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Compressive sensing (CS) is a sub-Nyquist sampling way while still enabling exact reconstruction, which is applicable to WMSN.
In this paper, based on the characteristic of CS video in WMSN, we proposed a hierarchical objective CS video quality assessment
(HOCSVQA) approach to get CS video quality index (CSVQI) from three levels, measurement level, stream level, and packet
level, respectively. This approach cannot only keep the convenience and real-time characteristic of objective video assessment, but
also reflect the QoE to a certain extent due to the coefficients regressed from subjective video assessment experiments. A set of
experiments on subjective CS video quality assessment and another set of verification experiments are designed and settled. The
CS video quality index, CSVQI, assessed by the model we proposed maintained a high correlation with data from verification
experiments under statistical correlation measure.

1. Introduction

Compressive sensing (CS), as an emerging way of data
acquisition, has already aroused the concern of the signal
processing circles. In the framework of CS theory [1–4],
sparse signal, also known as compressible signal with respect
to sparse transform, can be sampled at sub-Nyquist rates
while still enabling exact reconstruction of the original
signal. Compared with local sampling way of classic Nyquist
sampling theorem, the entire extent of signal is observed via
linear random projection called sensing matrix as a small set
of measurements, which can be viewed as a global sampling
way to acquire and compress data. Moreover, CS fits low-
consumption and low-complexity image/video acquisition
systems, especially for WMSN (wireless multimedia sensor
network), because of the breaking of the Nyquist rate lim-
itation and combination of sampling and compression. CS-
based video processing, which is called CS video in this
paper, has been studied [5–10] in recent years with dramatic
prospects.

For sensor network, wireless channel transmission per-
formance index is very important to transmission quality

assurance. For video content network, video quality index can
be used as network performance to optimize the network.
There still exists a long distance between the CS theory and
video application service in sensor network. How to evaluate
the CS video quality in sensor network is a special issue to
be solved. In conventional video signal processing system,
many practical video quality assessment (VQA) algorithms
[11–13] can be used to evaluate, control, and improve the
perceptual quality of video signal, which is also an important
part of theCS video processing.TheCS video codec scheme is
different from the conventional scheme essentially, and cur-
rent reconstruction algorithms [14, 15] for CS video employed
Peak Signal-to-Noise Ratio (PSNR) as video recovery quality
metric generally which is only signal fidelity measure and not
correlated with human perception of quality [16]. Therefore,
to solve the CS video quality evaluation problem, an effective
and practical metric is needed, which focuses no longer
on measurable physical distorted quantities but rather on
how the video quality experienced subjectively, that is, the
Quality of Experience (QoE), in other words, in contrast
to the Quality of Service (QoS). More importantly, this
metric must meet the characteristic of the CS video signal.
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A CS video quality evaluation approach based on redundant
measurements was proposed in our previous work [17]. And
a parity-based error control method for CS video quality
improvement was also proposed [18].

In this paper, we proposed a hierarchical objective CS
video quality assessment (HOCSVQA) approach to get CS
video quality index (CSVQI) for WMSN. The first step in
defining our video quality assessment model is to determine
the principal components from three levels, measurement
level, stream level, and packet level, respectively. And then,
to obtain the coefficients in the video quality assessment
model by means of regression analysis, a set of experiments
on subjective CS video quality and another set of verification
experiments are designed and settled. Finally, the CS video
quality index, CSVQI, assessed by the model we proposed
maintains a high correlation with data from verification
experiments under statistical correlation measure. The video
quality index of different levels has different application;
stream level index can be used for rate control, packet level for
error-resistance, and measurement level for CS-based video
coding, respectively. At the same time, they also can be used
together to acquire video quality information.

The remainder of this paper is organized as follows.
Section 2 gives brief overviews of the CS theory, CS video
framework, and video quality assessment. Section 3 presents
the proposed HOCSVQA approach and hierarchical video
quality assessment model. And Section 4 presents prepara-
tion and procedure of the subjective CS quality assessment
experiments. Experimental results are illustrated in Section 5.
Section 6 concludes and provides some further discussion.

2. Related Work

2.1. Compressive Sensing Theory. The CS theory [1–4] as a
new research focus gives a novel set of theoretical framework
about signal representation, sampling, and reconstruction.
It points out that if the signal x ∈ R𝑁 is sparse in time
domain or with respect to some transform basis Ψ (𝑁 ×
𝑁), then global measurement process, using measurement
matrix Φ (𝑀 × 𝑁) as a linear projection with sampling rate
far below the Nyquist limitation, can be employed instead
of local sampling; dimension of measurements y ∈ R𝑀

acquired via linear projection is much lower than that of
the original signal x, expressed as 𝑀 ≪ 𝑁. Consequently,
the CS measurement process can thus be considered to
effectuate signal acquisition and dimensionality reduction
simultaneously. After that, original high-dimensional signal
x can be recovered accurately by optimization with appropri-
ate reconstruction algorithm [14, 15] from low-dimensional
measurements y. This optimization aims to search for the set
of coefficients with theminimum 𝑙

0
norm that agrees with the

measurements y. Consider

x̂ = argmin ‖x‖0
s.t. y = Φx.

(1)

The sampling rate is not dependent on bandwidth of original
signal, but on two basic criteria: sparsity of original signal

Sparse transform Measurement Reconstruction
x y x̂

matrixΦbasisΨ

𝜃

Figure 1: Compressive sampling framework.

x and the restricted isometry property (RIP) which can be
simplified as incoherence between the measurement matrix
Φ and sparse transform basis Ψ [19]. Theoretical framework
of compressive sampling is shown in Figure 1.

Sparsification, measurement matrix, and reconstruction
algorithm in the above steps are three key parts of CS theory.

2.2. The CS Video. In addition to the benefits of sampling
rate and consumption, unstructured presentation of signal
as another advantage for CS applied to video signal reflects
in measurements so that video can withstand a certain
packet loss. The CS video was first proposed in [5], called
as compressive video sampling, where each video block is
divided into either sparse or nonsparse. A series of studies on
block-based CS video were conducted by Fowler et al. [6, 7].
On the other side, distributed CS video [9, 10], combining
CS theory and distributed source coding (DSC), shifts the
complicated motion estimation from encoder to decoder,
which leads to consumption reduction further at encoder.
The research contents in these literatures are called as CS
video in this paper, differentiated from the conventional
video.

As applied to video, however, the CS still faces several
challenges including not good enough reconstruction quality
with computationally expensive process and huge memory
required to store the random measurement matrix.

2.3. Video Quality Assessment. Video quality assessment
methods are basically classified into two categories: subjective
quality assessment and objective quality assessment. The
essential factor of subjective quality assessment is rating the
perceived video quality by a group of subjects with certain
environmental requirements, and most of these methods are
based on Absolute Category Rating (ACR) recommended
by ITU-T P.910 [20]. High accuracy of quality in terms of
human perception, also regarded as QoE, is provided in
subjective quality assessment but with high cost and non-
real-time limitation. Objective quality assessment evaluates
the video streaming quality by the function related to some
parameter which is measurable. Objective quality assessment
methods are classified into three categories based on exis-
tence of reference video information: Full Reference (FR),
Reduced Reference (RR), and No Reference (NR). Mean
Square Error (MSE) and Peak Signal-to-Noise Ratio (PSNR)
taken as examples compare pixel-to-pixel with reference.
Commonly, objective methods are convenient and real time
but not correlated with QoE. Video Quality Metrics (VQM)
and Video Structural Similarity (VSSIM) [11, 12] are active
objective quality assessment methods.

From the perspective of practical value, what we need
most for VQA is NR or RR objective quality assessment
method in reality. The HOCSVQA we proposed agrees
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well with this characteristic. Meanwhile, coefficients in the
model are obtained by regression analysis from subjective
experiments, so the quality index, CSVQI, assessed by our
model meets QoE requirement.

3. The Hierarchical Objective CS Video Quality
Assessment Model

There are many factors affecting the perceived quality of
video, including bit rate, frame rate, network service quality,
resolution, video format, delay, and jitter. From the perspec-
tive of practical experience, data volume per second video
bearing is the most important factor of influence on the qual-
ity of video.Meanwhile, it can also be described as the amount
of information received at video viewing end. Thus what we
focused on in the paper is this type of degradation factors
used as CS video quality assessment model parameters. The
quality assessment model we proposed is instructive and
appropriate for other degradation factors like delay and jitter
under condition of degradation quantities and simulation of
distortion.

For the purpose of low-consumption and low-complexity
of CS video at encoder, which is our study emphasis, video
quality assessment model should be objective and straight-
forward (without reference). And parameters selected in the
model should be also supported by low-complexity.

In view of the difference from conventional video encod-
ing, measurement parameters of CS video would be selected
as primary elements. The CS video is also a form of media
stream so that parameters in stream level would be taken into
account. Then, with the concerning of impact on quality of
network service, packet loss, as packet level parameter, should
be got involved in our model. In summary, we established
appropriate empirical model of CS video quality degradation
as the hierarchical objective CS video quality assessment
(HOCSVQA) model from above three levels, measurement
level, streaming level, and packet level, respectively.

The hierarchical model we proposed is based on subjec-
tive CS video quality assessment experiments. Subjects were
organized to assess the Mean Opinion Score (MOS) of each
CS video sequence sample quality. The specific coefficients
of this model were acquired from multivariate nonlinear
regression analysis afterwards. The CSVQI, reached from the
model, was objectively verified by corresponding verification
experiments. The model and experiments are shown in
Figure 2.

3.1. Measurement Level. At measurement level, we selected
measurement rate per each frame and measurement quanti-
zation step, which is bit number per each measurement, as
parameters. These two parameters are special in CS video
and exhibit the different features from conventional video as
well. Linearity between measurement rate and quality can be
seen clearly from the Figure 3, which describes relationship
between reconstruction quality of 30th frame of “coastguard”
video sequence andmeasurement rate. Figure 4 describes the
probability distribution of measurements value of 30th frame
of “coastguard” with 10000 measurements. From this we can
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Figure 2: The HOCSVQA model and design of experiments.
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Figure 3: Reconstruction quality of 30th frame of “coastguard” with
different measurement rate.
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Figure 4: Probability distribution of measurements value of 30th
frame of “coastguard.”
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see thatmeasurements value exists between−204 and 246 and
basically fits the Gaussian distribution. Accordingly, initial
empirical model at measurement level was assumed as
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where 𝑄
𝑐
means quality at measurement level, 𝑀
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are coefficients which represent slope of linearity; 𝑐
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𝑎3
,

and 𝑐
𝑎4

are constant coefficients. Piecewise linear function,
which is employed in model with different quantization step,
expresses quality linear change with measurement rate at
different𝑄step. Note that the range of quantization stepmakes
sense; short 𝑄step cannot convey each measurement and
long one is extravagant. Literature discussing quantization
problem in CS theory is still not much currently. Here, we
simplified the measurement quantization process with scalar
quantization method to acquire our video experimental
materials.

3.2. Stream Level. As mentioned previously, bit rate and
frame rate impact the quality in stream level and are easy
to get in the video system, which is consistent with the
traditional video stream. They are added to communication
protocols at the beginning of video stream and are the
knowledge of sending end and receiving end. Empirical
model at stream level was assumed as
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where 𝑄
𝑠
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is bit rate, and
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4
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needed to be determined; 𝑆
𝑎
is constant coefficient. This

model is a binary hyperbolic function. Linear terms dominate
the trends, and reciprocal terms are responsible for detail
modification. Coefficients in model can be zero or negative
value.

3.3. Packet Level. In packet level, the main parameter affect-
ing quality is certainly packet loss rate. Empirical model at
packet level was assumed as

𝑄
𝑙
= 𝑙
1
log
𝑎
(𝑙
2
(𝑏 − 𝑃

𝑟
)) + 𝑙
𝑎
, (4)

where 𝑄
𝑙
means quality at packet level and 𝑃

𝑟
is packet

loss rate per each frame. 𝑙
1
and 𝑙
2
are coefficients which

are needed to be determined; 𝑙
𝑎
is constant coefficient.

The reason for using a logarithmic function is to reflect
the packet loss impact on quality which declines slowly
down in forepart and acutely in backend. Constant 𝑏 makes
logarithmic function change like that. The logarithmic base
number 𝑎 is determined by regression method.

How to packet the video data for production of gradual
degradation video materials depends on specific communi-
cation protocol, which is not our main issue to consider. We

CS process
A packet

Figure 5: Full block line packet form for CS video.

employed full block line packet form for CS video, shown in
Figure 5.

From the data analysis in next section, it is observed that
the model possesses high correlation between video material
in experiments and practical utility due to the close similarity
with the verification experiment results.

The hierarchical model can be applied as a single level
model in special applications, such as rate control, error-
resistance, or CS-based video coding, and also can be applied
as a whole, as shown in following expression:

𝑄 = 𝐴𝑄
𝑐
+ 𝐵𝑄
𝑠
+ 𝐶𝑄
𝑙
, (5)

where 𝑄 is the overall quality of video and 𝑄
𝑐
, 𝑄
𝑠
, and

𝑄
𝑙
are measurement level quality, stream level quality, and

packet level quality, respectively. 𝐴, 𝐵, and 𝐶 are weighted
coefficients of three levels of quality. Determination of the
weighted coefficients of each level will be carried out in the
future research. Building the video materials with different
parameters, and regression analysis experiments can be
adopted to help determine the coefficients in the same way.

4. Design of the Experiments

Two sets of experiments were designed in total. One is for
acquiring the coefficients of model proposed by regression
analysis with experimental data; the other is verification
experiments. They are referred to as experiment A and
experiment B for short. In the following, experiment environ-
ment, material, methodology, and subjects are given in detail,
respectively.

4.1. Experiment Environment. Experiments were performed
in a quiet room without any noises and view conditions were
according to ITU standards [21]. Surface RT is employed
for degraded CS video view test, with 10.6󸀠󸀠 IPS screen
size, 1366 × 768 resolution, and 148 PPI. Data statistics and
analysis proceeded in MATLAB R2012a.

4.2. Experiment Material. Experiment materials were
collected from http://xiph.org/ video test media [22]. The
video sequences “Akiyo,” “Claire,” “Deadline,” “Grandma,”
“Silent,” and “Suzie” were adopted, shown in Figure 6. All
of these “head and shoulder” sequences are on the basis
that it is representative of low motion and low complexity.
Main content in video is one speaker situated at some
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(e) (f)

Figure 6: (a)–(f) are original 1st frame in video sequences “Akiyo,” “Claire,” “Deadline,” “Grandma,” “Silent,” and “Suzie,” respectively.

kind background, and therefore the focus of attention
is primarily on the speaker. The main reason for that is
different perceptual sensitivity for different video content
viewed by subjects. For instance, fast-motion content video,
like soccer, has more than one focus, such as moving ball,
feature of athletes, and location of athletes. If these focuses
have degraded slightly, the overall perceptual quality of
video will degrade greatly. In addition, fast-motion content
video quality is lower than head and shoulder video at the
same rate. Hence, these video sequences which have unified
content were adopted in our experiments.

Each test sample was clipped from these video sequences
described as above. Duration of each was set as 10 seconds,
and QCIF (Quarter Common Intermediate Format) is deter-
mined as resolution format, in consideration of computing
speed and massive computing tasks for degraded video
production. 10 seconds is sufficient enough for subjects to
arrive at reliable quality rating [23]. In order to eliminate
the video colors interference for subjective quality, each test
sample was turned into gray scale.

In CS procedure of degraded video production, scram-
bled block Hadamard ensemble (SBHE) [24] and smooth
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Table 1: CS video subjective rating scores with different measure-
ment rate and 𝑄-step in experiment A.

𝑄-step Measurement rate per frame (%)
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

6 0.89 1.07 1.27 1.40 1.53 1.68 1.83 2.07 2.35
7 1.68 2.12 2.37 2.59 2.77 3.05 3.13 3.20 3.46
8 2.15 2.67 2.98 3.26 3.49 3.76 4.02 4.24 4.41
9 2.23 2.76 3.13 3.42 3.66 3.90 4.13 4.35 4.53
10 2.14 2.81 3.17 3.35 3.65 3.72 4.21 4.29 4.48
11 2.17 2.71 3.09 3.41 3.58 3.71 4.08 4.36 4.56

Table 2: CS video subjective rating scores with different measure-
ment rate and 𝑄-step in experiment B.

𝑄-step Measurement rate per frame (%)
0.25 0.35 0.45 0.55

6 0.96 1.29 1.53 1.98
7 1.80 2.47 3.10 3.36
8 2.43 3.37 3.89 4.19
9 2.79 3.26 3.86 4.27
10 2.98 3.07 3.98 4.32
11 3.03 3.29 3.70 4.22

projected Landweber (SPL) [25] were selected as measure-
ment operator and reconstruction algorithm. Block size in
each frame of video is set as 8 × 8.

Based on the empirical quality model proposed above,
different degraded videos possessing different parameters
were constructed in measurement, stream, and packet level.
0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, and 0.6 were taken as
measurement rate per each frame and 6, 7, 8, 9, 10, and 11
as quantization steps; two main parameters combined and
produced a total of 54 samples. Meanwhile, frame rate is set
as 25 fps in measurement level for experiment A. 0.25, 0.35,
0.45, and 0.55 were taken as variation range of measurement
rate per each frame and produced a total of 24 samples
in measurement level for experiment B. 0.9, 1.15, 1.4, 1.65,
1.9, 2.15, 2.4, 2.65, 2.9, and 3.15Mbps were taken as bit rate
per each test sample and 10, 15, 20, 25, and 30 fps as frame
rate; two main parameters combined and produced a total of
50 samples. Meanwhile, quantization step was set as 9, and
measurement rate per each frame was set as 0.4 in stream
level for experiment A. 1.15, 1.65, 2.15, and 2.65 were taken
as variation range of bit rate per each sample and produced
a total of 20 samples in stream level for experiment B. 0.056,
0.111, 0.167, 0.222, 0.278, 0.333, 0.389, and 0.444 were taken
as packet loss rate per each frame and produced a total
of 8 samples in packet level for both experiment A and
experiment B; meanwhile, quantization step was set as 9,
measurement rate per each frame was set as 0.4, and frame
rate was set as 25 fps. Specific experiment data was shown in
Tables 1–5. Some degraded samples were shown in Figure 7.

4.3. Experiment Methodology. The double stimulus continu-
ous quality scale (DSCQS) methodology was used through-
out experiment A. This methodology is a standardized
subjective quality assessment technique. The reference signal
is needed for quality assessment. Each test consists of two
video presentations, one is the reference (undegraded source
material), and the other is the typical degraded material for
quality rating. Both presentations are identical in content.
Quality ratings of both of them were provided by subjects.
Subjects did not knowwhich is reference or the degraded one,
and that is to say, the order of presentation in one test was
randomized.

Continuous rating scale was employed in quality rating,
shown in Figure 8. This scale was electronically presented
in monitor after subjects finished test viewing, and subjects
moved the pointer to provide the rating. The range of this
scale is from 0 to 100. The pointer is relocated in the middle
of scale at each time test prepared.

The single stimulus 5-grade quality scale methodology
(SSQS) was used throughout experiment B. Each test has
one typical degraded sample for quality rating by subjects.
5-grade category rating scale (excellent, good, fair, poor,
and bad) was employed in rating. This scale is the same
as described above, presented in monitor, and pointer was
moved to rate. The difference is that subjects can only see the
rough scale, 5 termed excellent and 1 termed bad. But they
were informed that the pointer can be moved at the position
between two grades, so we can readmore accurate ratingwith
two decimals which was hidden to subjects.

Summarizing above, in experiment A, DSCQS is kind
of delicate quality rating method with reference; the rating
scores were used to model regression analysis. Reference
existence is to distinguish the degree of degradation more
carefully. While, in experiment B, rating scores from SSQS
were used to prove the validity of the model, no reference is
to meet the normal viewing conditions. Here, the difference
score of two presentations in experiment A was needed to be
calculated, and the larger value means the poorer perceptual
quality. In order to unify the results of two experiments,
data in experiment A was converted into 5-grade scale in
experiment B by the following formula:

𝑄5-grade = 5 − 5 ×
𝑄DS
100

, (6)

where 𝑄DS is the difference scores of each test in experiment
A, and 𝑄5-grade is the rating scores of each test in experiment
A.

For all experiments, subjects were introduced to the
experiment procedure and declared to understand the goal of
experiments.Theorder of degraded video sample for each test
was randomly assigned. Each test in both experiment A and
experiment B was repeated 5 times by different 5 subjects; the
average score by 5 subjects was taken as this test final score.
Each test beganwith two practice trials for subjects to become
familiar with the experiments, and, at the end of each test, we
documented the scores.

4.4. Subjects. All subjects in experiment were author’s under-
graduate schoolmates, with college-educated experience,
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Table 3: CS video subjective rating scores with different bit rate and frame rate in experiment A.

Frame per second (fps) Bit rate per second (Mbps)
0.9 1.15 1.40 1.65 1.90 2.15 2.40 2.65 2.90 3.15

10 2.23 2.46 2.79 3.10 3.34 3.69 3.72 3.75 3.68 3.71
15 2.32 2.52 2.84 3.24 3.57 3.77 3.90 4.10 4.29 4.39
20 2.07 2.49 2.96 3.28 3.67 3.81 4.01 4.25 4.38 4.56
25 1.98 2.25 2.71 3.08 3.43 3.57 3.83 4.02 4.19 4.35
30 1.78 1.93 2.19 2.67 3.06 3.24 3.40 3.65 3.86 3.93

(a) (b)

(c) (d)

(e) (f)

Figure 7: (a) The degraded 30th frame in “Akiyo” with 𝑄step = 7,𝑀𝑟 = 0.35; (b) the degraded 140th frame in “Akiyo” with 𝑄step = 9,𝑀𝑟 =
0.55; (c) the degraded 30th frame in “Suzie” with 𝐵

𝑟
= 1.4Mbps, 𝐹

𝑟
= 10 fps; (d) the degraded 90th frame in “Suzie” with 𝐵

𝑟
= 2.4Mbps, 𝐹

𝑟
=

25 fps; (e) the degraded 150th frame in “Grandma” with 𝑃
𝑟
= 0.056; (f) the degraded 250th frame in “Grandma” with 𝑃

𝑟
= 0.389.
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Table 4: CS video subjective rating scores with different bit rate and
frame rate in experiment B.

Frame per second (fps) Bit rate per second (Mbps)
1.15 1.65 2.15 2.65

10 2.35 3.01 3.56 3.70
15 2.45 3.37 3.68 3.94
20 2.55 3.06 3.75 4.23
25 2.31 2.93 3.65 3.89
30 2.08 2.56 3.10 3.54

Table 5: CS video subjective rating scores with different packet loss
rate in experiments A and B.

Packet loss rate per frame (%)
0.056 0.111 0.167 0.222 0.278 0.333 0.389 0.444

Experiment
A 4.12 4.06 3.85 3.67 3.35 3.03 2.7 2.36

Experiment
B 4.31 3.98 3.73 3.61 3.42 2.89 2.54 2.25

while being without professional knowledge of image or
multimedia. None of themwere working in the field of image
or multimedia. It is because subjective experience would
have corresponding interference with the results if they were
familiar with pattern of video error. All of them were male
so that subjective gender difference interference would be
eliminated. And the age range of them was between 24 and
30.

5. Experimental Data and Analysis

Data in Tables 1–5 is CS video subjective rating scores with
different parameters acquired from subjective quality assess-
ment experiments A and B. Based on the data in experiment
A and quality model proposed previously, coefficients in
model were regressed by data analysis at measurement level,
stream level, and packet level, respectively. Then, models at
three levels regressed are shown as follows:

𝑄
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{
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{
{
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{
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3.4122𝑀
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(7)

𝑄
𝑠
= 0.455𝐵

𝑟
− 1.6655

1

𝐵
𝑟

+ 0.0165𝐹
𝑟
+ 6.408

1

𝐹
𝑟

+ 2.6547,

(8)

𝑄
𝑙
= 1.8568 ln (2.8805 (0.6686 − 𝑃

𝑟
)) + 3.1381. (9)

Equations (7), (8), and (9) are HOCSVQA models at mea-
surement level, stream level, and packet level, respectively. To
be noted, natural constant is taken as base number 𝑎 inmodel
at packet level, because errors with different base number

Excellent

Good

Fair

Poor

Bad

Figure 8: Continuous rating scale for subjective experiments.

Table 6: Pearson correlation coefficient and Spearman rank corre-
lation coefficient at three levels.

Pearson coefficient Spearman coefficient
Measurement level 0.9988 0.9997
Stream level 0.997 0.999
Packet level 0.9995 0.9987

remain the same in the same regression method. Also note
that, at stream level, when 𝐹

𝑟
= 10 fps, 𝐵

𝑟
= 2.15, 2.4, 2.65,

2.9, 3.15Mbps, quality rating scores keep being similar to
each other, and that is because measurements at these test
are sufficient enough for video reconstruction, so we rejected
these test data for regression accuracy. At measurement level,
when 𝑄-step = 9, 10, 11, quality rating scores keep being
similar at samemeasurement rate, which verified asymmetric
piecewise empirical model proposed previously.

(a) Figures 9–11 show the square residuals of regression at
three levels to indicate the accuracy of regression. At stream
level, parts of square residuals are numerically large because
of binary and nonlinearity of regression at this level. At packet
level, square residuals keep being small, which presents a
good regression effect. That is because number of samples
used to regress at this level is less. (b) Figures 9–11 show the
comparison between subjective verification rating scores and
CSVQI achieved by the CS quality model we proposed. The
distance of the circles to the diagonal line in picture indicates
the approximation between two sets of data. It can be seen
that the CSVQI assessed by themodel we proposedmaintains
a high correlation with data from verification experiments in
the picture. And validity of the model has also been verified.

From the perspective of statistics, we also employed
Pearson correlation coefficient (10) and spearman rank cor-
relation coefficient (11) to prove correlation between CSVQI
and data from verification experiments, shown in Table 6.
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Figure 9: (a) Square residuals of regression at measurement level; (b) subjective verification rating scores comparing with CSVQI at
measurement level.
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Figure 10: (a) Square residuals of regression at stream level; (b) subjective verification rating scores comparing with CSVQI at stream level.

The more close to 1 the coefficient is, the more correlated the
two sets of data are. Consider

𝐶pearson =
𝐿
𝑋𝑌

√𝐿
𝑋𝑋
√𝐿
𝑌𝑌

=

𝑋
𝑇
𝑌

√(𝑋
𝑇
𝑋) (𝑌

𝑇
𝑌)

, (10)

𝐶spearman = 1 −
6 (𝑋 − 𝑌)

𝑇
(𝑋 − 𝑌)

𝑁 (𝑁
2
− 1)

, (11)

where𝑁 is the number of samples.

6. Conclusion

In this paper, we proposed a hierarchical objective CS
video quality assessment (HOCSVQA) approach to get CS
video quality index (CSVQI). CS video quality model chose
measurement rate, quantization step, bit rate, frame rate,
and packet loss rate as principal parameters from three
levels, measurement level, stream level, and packet level,
respectively. The coefficients in the model were obtained by
regression analysis of data from subjective CS video quality
assessment experiments.The CS video quality index, CSVQI,
assessed by the model we proposed maintained a high
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Figure 11: (a) Square residuals of regression at packet level; (b) subjective verification rating scores comparing with CSVQI at packet level.

correlation with data from verification experiments under
statistical correlation measure and was illustrated in Figures
9–11. This approach not only can keep the convenience and
real-time characteristic of objective video assessment, but
also reflects the QoE to a certain extent due to the coefficients
regressed from subjective video assessment experiments.

Nowadays CS is on its growing stage, and a lot of achieve-
ments have been made on the theoretical part. However, on
account of difference of information form between CS system
and traditional system, there still exists a mass of technical
issues to be solved. And device realization of CS data
acquisition is the very problem attaching much attention.
There is a long way to go before putting it into practice.
How to evaluate and guarantee the quality of information
transmission in CS system is the key point in this paper and
also the focus in our future research work.
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