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Routine quantification of myocardial blood flow (MBF)
in absolute units of mL/min/g has long been one of the
technical milestones expected to enable the widespread
clinical application of cardiac positron emission tomog-
raphy (PET). The recent study by Germino et al. [1]
contributes significantly to the increasing body of litera-
ture supporting the potential for rubidium-82 (82Rb)
PET to become the de facto clinical standard method for
non-invasive quantification of MBF and myocardial flow
reserve (MFR) in the routine diagnosis and management
of patients with ischemic heart disease. The authors are
commended for completing a very technically challen-
ging study, including three-dimensional PET parametric
imaging and arterial blood sampling validation with the
ultra-short-lived tracers 82Rb and 15O-water.

82Rb is currently the most widely used tracer for PET
myocardial perfusion imaging (MPI) in North America,
and its use is increasing in Europe and in other parts of
the world. While the diagnostic accuracy of 82Rb PET
for routine MPI is accepted to be slightly higher than
201Tl or 99mTc-based SPECT methods [2] and is recom-
mended over SPECT in certain patient sub-groups [3],
the full added value of PET for MBF quantification has
yet to be realized in improving patient management to
reduce adverse cardiac outcomes such as myocardial
infarction and death. In the present issue, Germino and
co-authors have solidified the foundation upon which
future clinical trials can be performed to help achieve
this long-term goal. To have full confidence in MBF
PET imaging results sufficient to direct optimal

therapies in the clinical routine, the following criteria
should be demonstrated.

Rigorous validation (accuracy)
The tracer kinetics of 82Rb were first shown in rabbits to
follow a two-compartment model [4], but a simpler one-
tissue-compartment model (1TCM) has been shown to
be adequate to describe the typical kinetic profiles in hu-
man and animal model studies [5]. This 1TCM has only
three parameters, which Germino et al. used successfully
for the estimation of parametric images showing the
influx-rate (K1 uptake), efflux-rate (k2 washout), and
fractional blood volume (VA spillover). MBF values are
derived from the uptake-rate K1, using a tracer
extraction function E(MBF) calibrated to an accepted
gold-standard. In experimental animal studies, ex vivo
quantification of radioisotope- or fluorescent-labeled
microspheres has been used to validate dynamic PET
MBF measurements using 15O-water and 13N-ammonia,
both of which are (nearly) freely diffusible across
capillary and cell membranes [6, 7]. Because the micro-
sphere technique cannot be used in humans, the 1TCM
method for 82Rb MBF was validated originally against
13N-ammonia in healthy normal subjects and heart
disease patients using 3D dynamic PET and filtered-
back-projection analytic reconstruction [8]. The esti-
mated extraction function was then confirmed with
15O-water measurements using 2D dynamic PET and
iterative reconstruction [9]. These findings are now
re-confirmed by Germino et al. using state-of-the-art 3D
PET-CT parametric imaging with iterative time-of-flight
reconstruction and detector response modeling. There
are several important findings in their study that
highlight the need for attention to the methodological
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details, in comparing or standardizing 82Rb MBF
measurements between different imaging laboratories.
As in a previous study by Weinberg [10] 82Rb arterial

blood samples were compared to the PET image-derived
blood input functions (IDIF). In the present study,
Germino et al. found a small under-estimation (−3 and
−8 %) in the 15O-water and 82Rb IDIF values, that was
not time-dependent, and could therefore be corrected by
simple scaling. The authors propose that the source of
this small bias may be related to technical factors, e.g.,
positron range or other resolution effects, but may also
be attributed to physiological factors, e.g., red blood cell
uptake which has been demonstrated with other
potassium analogs such as 201Tl [11]. Similar to 15O-water,
82Rb does not bind to plasma proteins nor does it have
any radioactive metabolites in arterial blood or myocardial
tissue, which can complicate the tracer kinetic analysis of
other MBF tracers such as 13N-ammonia [12].
As the source of the reported IDIF bias was not

confirmed, the authors explain that the derived scale-
factor may be “scan dependent, conditional on variations
in VOI size and placement, heart size, breathing pattern,
and subject motion. Further investigation is required to
assess generalizability to other scanners and reconstruc-
tion algorithms.” However, it is important to note that
regardless of the cause of the apparent bias, when the
measured 82Rb IDIF values were used without the scaling
correction, the corresponding extraction fraction parame-
ters were very similar to those reported by Lortie [8, 9].
By combining the new data from Germino et al.

together with these two previous studies, which all used
comparable implementations of the 1TCM (without any
blood input function correction), we can improve the
estimation of the 82Rb extraction function parameters
(Fig. 1a), which in turn should improve the precision of
the derived MBF estimates [13, 14]. Contrary to previous
reports [15], these data clearly demonstrate that there is
no “roll-off” of tracer uptake-rate using the 1TCM, as
the K1 values continue to increase with MBF over the
range of physiological values measured in these human
studies. Interestingly, an empirical power function ap-
pears to describe the rubidium K1 vs. MBF relationship
as well as the more physiological Renkin-Crone tracer
extraction formulation. Recognizing that the fitted
functions shown in Fig. 1a are intended primarily to
“calibrate” the 82Rb uptake rates (K1) for accurate
estimation of MBF, a strict physiological interpretation is
not required. Therefore, it would seem appropriate to
use a function similar to one that fits the “combined”
data of these three validation studies. It is encouraging
that these combined results seem to be relatively inde-
pendent of the particular scanning hardware, acquisition
protocol, image reconstruction, and software analysis
methods used in the respective studies individually.

Repeatability (test-retest and operator variability)
Several studies have demonstrated very good repeatabil-
ity of measured MBF values using 82Rb dynamic PET, on
the order of ±5 % limits-of-agreement when compared
within or between operators Klein et al. [16] and ±20 %
between sequential imaging sessions under both rest and
hyperemic stress conditions [17–19]. Test-retest repeat-
ability of 82Rb MBF was substantially higher (±35–40 %)
when measured on separate days, and analyzed using a
tracer retention model [20], which is a further simplifica-
tion of the 1TCM that measures the net effects of tracer
uptake and washout. MBF test-retest repeatability can be
improved to ±10–15 % by using a standardized “square-
wave” tracer infusion profile, available with the latest
82Rb generator system [21].

Reproducibility (multi-center standardization)
The commonly applied 1TCM for 82Rb [8] does not require
any a priori assumed methodological constants (e.g., tissue
distribution volume, blood integration interval, myocardial
wall-thickness, or partial-volume recovery coefficient) or
physiological constants (except the ubiquitous extraction
function), making the model widely applicable and repro-
ducible despite local variations in PET scanner technology
(e.g., 2D vs. 3D), dynamic sampling (2 to 10 min), image
reconstruction (analytic vs. iterative ± time-of-flight or
detector response modeling), and computer software imple-
mentations [22–25].
The three human 82Rb validation studies using the same

1TCM have produced consistent estimates of the extrac-
tion function parameters (Fig. 1b) with overlapping 95 %
confidence intervals (CI). Murthy et al. [26] have also
demonstrated similar prognostic value between 1TCM
variant methods when stress/rest myocardial flow reserve
(MFR) was used to predict patient adverse outcomes.
Despite these significant advances, some challenges re-
main in terms of weight-based dosing to maintain MBF
accuracy with early-generation 3D PET technologies [27,
28] and standardization of hyperemic stress response
when using different pharmacologic stressors such as
dobutamine, adenosine, adenosine triphosphate, dipyrid-
amole, or regadenoson [29].

Revascularization vs. medical therapy decisions
(clinical and cost effectiveness)
As the availability of 82Rb continues to increase and
standardization of PET MBF methods improves between
imaging laboratories, the ability to conduct multi-center tri-
als demonstrating the clinical value to direct effective ther-
apies will improve accordingly. The cardiac PET community
could strive to produce non-invasive imaging evidence
similar to the pivotal FAME trial [30] which used invasive
measurements of fractional flow reserve (FFR) to identify
flow-limiting stenoses associated with myocardial ischemia,
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direct effective therapy, improve patient outcomes, and
reduce treatment costs, leading to revised European Society
of Cardiology guidelines for myocardial revascularization in
patients with ischemic heart disease [31].
Johnson et al. [32] have proposed a stress PET MBF

threshold ~0.9 mL/min/g to identify definite myocardial
ischemia; however, the relative value of stress MBF vs.
stress/rest MFR remains to be elucidated for the optimal
detection of disease and management of therapy
decisions [33]. In this regard, it is critical to understand
the differences between the measurement of epicardial
FFR vs. epicardial + microvascular MFR, as elegantly
described by Johnson and Gould [34, 35]. The addition

of CT coronary angiography or microvascular-specific
tests of endothelial function may have a role to play in
the differential diagnosis of macro- (CTA) vs. micro-
vascular (PET) disease, which should be amenable to re-
vascularization vs. medical therapies respectively [36].
Prospective studies are needed to evaluate the role of
PET MBF and MFR to direct therapies such as revascu-
larization. In the meantime current clinical trials such as
the DEFINE-FLOW study which is using invasive mea-
sures of fractional and coronary flow reserve will help to
define the potential clinical role of non-invasive PET
MFR to complement invasive FFR measurements of the
physiologic consequences of coronary atherosclerosis

Fig. 1 a Combined estimation (N = 60) of 82Rb extraction function parameters from three validation studies performed in humans using the
one-tissue-compartment model, without correction (spillover or scaling) of the arterial blood input function. b Combined estimates of the 82Rb
extraction parameters: A (0.79 ± 0.035) and B (0.55 ± 0.11) demonstrate improved precision vs. individual studies (Germino, Prior, Lortie).
Confidence interval (CI) values derived from Table 3 in Germino et al. [1]
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[37]. Limited US data available supports the cost
effectiveness of 82Rb PET MPI when used consistently in
patients with intermediate pre-test likelihood of disease
[38]; comparable studies are still needed in the European
setting, to establish the financial value or impact of 82Rb
for conventional MPI and the potential added value of
routine quantification of MBF.
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