𝑖
+ 󵄨󵄨󵄨󵄨𝑒𝑖𝑠󵄨󵄨󵄨󵄨 𝐷𝑖 + 𝜅 󵄨󵄨󵄨󵄨𝑒𝑖𝑠󵄨󵄨󵄨󵄨 𝐷2𝑖 + 󵄨󵄨󵄨󵄨𝑒𝑖𝑠󵄨󵄨󵄨󵄨 𝐷∗𝑖 − 𝜎𝑖𝐷2𝑖
− 𝜎𝑖𝐷𝑖𝐷∗𝑖 − 𝜃𝑇𝑖 𝜙𝑖 (𝑥, 𝑒𝑖) 𝑒𝑖𝑠 − 𝜎𝑖𝜃𝑇𝑖 𝜃𝑖.

(26)

For the FLS error term on the right side of (26), adding and
subtracting 𝜃∗𝑇𝑖 𝜙𝑖(𝑥, 𝑒𝑖) yield

𝜃𝑇𝑖 𝜙𝑖 (𝑥, 𝑒𝑖) − 𝜃∗𝑇𝑖 𝜙𝑖 (𝑥, 𝑒𝑖) + 𝜃∗𝑇𝑖 𝜙𝑖 (𝑥, 𝑒𝑖)
− 𝜃∗𝑇𝑖 𝜙𝑖 (𝑥, 𝑒𝑖)

= 𝜃𝑇𝑖 𝜙𝑖 (𝑥, 𝑒𝑖) + 𝜃∗𝑇𝑖 (𝜙𝑖 (𝑥, 𝑒𝑖) − 𝜙𝑖 (𝑥, 𝑒𝑖)) .
(27)

Using the fact that 𝜙𝑇𝑖 𝜙𝑖 ≤ 1 and the triangle inequality, we
have

𝜃𝑇𝑖 𝜙𝑖 (𝑥, 𝑒𝑖) − 𝜃∗𝑇𝑖 𝜙𝑖 (𝑥, 𝑒𝑖) ≤ 𝜃𝑇𝑖 𝜙 (𝑥, 𝑒𝑖) + 2 󵄩󵄩󵄩󵄩𝜃∗𝑖 󵄩󵄩󵄩󵄩
2𝐷𝑖𝐷∗𝑖 = 𝐷2𝑖 − 𝐷∗2𝑖 − 𝐷2𝑖 ≥ −𝐷∗2𝑖 − 𝐷2𝑖
2𝜃𝑇𝑖 𝜃𝑖 = 󵄩󵄩󵄩󵄩󵄩𝜃𝑖󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝜃𝑖󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝜃∗𝑖 󵄩󵄩󵄩󵄩2 ≥ 󵄩󵄩󵄩󵄩󵄩𝜃𝑖󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝜃∗𝑖 󵄩󵄩󵄩󵄩2 .

(28)

Invoking (28), (26) becomes

𝑉̇𝑖 ≤ − (𝛼𝑖 + 𝛾𝑖) 𝑒2𝑖𝑠 − (𝛼𝑖 + 𝛾𝑖) 𝑒𝑖𝑠𝑒𝑖𝑠 − 𝜃𝑇𝑖 𝜙𝑖 (𝑥, 𝑒𝑖) 𝑒𝑖𝑠
+ 2 󵄩󵄩󵄩󵄩𝜃∗𝑖 󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨𝑒𝑖𝑠󵄨󵄨󵄨󵄨 𝐷𝑖𝛿𝑖󵄨󵄨󵄨󵄨𝑒𝑖𝑠󵄨󵄨󵄨󵄨 𝐷𝑖 + 𝛿𝑖 +
󵄨󵄨󵄨󵄨𝑒𝑖𝑠󵄨󵄨󵄨󵄨 𝐷𝑖 + 𝜅 󵄨󵄨󵄨󵄨𝑒𝑖𝑠󵄨󵄨󵄨󵄨 𝐷2𝑖

+ 2 󵄨󵄨󵄨󵄨𝑒𝑖𝑠󵄨󵄨󵄨󵄨 𝐷∗𝑖 − 𝜎𝑖2 𝐷2𝑖 + 𝜎𝑖2 𝐷∗2𝑖 − 𝜎𝑖2 󵄩󵄩󵄩󵄩󵄩𝜃𝑖󵄩󵄩󵄩󵄩󵄩2
+ 𝜎𝑖2 󵄩󵄩󵄩󵄩𝜃∗𝑖 󵄩󵄩󵄩󵄩2 .

(29)

From the definition in (12) and the fact that 𝑒𝑖𝑠 = [𝜆𝑖, 1]𝑒𝑖,
it can be obtained that 𝑒𝑖𝑠 is bounded; that is, there exists
a positive constant 𝜏∗𝑖 subject to |𝑒𝑖𝑠| ≤ 𝜏∗𝑖 . Moreover, by
utilizing the inequalities 2𝑎𝑏 ≤ (1/𝑐)𝑎2 + 𝑐𝑏2, ∀𝑐 > 0, 𝑎, 𝑏 ∈ R
and 0 ≤ 𝑎/(𝑎 + 𝑏) < 1, ∀𝑎 ≥ 0, 𝑏 > 0, we have
𝑉̇𝑖 ≤ − (𝛼𝑖 + 𝛾𝑖) 𝑒2𝑖𝑠 + 12𝑒2𝑖𝑠 + (𝛼𝑖 + 𝛾𝑖)

2 𝜏∗2𝑖2 + 12𝜓𝑖
󵄩󵄩󵄩󵄩󵄩𝜃𝑖󵄩󵄩󵄩󵄩󵄩2

+ 𝜏∗2𝑖 𝜓𝑖2 + 2 󵄩󵄩󵄩󵄩𝜃∗𝑖 󵄩󵄩󵄩󵄩 + 𝛿𝑖 + 12𝜑𝑖 𝜏∗2𝑖 +
𝐷2𝑖 𝜑𝑖2 + 2𝜅𝜏∗𝑖 𝐷2𝑖

+ 2𝜅𝜏∗𝑖 𝐷∗2𝑖 + 2𝜏∗𝑖 𝐷∗𝑖 − 𝜎𝑖2 𝐷2𝑖 + 𝜎𝑖2 𝐷∗2𝑖 − 𝜎𝑖2 󵄩󵄩󵄩󵄩󵄩𝜃𝑖󵄩󵄩󵄩󵄩󵄩2

+ 𝜎𝑖2 󵄩󵄩󵄩󵄩𝜃∗𝑖 󵄩󵄩󵄩󵄩2 ≤ −(𝛼𝑖 + 𝛾𝑖 − 12) 𝑒2𝑖𝑠 − 12 (𝜎𝑖 − 1𝜓𝑖)
⋅ 󵄩󵄩󵄩󵄩󵄩𝜃𝑖󵄩󵄩󵄩󵄩󵄩2 − 12 (𝜎𝑖 − 2𝜅𝜏∗𝑖 )𝐷2𝑖 + ((𝛼𝑖 + 𝛾𝑖)

2 𝜏∗2𝑖2
+ 𝜏∗2𝑖 𝜓𝑖2 + 2 󵄩󵄩󵄩󵄩𝜃∗𝑖 󵄩󵄩󵄩󵄩 + 𝛿𝑖 + 2𝜏∗𝑖 𝐷∗𝑖 + 𝜎𝑖2 󵄩󵄩󵄩󵄩𝜃∗𝑖 󵄩󵄩󵄩󵄩2

+ (2𝜅𝜏∗𝑖 + 𝜎𝑖2 )𝐷∗2𝑖 ) ≤ −𝜌𝑖1𝑉𝑖 + 𝜌𝑖2,

(30)

where 𝜌𝑖1 and 𝜌𝑖2 are given by the following form:

𝜌𝑖1 fl min{2(𝛼𝑖 + 𝛾𝑖 − 12) , 𝜎𝑖 − 1/𝜓𝑖𝜆max (Γ−1𝑖 ) , (𝜎𝑖 − 2𝜅𝜏
∗
𝑖 )

⋅ 𝛽𝑖}

𝜌𝑖2 fl (𝛼𝑖 + 𝛾𝑖)2 𝜏∗2𝑖2 + 𝜏∗2𝑖 𝜓𝑖2 + 2 󵄩󵄩󵄩󵄩𝜃∗𝑖 󵄩󵄩󵄩󵄩 + 𝛿𝑖 + 2𝜏∗𝑖 𝐷∗𝑖
+ 𝜎𝑖2 󵄩󵄩󵄩󵄩𝜃∗𝑖 󵄩󵄩󵄩󵄩2 + (2𝜅𝜏∗𝑖 + 𝜎𝑖2 )𝐷∗2𝑖 .

(31)
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By appropriately adjusting the design parameters 𝜇𝑖, 𝛼𝑖,𝛽𝑖, 𝛾𝑖, 𝜎𝑖, 𝛿𝑖, and𝜓𝑖 such that 𝛼𝑖+𝛾𝑖−1/2 > 0, 𝜎𝑖−1/𝜓𝑖 > 0, and𝜎𝑖 − 2𝜅𝜏∗𝑖 > 0, respectively, the closed-loop system stability
can be guaranteed. Finally, bymultiplying 𝑒𝜌𝑖1𝑡 and integrating
over [0, 𝑡] on both sides of (30), we have

𝑉𝑖 ≤ (𝑉𝑖󵄨󵄨󵄨󵄨𝑡=0 − 𝜌𝑖2𝜌𝑖1) 𝑒−𝜌𝑖1𝑡 +
𝜌𝑖2𝜌𝑖1 ≤ 𝑉𝑖

󵄨󵄨󵄨󵄨𝑡=0 + 𝜌𝑖2𝜌𝑖1 . (32)

It follows from (22) and (32) that

󵄨󵄨󵄨󵄨𝑒𝑖𝑠󵄨󵄨󵄨󵄨 ≤ √2(𝑉𝑖󵄨󵄨󵄨󵄨𝑡=0 + 𝜌𝑖2𝜌𝑖1)
󵄨󵄨󵄨󵄨󵄨𝐷𝑖󵄨󵄨󵄨󵄨󵄨 ≤ √2𝛽𝑖 (𝑉𝑖󵄨󵄨󵄨󵄨𝑡=0 + 𝜌𝑖2𝜌𝑖1)
󵄩󵄩󵄩󵄩󵄩𝜃𝑖󵄩󵄩󵄩󵄩󵄩 ≤ √ 2 (𝑉𝑖

󵄨󵄨󵄨󵄨𝑡=0 + 𝜌𝑖2/𝜌𝑖1)𝜆min (Γ−1𝑖 ) .

(33)

Consequently, the parameter estimation errors 𝐷𝑖, 𝜃𝑖 and
tracking error 𝑒𝑠 are bounded from (31) and remain as the
compact setsΩ𝐷̃𝑖 ,Ω𝜃𝑖 , andΩ𝑒𝑖𝑠 in the sense that

Ω𝑒𝑖𝑠 = {𝑒𝑖𝑠 ∈ R | 󵄨󵄨󵄨󵄨𝑒𝑖𝑠󵄨󵄨󵄨󵄨 ≤ √Ω𝑖}
Ω𝐷̃𝑖 = {𝐷𝑖 ∈ R | 󵄨󵄨󵄨󵄨󵄨𝐷𝑖󵄨󵄨󵄨󵄨󵄨 ≤ √𝛽𝑖Ω𝑖}
Ω𝜃𝑖 = {𝜃𝑖 ∈ R𝑛 | 󵄩󵄩󵄩󵄩󵄩𝜃𝑖󵄩󵄩󵄩󵄩󵄩 ≤ √ Ω𝑖𝜆min (Γ−1𝑖 )} , 𝑖 = 1, 2,

(34)

whereΩ𝑖 = 2(𝑉𝑖|𝑡=0 + 𝜌𝑖2/𝜌𝑖1) with 𝜌𝑖1 and 𝜌𝑖2 defined as (31).
The proof is completed.

Remark 10. It is worth mentioning that the authors in [13]
considered the adaptive fuzzy tracking control problem for
a class of SISO nonaffine nonlinear systems. However, the
approach proposed in [13] cannot be applied to MIMO
nonaffine nonlinear casting systems with immeasurable cou-
pling states. In this paper, the mean value theorem and the
fuzzy approximation method are employed to transform the
nonaffine nonlinear systems to the corresponding affine non-
linear systems. Also, based on Lyapunov stability analysis, it is
shown that the proposed adaptive fuzzy output tracking con-
trol scheme can guarantee that the roll gap 𝑥𝑔 and the molten
steel level 𝑥ℎ can track to the empirical reference signals.

4. Simulations and Experimental Analysis

In this section, in order to verify the effectiveness of the pro-
posed adaptive fuzzy control method, the following numeri-
cal simulation is performed for MIMO nonaffine nonlinear
system (3), and the corresponding system parameters are
selected as 𝑅 = 150mm, 𝐿 = 200mm, 𝑀 = 300 kg, and
V𝑟 = 10mpm. These values are chosen from [9]. In addition,
the initial roll gap and the desired roll gap are set to be0mm and 3mm, and the initial molten steel level and desired
molten steel level are set to be 20mmand 70mm, respectively.
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Figure 2: Trajectories of the system output 𝑦1 and the desired
reference signal 𝑦𝑑1.

Furthermore, the fuzzy membership functions are chosen as
follows:

𝜇𝐹1𝑗 = exp[
[
−(𝑋𝑗 + 1.5)

2

2 ]
]
,

𝜇𝐹2𝑗 = exp[
[
−(𝑋𝑗 + 1)

2

2 ]
]
,

𝜇𝐹3𝑗 = exp[
[
−(𝑋𝑗 + 0.5)

2

2 ]
]
,

𝜇𝐹4𝑗 = exp[−𝑋2𝑗2 ] ,

𝜇𝐹5𝑗 = exp[
[
−(𝑋𝑗 − 0.5)

2

2 ]
]
,

𝜇𝐹6𝑗 = exp[
[
−(𝑋𝑗 − 1)

2

2 ]
]
,

𝜇𝐹7𝑗 = exp[
[
−(𝑋𝑗 − 1.5)

2

2 ]
]
,
𝑗 = 1, 2, . . . , 𝑛.

(35)

Define fuzzy basis functions as

𝜙𝑖 (𝑋) = ∏𝑛𝑗=1𝜇𝐹𝑖𝑗 (𝑋𝑗)
∑7𝑖=1 [∏𝑛𝑗=1𝜇𝐹𝑖𝑗 (𝑋𝑗)]

, 𝑖 = 1, 2, . . . , 7, (36)

where𝑋 = [𝑋1, 𝑋2, . . . , 𝑋𝑛]𝑇.
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Figure 3: Trajectories of the system output 𝑦2 and the desired reference signal 𝑦𝑑2.
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Figure 4: Trajectory of the system tracking error of molten steel level.
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Figure 6: The observer states 𝑥11 and 𝑥12.

0 10 20 30 40 50 60
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Time (sec)

The observer state x̂21
The observer state x̂22

Figure 7: The observer states 𝑥21 and 𝑥22.

Besides, the simulation parameters are chosen as 𝜇𝑖 = 5,𝛼𝑖 = 5, 𝛽𝑖 = 0.2, Γ𝑖 = 10, 𝜎𝑖 = 10, and 𝛿𝑖 = 0.1, 𝑖 =1, 2, and the initial values are selected as 𝑥1(0) = [0.02, 0]𝑇,𝑥2(0) = [0, 0.1]𝑇, 𝑥1(0) = [2, −3]𝑇, 𝑥2(0) = [0, −1]𝑇, 𝜃1(0) =𝜃2(0) = [0, 0.1, 0, 0.1, 0, 0, 0.1]𝑇, and 𝐷1(0) = 𝐷2(0) = 5. The
simulation results are obtained in Figures 2–11. From Figures
2 and 3, the system output signals of 𝑦𝑖 and the reference
signals 𝑦𝑑𝑖, respectively, can be seen. Figures 4 and 5 show
that the tracking performance is satisfactory and the output
tracking errors of the roll gap and the molten steel level can
converge to the desired neighborhoods of the origin. The
curves of the estimations states are given in Figures 6 and 7.
The boundedness of parameter estimations 𝜃𝑖 and𝐷𝑖, as well

as the designed control 𝑢𝑖, is demonstrated in Figures 8–11.
Besides, the casting 7075 aluminum alloy strip is shown in
Figure 12. It can also be seen that the casting strip is flat and
there are no obvious cracks on the surface.

5. Conclusion

This paper studies the robust adaptive fuzzy tracking control
problem for a class of twin-roll strip casting systems. Based on
fuzzy logic systems (FLSs) to approximate the compounded
nonlinear functions, a novel adaptive fuzzy output tracking
control scheme is developed by using the high gain observer.
The mean value theorem is employed to decouple the
nonaffine nonlinear systems, and thus it is proved that all
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Figure 8: The response curves of 𝜃1.
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Figure 9: The response curves of 𝜃2.

the closed-loop signals are bounded and the systems output
tracking errors of the roll gap and the molten steel level
can converge to the desired neighborhoods of the origin via
the Lyapunov stability analysis. Simulation results show the
effectiveness of the proposed adaptive control approach.
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Figure 12:The casting 7075 aluminum alloy strip image showing the
smooth surface in twin-roll strip process.
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