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In postestimation problem for space robot, photogrammetry has been used to determine the relative pose between an object
and a camera. e calculation of the projection from two-dimensional measured data to three-dimensional models is of utmost
importance in this vision-based estimation however, this process is usually time consuming, especially in the outer space
environment with limited performance of hardware. is paper proposes a computationally efficient iterative algorithm for pose
estimation based on vision technology. In this method, an error function is designed to estimate the object-space collinearity error,
and the error is minimized iteratively for rotationmatrix based on the absolute orientation information. Experimental result shows
that this approach achieves comparable accuracy with the SVD-based methods; however, the computational time has been greatly
reduced due to the use of the absolute orientation method.

1. Introduction

Vision based methods have been applied to estimate the pose
of space robot since 1990s. In these methods, the relative
position and orientation between a camera and a robot target
are determined with a set of 𝑛𝑛 feature points expressed in
the three dimensional (3D) object coordinates and their two
dimensional (2D) projection in the camera coordinate. e
error in position and orientation is usually optimized using
the noniterative or iterative algorithms. e noniterative
algorithms give an analytical solution for the optimization
[1–3], and a typical example of these algorithms includes the
method to represent feature points as a linear combination of
four virtual control points based on their coordinates [4].e
noniterative methods are generally less time consuming than
the iterative methods with acceptable accuracy; however,
they are sensitive to observation noise such as image noise,
different lighting conditions, and even occlusion by outliers.
e iterative approaches, however, achieve better accuracy
than the noniterative methods by solving the rotation matrix
with a nonlinear least-square method iteratively.

A typical iterative method is the Levenberg-Marquardt
(L-M) algorithm [5–7], and it has been widely used and

accepted as a standard algorithm for least-square problem
in photogrammetry. e L-M method is in essentially the
combination of the steepest descent method and the Gauss-
Newtonmethod in different optimization stages.e steepest
descent method is used at the early stage of optimization
when the current value of error is still far from theminimum,
while the Gauss-Newton method is used at the later stage of
optimizationwhen the solution is relatively close to the target.
e combination of the two methods at different stages is
in fact a coarse search from a globalwise followed by a �ne
search within a local area. e use of the steepest descent
method in the early stage of optimization helps to �nd a
guaranteed convergence direction and locate the solution
within a small area, while the Gauss-Newton approach �nds
the optimized solution with fast speed. e L-M algorithm
offers a way to �nd an optimized solution for the iterative
approach; however, since the L-M method is a general-
purposed optimization method, it can be improved signi�-
cantly to suit the speci�c requirement of the pose estimation
for a faster converging speed and a better noise-tolerant
solution.

e iterative optimization method specially designed for
pose estimation purpose has been considered based on the
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target pose and the depths of the feature points [8]. is
method calculates the depth information and absolute orien-
tation of target, respectively, and the perspective nonlinearity
can be reduced by introducing the depth variable. However,
this method requires hundreds of iterations before it can
reach a convergence point [8].

Another type of iterative algorithm, orthogonal iterative
(OI), was proposed byLu et al. [9] to estimate the object-space
collinearity error with a different objective function. Instead
of using the depth of the object, this algorithm uses scene
points to improve the calculation of the translation vector,
and it achieves a higher accuracy and more computation
efficiency. However, the corruption in the input data can
cause a considerable error in the rotationmatrix, and thus the
accuracy of the OI method is affected [10]. e OI algorithm
was further developed by Zhang et al. by introducing depth
update in the computation of the translation vector in a two-
stage iterative process [11, 12]. Higher accuracy than the OI
algorithm can be achieved from this method by re�ning the
error of absolute orientation [10].

e essential process of the above optimization algo-
rithms specially designed for pose estimation is to solve
the absolute orientation problem, which can be applied
with quaternions [13–15] and Singular Value Decomposition
(SVD) [15, 16] methods, respectively. e SVD method has
achieved a great performance and has been used extensively
because of its closed form solution and enhanced orthogo-
nality; however, the computational load makes it difficult to
implement in real-time system.

In order to overcome this problem, this paper introduces
the FOAM method [17] to calculate the absolute orientation
for pose estimation. e experimental result shows that
the performance of accuracy and noise resistance will be
shown to be comparable with the SVDmethod; however, the
computational efficiency is considerably better.e structure
of this paper has been organized as follows. Section 2 of
this paper further introduces the problem, and Section 3
presents our solution for the problem. Section 4 shows the
experimental result, and �nally a conclusion is drawn.

2. Theory

In pose estimation of space robot, we usually have a target
coordinate frame 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 and a camera coordinate frame
𝑂𝑂′𝑂𝑂′𝑂𝑂′𝑂𝑂′, and they are de�ned as illustrated in Figure 1,
respectively.

It can be seen that the center of the projection from the
object is at the origin 𝑂𝑂′ and the optical axis points to the
positive 𝑂𝑂′ axis. Supposed that a lens with the focal length of
𝑓𝑓 is located at the origin, the plane𝑂𝑂′ = 𝑓𝑓 is then considered
as the image plane of the camera on which the feature points
are projected. If the coordinates of feature points, 𝑃𝑃𝑖𝑖 (𝑖𝑖 =
1,… , 𝑛𝑛) on the target are denoted as 𝐥𝐥𝑖𝑖 = (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖, 𝑧𝑧𝑖𝑖)

𝑇𝑇 in the
target coordinate frame, and its corresponding projection on
the camera axis is expressed as 𝐦𝐦𝑖𝑖 = (𝑥𝑥′𝑖𝑖, 𝑦𝑦

′
𝑖𝑖, 𝑧𝑧

′
𝑖𝑖)
𝑇𝑇, then the

rotation matrix and the translation vector from the target
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F 1: Coordinate frames in the pose estimation problem.

coordinate frame to the camera coordinate frame can be
written in the relationship such as

𝐦𝐦𝑖𝑖 = 𝐴𝐴𝐥𝐥𝑖𝑖 + 𝐭𝐭, (1)

where 𝐴𝐴 = (𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴3)
𝑇𝑇 denotes the rotation matrix and 𝐭𝐭 =

(𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦, 𝑡𝑡𝑧𝑧)
𝑇𝑇 is the translation vector.

If the image point 𝑃𝑃′𝑖𝑖 in camera axis frame represents the
projection from the feature point 𝑃𝑃𝑖𝑖, and its coordinate is
written as𝐰𝐰𝑖𝑖 = (𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖, 𝑓𝑓)

𝑇𝑇, according to the idealized pinhole
camera model, the relationship between the coordinates of
𝑃𝑃𝑇𝑇𝑖𝑖 and 𝑃𝑃𝑖𝑖 can be expressed as

𝐰𝐰𝑖𝑖 =
𝑓𝑓

𝐴𝐴𝑇𝑇𝟑𝟑 𝐥𝐥𝑖𝑖 + 𝑡𝑡𝑧𝑧
𝐦𝐦𝑖𝑖 =

𝑓𝑓
𝐴𝐴𝑇𝑇𝟑𝟑 𝐥𝐥𝑖𝑖 + 𝑡𝑡𝑧𝑧

𝐴𝐴𝐥𝐥𝑖𝑖 + 𝐭𝐭 , (2)

and 𝐰𝐰𝑖𝑖 in (2) is regarded as a collinearity equation in image
space, and the orthogonal projection of 𝐦𝐦𝑖𝑖 to 𝐰𝐰𝑖𝑖 can be
written as

𝐴𝐴𝐥𝐥𝑖𝑖 + 𝐭𝐭 = 𝐭𝐭𝑖𝑖 𝐴𝐴𝐥𝐥𝑖𝑖 + 𝐭𝐭 , (3)

where

𝐭𝐭𝑖𝑖 =
𝐰𝐰𝑖𝑖𝐰𝐰

𝑇𝑇
𝑖𝑖

𝐰𝐰𝑇𝑇
𝑖𝑖 𝐰𝐰𝑖𝑖

(4)

denotes the projection matrix to the vector 𝐰𝐰𝑖𝑖.
e object-space collinearity error for each feature point

is then formulated for optimization, such as

𝑒𝑒𝑖𝑖 = 𝐦𝐦𝑖𝑖 −𝐭𝐭𝑖𝑖𝐦𝐦𝑖𝑖 = 𝐴𝐴𝐥𝐥𝑖𝑖 + 𝐭𝐭 −𝐭𝐭𝑖𝑖 𝐴𝐴𝐥𝐥𝑖𝑖 + 𝐭𝐭 , (5)

where

𝐭𝐭𝑖𝑖 =
𝐰𝐰𝑖𝑖𝐰𝐰

𝑇𝑇
𝑖𝑖

𝐰𝐰𝑇𝑇
𝑖𝑖 𝐰𝐰𝑖𝑖

(6)
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represents the observed projectionmatrix to vector𝐰𝐰𝑖𝑖, and𝐰𝐰𝑖𝑖
denotes the observation of𝐰𝐰𝑖𝑖. Considering each of the feature
points, the following objective function is de�ned�

𝐸𝐸 (𝐴𝐴𝐴 𝐴𝐴) =
𝑛𝑛

𝑖𝑖=𝑖

𝑒𝑒𝑖𝑖
2

=
𝑛𝑛

𝑖𝑖=𝑖

𝐴𝐴𝐴𝐴𝑖𝑖 + 𝐴𝐴 −𝑊𝑊𝑖𝑖 𝐴𝐴𝐴𝐴𝑖𝑖 + 𝐴𝐴
2
.

(7)

e objective function in (7) can be minimized by �nding a
suitable 𝐴𝐴 and 𝐴𝐴.

Since the objective function in (7) is the second norm of
both the translation vector 𝐴𝐴 and the rotation matrix 𝐴𝐴, the
error of the absolute orientation can be found by taking the
derivative of (7) with respect to 𝐴𝐴 andmaking it equal to zero,
such as

𝜕𝜕𝐸𝐸 (𝐴𝐴𝐴 𝐴𝐴)
𝜕𝜕𝐴𝐴

= 0⟹ 𝑛𝑛𝐼𝐼 −
𝑖
𝑛𝑛

𝑛𝑛

𝑖𝑖=𝑖

𝑊𝑊𝑖𝑖 𝐴𝐴 =
𝑛𝑛

𝑖𝑖=𝑖

𝑊𝑊𝑖𝑖 − 𝐼𝐼𝐴𝐴𝐴𝐴𝑖𝑖.

(8)

e le side of (7) can be rewritten as,

𝐱𝐱𝑇𝑇 𝐼𝐼 −
𝑖
𝑛𝑛

𝑛𝑛

𝑖𝑖=𝑖

𝑊𝑊𝑖𝑖𝐱𝐱 =
𝑖
𝑛𝑛

𝑛𝑛

𝑖𝑖=𝑖

𝐱𝐱2 − 𝐱𝐱𝑇𝑇𝑊𝑊𝑖𝑖𝐱𝐱

=
𝑖
𝑛𝑛

𝑛𝑛

𝑖𝑖=𝑖

𝐱𝐱2 − 𝐱𝐱𝑇𝑇𝑊𝑊𝑇𝑇
𝑖𝑖 𝑊𝑊𝑖𝑖𝐱𝐱

=
𝑖
𝑛𝑛

𝑛𝑛

𝑖𝑖=𝑖

𝐱𝐱2 − 𝑊𝑊𝑖𝑖𝐱𝐱
2
 .

(9)

Since𝑊𝑊𝑖𝑖𝐱𝐱 is the projection of 𝐴𝐴 on𝐰𝐰𝑖𝑖, and in this case 𝐴𝐴 cannot
project on itself, we have 𝐱𝐱 𝐱 𝑊𝑊𝑖𝑖𝐱𝐱, or 𝐱𝐱 − 𝑊𝑊𝑖𝑖𝐱𝐱 𝐱 0;
therefore, the term 𝑛𝑛(𝐼𝐼 − (𝑖𝑛𝑛𝑛)𝑛𝑛𝑛

𝑖𝑖=𝑖
𝑊𝑊𝑖𝑖) in (8) is nonsingular,

and the optimal position of 𝐴𝐴 can be written as a function of
the rotation matrix 𝐴𝐴 such as

𝐴𝐴 (𝐴𝐴) =
𝑖
𝑛𝑛
𝐼𝐼 −

𝑖
𝑛𝑛

𝑛𝑛

𝑖𝑖=𝑖

𝑊𝑊𝑖𝑖
−𝑖 𝑛𝑛

𝑖𝑖=𝑖

𝑊𝑊𝑖𝑖 − 𝐼𝐼𝐴𝐴𝐴𝐴𝑖𝑖. (10)

If𝐦𝐦𝑖𝑖(𝐴𝐴) = 𝑊𝑊𝑖𝑖(𝐴𝐴𝐴𝐴𝑖𝑖 + 𝐴𝐴(𝐴𝐴)), then (7) can be rewritten as a
function of 𝐴𝐴, such that

𝐸𝐸 (𝐴𝐴) =
𝑛𝑛

𝑖𝑖=𝑖
𝐴𝐴𝐴𝐴𝑖𝑖 + 𝐴𝐴 (𝐴𝐴) −𝐦𝐦𝑖𝑖 (𝐴𝐴)

2. (11)

It can be seen from (11) that the object-space collinearity
error function can be minimized with respect to the rotation
matrix 𝐴𝐴 only.

In the same nonlinear least-square format as shown in
(11), another objective function can be formulated in order to
�nd the optimal orientation matrix 𝐴𝐴 and translation vector
𝐴𝐴, such that

𝐿𝐿 (𝐴𝐴𝐴 𝐴𝐴) =
𝑛𝑛

𝑖𝑖=𝑖
𝐦𝐦𝑖𝑖 − 𝐴𝐴𝐴𝐴𝑖𝑖 + 𝐴𝐴

2. (12)

If the mean values of the feature points in object coordinate
and camera coordinate are calculated as 𝐴𝐴 = (𝑖𝑛𝑛𝑛)𝑛𝑛𝑛

𝑖𝑖=𝑖 𝐴𝐴𝑖𝑖 and
𝐦𝐦 = (𝑖𝑛𝑛𝑛)𝑛𝑛𝑛

𝑖𝑖=𝑖 𝐦𝐦𝑖𝑖 respectively, (12) can be rewritten in the
form of,

𝐿𝐿 (𝐴𝐴𝐴 𝐴𝐴) =
𝑛𝑛

𝑖𝑖=𝑖

𝐦𝐦𝑖𝑖 − 𝐴𝐴𝐦𝐦𝑖𝑖 + 𝐴𝐴
2

=
𝑛𝑛

𝑖𝑖=𝑖

𝐦𝐦𝑖𝑖 − 𝐦𝐦 − 𝐴𝐴𝐴𝐴𝑖𝑖 − 𝐴𝐴 + 𝐦𝐦 − 𝐴𝐴𝐴𝐴 − 𝐴𝐴
2

=
𝑛𝑛

𝑖𝑖=𝑖

𝐦𝐦′
𝑖𝑖 − 𝐴𝐴𝐴𝐴

′
𝑖𝑖
2
+ 𝑛𝑛𝐦𝐦 − 𝐴𝐴𝐴𝐴 − 𝐴𝐴

2
𝐴

(13)

where 𝐴𝐴′𝑖𝑖 = 𝐴𝐴𝑖𝑖 − 𝐴𝐴 and 𝐦𝐦
′
𝑖𝑖 = 𝐦𝐦𝑖𝑖 − 𝐦𝐦. Since the second term of

(13) can be set to zero by assigning 𝐴𝐴 = 𝐦𝐦 − 𝐴𝐴𝐴𝐴, the objective
function 𝐿𝐿(𝐴𝐴𝐴 𝐴𝐴) can be optimized by minimizing the �rst
term, such that

𝐺𝐺 (𝐴𝐴) =
𝑛𝑛

𝑖𝑖=𝑖

𝐦𝐦′
𝑖𝑖 − 𝐴𝐴𝐴𝐴

′
𝑖𝑖
2

=
𝑛𝑛

𝑖𝑖=𝑖

𝐦𝐦′
𝑖𝑖
2
+

𝑛𝑛

𝑖𝑖=𝑖

𝐴𝐴𝐴𝐴′𝑖𝑖
2
− 2 tr 𝐴𝐴𝑇𝑇

𝑛𝑛

𝑖𝑖=𝑖

𝐦𝐦′
𝑖𝑖𝐴𝐴
′𝑇𝑇
𝑖𝑖 

=
𝑛𝑛

𝑖𝑖=𝑖

𝐦𝐦′
𝑖𝑖
2
+

𝑛𝑛

𝑖𝑖=𝑖

𝐴𝐴𝐴𝐴′𝑖𝑖
2
− 2 tr 𝐴𝐴𝑇𝑇𝐵𝐵 𝐴

(14)

where 𝐵𝐵 = 𝑛𝑛𝑛
𝑖𝑖=𝑖 𝐦𝐦

′
𝑖𝑖𝐴𝐴
′𝑡𝑡
𝑖𝑖 . It is obvious that 𝐺𝐺(𝐴𝐴) in (14) can

be minimized with a maximum value of tr(𝐴𝐴𝑇𝑇𝐵𝐵), and it
can be found by using the SVD method. In traditional SVD
method, 𝐵𝐵 can be decomposed as (𝑈𝑈𝐴 𝑈𝐴 𝑈𝑈), where 𝑈𝑈 and
𝑈𝑈 are orthogonal to each other, and 𝑈 = diag[𝜎𝜎𝑖𝐴 𝜎𝜎2𝐴 𝜎𝜎3]
(𝜎𝜎𝑖 𝐱 𝜎𝜎2 𝐱 𝜎𝜎3 𝐱 0 are the singular values of 𝐵𝐵), such that

𝐵𝐵 = 𝑈𝑈′𝑆𝑆𝑈𝑈′𝑇𝑇𝐴 (15)

where 𝑆𝑆 = diag[𝑆𝑆𝑖𝐴 𝑆𝑆2𝐴 𝑆𝑆3], (𝑆𝑆𝑖 = 𝜎𝜎𝑖; 𝑆𝑆2 = 𝜎𝜎2; 𝑆𝑆3 =
(det𝑈𝑈)(det𝑈𝑈)𝜎𝜎3), 𝑈𝑈

′ = 𝑈𝑈diag[𝑖𝐴 𝑖𝐴 det𝑈𝑈], and 𝑈𝑈′ =
𝑈𝑈diag[𝑖𝐴 𝑖𝐴 det 𝑈𝑈]. erefore, we have

tr 𝐴𝐴𝑇𝑇𝐵𝐵 = tr 𝐴𝐴′𝑈𝑈′𝑆𝑆𝑈𝑈′𝑇𝑇

= tr 𝑆𝑆𝑈𝑈′𝑇𝑇𝐴𝐴𝑈𝑈′ .
(16)

It can be seen that the maximum of tr(𝐴𝐴𝑇𝑇𝐵𝐵) in (16) is tr(𝑆𝑆)
with 𝑈𝑈′𝑇𝑇𝐴𝐴𝑈𝑈′ = 𝐸𝐸, where 𝐸𝐸 is an identity matrix. erefore,
the optimal 𝐴𝐴 can be obtained by using 𝐴𝐴opt = 𝑈𝑈′𝑈𝑈′𝑇𝑇.
However, the computation of the matrices 𝑈𝑈′ and 𝑈𝑈′ is too
time consuming and this method cannot be implemented for
real-time applications.

It is noted that the calculation of the singular values of 𝐵𝐵
can be replaced by the combination ofdet(𝐵𝐵), 𝐵𝐵 and adj(𝐵𝐵′),
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End

Warning

𝐾 = 0,𝐾MAX , 𝐸𝐸, 𝐸𝑅𝐸

Initialize rotation matrix 𝐴(0)
using 𝐼𝑖 and �𝑊𝑖

��𝑡(𝑘) = 1𝑛 (I −
1
𝑛 ∑
𝑛
𝑖=1 𝑊𝑖)−1 ∑

𝑛
𝑖=1(𝑊𝑖 − I)A(𝑘)I𝑖

Update 𝑚(𝑘)𝑖 = 𝐴
(𝑘)𝐼𝑖 + 𝑡(𝑘)

Estimate rotation matrix 𝐴(𝑘+1)

using 𝐼𝑖 and𝑚(𝑘)𝑖

𝐸(𝐾+1) < 𝐸𝐸 and ∣ 𝐸
𝐾+1−𝐸(𝐾)
𝐸(𝐾) ∣ < 𝐸𝑅𝐸

𝐾 = 𝐾 + 1

𝐾 < 𝐾MAX

𝑊𝑖 =
��𝑊𝑖𝑊𝑡𝑖
𝑊𝑡𝑖 �� 𝑊𝑖
, 𝐼𝑖

F 2: Flow chart of the algorithm.

and therefore𝐴𝐴opt can be calculated without the need for the
SVD operation, such that

det (𝐵𝐵) = 𝑠𝑠1𝑠𝑠2𝑠𝑠3,

‖𝐵𝐵‖2 = 𝑠𝑠21 + 𝑠𝑠22 + 𝑠𝑠23,

adj 𝐵𝐵′ = 𝑈𝑈′ diag 𝑠𝑠2𝑠𝑠3, 𝑠𝑠1𝑠𝑠3, 𝑠𝑠1𝑠𝑠2 𝑉𝑉
′𝑇𝑇,

𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵 = 𝑈𝑈′ diag 𝑠𝑠21, 𝑠𝑠
2
2, 𝑠𝑠

2
3𝑉𝑉

′𝑇𝑇.

(17)

If we let

𝜆𝜆 = t𝜆 𝐴𝐴𝑇𝑇
opt𝐵𝐵 = 𝑠𝑠1 + 𝑠𝑠2 + 𝑠𝑠3, (18)

then the following equation can be formed in order to obtain
𝐴𝐴opt, such that

𝜆𝜆2 − ‖𝐵𝐵‖2
2
− 8𝜆𝜆 det (𝐵𝐵) − 4adj (𝐵𝐵)2 = 0, (19)

It is noted that (18) is one of the four solutions and the largest
root of (19). erefore, 𝐴𝐴opt can be derived from (19) such
that

𝐴𝐴opt =
𝛼𝛼 + ‖𝐵𝐵‖2 𝐵𝐵 + 𝜆𝜆adj 𝐵𝐵′ − 𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵

𝛼𝛼𝜆𝜆 − det (𝐵𝐵)
, (20)

where 𝛼𝛼 = (1𝛼2)(𝜆𝜆2 − ‖𝐵𝐵‖2). With the optimal𝐴𝐴 being found,
the minimum 𝐿𝐿(𝐴𝐴, 𝐿𝐿) in (13) can be calculated as,

𝐿𝐿min =
𝑛𝑛

𝑖𝑖=1

𝐦𝐦𝑖𝑖
2 +

𝑛𝑛

𝑖𝑖=1

𝐥𝐥𝑖𝑖
2 − 2

3

𝑖𝑖=1

𝑠𝑠𝑖𝑖. (21)

e procedures of the computationally efficient post
estimation method can be summarized as follows.

First of all, calculate the 𝑘𝑘th optimal translation vector
𝐿𝐿(𝑘𝑘)(𝐴𝐴(𝑘𝑘)) using the 𝑘𝑘th rotation matrix𝐴𝐴(𝑘𝑘); secondly, update
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F 3: Rotation errors against a number of feature points. FPE
denotes the proposed Fast Pose Estimation algorithm,OImeans Lu’s
orthogonal iterative algorithm, TS is Zhang’s two stage algorithm,
L-M represents the Levenberg-Marquardt method, and the classic
linear method is denoted as Linear. e same abbreviations are
applied to the �gures below too.

the camera-frame coordinates 𝐦𝐦(𝑘𝑘𝑘
𝑖𝑖 (𝐴𝐴(𝑘𝑘𝑘𝑘 with 𝐦𝐦(𝑘𝑘𝑘

𝑖𝑖 (𝐴𝐴(𝑘𝑘𝑘𝑘 =
𝐴𝐴(𝑘𝑘𝑘𝐩𝐩𝑖𝑖 + 𝐭𝐭(𝑘𝑘𝑘(𝐴𝐴(𝑘𝑘𝑘𝑘; thirdly, calculate the (𝑘𝑘 + 𝑘𝑘th optimal
rotationmatrix𝐴𝐴(𝑘𝑘+𝑘𝑘 with 𝐥𝐥𝑖𝑖 and𝐦𝐦

(𝑘𝑘𝑘
𝑖𝑖 based on the proposed

absolute orientation method. Repeat the process above until
the absolute and relative object-space collinearity errors are
less than the prede�ned thresholds. e initial value 𝐴𝐴(0𝑘

is computed with 𝐰𝐰𝑖𝑖 and 𝐥𝐥𝑖𝑖 based on the weak perspective
approximation [9]. e �owchart of the iterative algorithm
is shown in Figure 2.

3. Experiment

In this section, the performance-like accuracy, noise resis-
tance, and computation efficiency for the proposed method
are tested and compared with the methods such as Lu’s OI
algorithm, Zhang’s two-stage algorithm, the classic linear
transform method [18], and the L-M method, respectively.

e above methods are tested in programming languages
such as Matlab 7.0 and VC++ 2008 with LAPACK 3.3.1
(linear algebra package), respectively, and the tests are run
on a PC with a CPU of Intel Pentium D E5500 (with clock
frequency 2.8GHz andwith 2GBof randomaccessmemory).
e operating system is Microso Windows XP Professional
with service pack 3.

e feature points for the testing are generated randomly
within a space of [−4, 4] × [−4, 4] × [−4, 4] in the object
coordinate frame. e rotation matrix 𝐴𝐴 is chosen randomly
by the Euler angles: yaw, pitch, and roll within (−90, 90)
× (−90, 90] × [0, 360) degree. e translation vector t is
distributed randomly within a space of [5, 𝑘5] × [5, 𝑘5] ×
[𝑘0, 200] in the camera coordinate frame.e focal length on
Figure 1 is set to𝑓𝑓 = 𝑘.e coordinates of the image points𝐰𝐰𝑖𝑖
are calculated based on 𝐥𝐥𝑖𝑖,𝐴𝐴, and 𝐭𝐭, and Gaussian white noise
is added to 𝐰𝐰𝑖𝑖 to generate observed points𝐰𝐰𝑖𝑖. e standard
deviation 𝜎𝜎 of the noise is a function of the SNR (Signal-to-
Noise Ratio) de�ned by SNR = −20lg(𝜎𝜎(𝜎𝜎𝑧𝑧/𝑘0𝑘𝑘. In this way,
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F 4: Translation errors versus the number of feature points.
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F 5: Rotation errors versus SNR.

1000 sets of𝐰𝐰𝑖𝑖 are generated for each set of 𝐥𝐥𝑖𝑖, 𝐴𝐴, and 𝐭𝐭, and
the �nal result is the average value of the 1000 set of𝐰𝐰𝑖𝑖.

In the �rst test, we select 𝑛𝑛 = 𝑘0 feature points for the
optimization, and the SNR is varied from 30 dB to 80 dB
with the interval of 10 dB. e errors of Euler angles and
translation vector are recorded on the camera, and the result
of each of the steps is averaged from 500 sets of 𝐥𝐥𝑖𝑖, 𝐴𝐴, and 𝐭𝐭.

In the second test, the SNR is set to be 60 dB, and the
number of feature pints selected varies from 4 to 29 with the
interval of 5. e time of computation is recorded as well as
the errors of Euler angles and translation vector.e result of
each step is taken from the average value of 500 sets of 𝐥𝐥𝑖𝑖, 𝐴𝐴
and 𝐭𝐭.

Figure 3 shows the rotation error against the number of
feature points, and Figure 4 gives the translation error versus
the number of feature points. Figure 5 describes the rotation
error against the SNR, and Figure 6 shows the translation
error versus the SNR. In these �gures, the rotation errors are
represented by the roll angle errors because both yaw and
pitch have the same e�ect. It can be seen from these �gures
that four of the approaches have comparable accuracy and
noise-resistance capability, but the performance of the Linear
method is relatively poor.
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F 6: Translation errors against SNR.
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F 7: Computation time versus a number of feature points.
“FPE-M”, “OI-M”, and “TS-M” mean that the algorithms are tested
in MATLAB language, while “FPE-C”, “OI-C”, and “TS-C” mean
that the algorithms are tested in C++ language.

Figure 7 shows the computation time of three of the
algorithms required to complete the calculation in both
Matlab and C++ environments. Since the accuracy and noise
resistance of the Linear method are not satisfactory, this
method is not considered in the comparison of computation
time. Also, because the computation time of the L-Mmethod
is too time consuming, the time data shown in Figure 7 is
far beyond the range of the time coordinate, and therefore
the L-Mmethod is not included in the comparison as well. It
can be seen from Figure 7 that the programmes run on C++
platform are generally faster than inMatlab environment.e
proposed Fast Pose Estimation algorithm does not show its
advantage in Matlab because the SVD calculation has been
optimized in the built-in function, while the matrix opera-
tions in the Fast Pose Estimation algorithm have not been
improved. However, when the tests are carried on based on
the LAPACK in C++, the SVD calculation and other matrix
operations are optimized equally, and it can be seen from
the result that the proposed Fast Pose Estimation algorithm
performs much faster than the other two approaches. Since,
in real world application, our soware for embedded system

is generally designed using C++ language, the performance
of the algorithms in C++ environment would be concerned
the most.

4. Conclusions

In this paper, a computationally efficient pose estimation
algorithm is proposed based on vision data. In this approach,
a new absolute orientation method is designed to replace the
time-consuming SVD calculation with the operations such as
Frobenius norm, determinant, and adjoint of matrix. Exper-
imental results show that the computation time required for
pose estimation with the proposed method is much less than
the original SVD approach in C++ programming language,
while the performance such as accuracy and noise resistance
is maintained as similar with the original method. erefore,
the proposed fast post estimationmethod is more suitable for
real world applications such as the embedded systems used in
satellites or other space missions.
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