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We will establish unilateral global bifurcation result for a class of fourth-order problems. Under some natural hypotheses on
perturbation function, we show that (𝜆𝑘, 0) is a bifurcation point of the above problems and there are two distinct unbounded
continua, 𝐶+

𝑘
and 𝐶−

𝑘
, consisting of the bifurcation branch 𝐶𝑘 from (𝜇𝑘, 0), where 𝜇𝑘 is the 𝑘th eigenvalue of the linear problem

corresponding to the above problems. As the applications of the above result, we study the existence of nodal solutions for the
following problems: 𝑥󸀠󸀠󸀠󸀠 + 𝑘𝑥󸀠󸀠 + 𝑙𝑥 = 𝑟ℎ(𝑡)𝑓(𝑥), 0 < 𝑡 < 1, 𝑥(0) = 𝑥(1) = 𝑥󸀠(0) = 𝑥󸀠(1) = 0, where 𝑟 ∈ R is a parameter and 𝑘, 𝑙
are given constants; ℎ(𝑡) ∈ 𝐶([0, 1], [0,∞)) with ℎ(𝑡) ̸≡ 0 on any subinterval of [0, 1]; and 𝑓 : R→ R is continuous with 𝑠𝑓(𝑠) > 0
for 𝑠 ̸= 0.We give the intervals for the parameter 𝑟 ̸= 0 which ensure the existence of nodal solutions for the above fourth-order
Dirichlet problems if 𝑓0 ∈ [0,∞] or 𝑓∞ ∈ [0,∞], where 𝑓0 = lim|𝑠|→0𝑓(𝑠)/𝑠 and 𝑓∞ = lim|𝑠|→+∞𝑓(𝑠)/𝑠.We use unilateral global
bifurcation techniques and the approximation of connected components to prove our main results.

1. Introduction

Thedeformations of an elastic beam in equilibrium state with
fixed both endpoints can be described by the fourth-order
boundary value problem

𝑥
󸀠󸀠󸀠󸀠
+ 𝑘𝑥
󸀠󸀠
+ 𝑙𝑥 = 𝑟ℎ (𝑡) 𝑓 (𝑥) , 0 < 𝑡 < 1,

𝑥 (0) = 𝑥 (1) = 𝑥
󸀠
(0) = 𝑥

󸀠
(1) = 0,

(1)

where 𝑟 ∈ R is a parameter, 𝑘, 𝑙 are given constants, and
𝑓 : R → R is continuous. When 𝑘 = 𝑙 = 0, since problem
(1) cannot transform into a system of second-order equation,
the treatment method of second-order system does not apply
to problem (1). Thus, there exists some difficulty studying
problem (1) even in the case of 𝑘 = 𝑙 = 0.

In recent years, there has been considerable interest
in the above BVP (1) mainly because of their interesting
applications. For example, Agarwal and Chow [1] (𝑘 = 𝑙 = 0)
first investigated the existence of the solutions of problem (1)
by contractionmapping and iterativemethods. Subsequently,
when 𝑘 = 𝑙 = 0, by fixed point theory on cones, Ma et al.
[2, 3], Yao [4, 5], Zhai et al. [6], and Webb et al. [7] studied
the existence of positive solutions of problem (1).

On the other hand, by applying the bifurcation techniques
of Rabinowitz [8, 9], Gupta and Mawhin [10], Lazer and
McKenna [11], Liu and O’Regan [12], and Ma et al. [13–15]
studied the existence of nodal solutions for the fourth-order
BVPwhere both ends were simply supported, and Rynne [16]
investigated the nodal properties of the solutions for a general
2𝑚th-order problem.

Meanwhile, it is well known that the spectrum structure
of the linear eigenvalue problems according to (1) plays a
key role to study problem (1) by the bifurcation techniques.
Kratochvı́l and Nečas [17] first studied the spectrum of the 𝑝-
biharmonic operator together with 𝑥(0) = 𝑥(1) = 𝑥

󸀠(0) =

𝑥󸀠(1) = 0. Subsequently, Benedikt [18–21] also studied the
spectral properties of the corresponding eigenvalue problem
of the same problems as [17], and Benedikt [22] studied
existence and global bifurcation of solutions for the above
problems. When 𝑘 = 𝑙 = 0, by applying the bifurcation
techniques, Korman [23] investigated the uniqueness of posi-
tive solutions and Rynne [24] studied nodal properties of the
solutions for problem (1), respectively. By Elias’s theory [25,
26], Xu and Han [27] (𝑘 = 0), Ma et al. [28] (𝑘 = 0, 𝑙 = 𝑙(𝑡)),
andMa and Gao [29] (𝑥󸀠󸀠󸀠󸀠+𝑘𝑥󸀠󸀠+𝑙𝑥 = (𝑝(𝑡)𝑥)󸀠󸀠󸀠󸀠−(𝑞(𝑡)𝑥)󸀠󸀠)
established the spectrum structure of the linear eigenvalue
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problems according to (1) and studied the existence of nodal
solutions of problem (1) using bifurcation theory [8]. In 2012,
Shen [30, 31] established the following spectrum structure by
applying disconjugate operator theory [25, 26].

Lemma 1 (see [30, 31]). Let (𝐴1) and (𝐴2) hold. The linear
eigenvalue problem

𝑥
󸀠󸀠󸀠󸀠
(𝑡) + 𝑘𝑥

󸀠󸀠
(𝑡) + 𝑙𝑥 (𝑡) = 𝜆ℎ (𝑡) 𝑥, 0 < 𝑡 < 1,

𝑥 (0) = 𝑥 (1) = 𝑥
󸀠
(0) = 𝑥

󸀠
(1) = 0

(2)

has a unique infinite number of positive eigenvalues

0 < 𝜆1 < 𝜆2 < ⋅ ⋅ ⋅ < 𝜆𝑘 < ⋅ ⋅ ⋅ 󳨀→ ∞, 𝑎𝑠 𝑘 → ∞. (3)

Moreover, each eigenvalue is simple. The eigenfunction 𝜓𝑘
corresponding to 𝜆𝑘 has exactly 𝑘 − 1 simple zeros in (0, 1). For
each 𝑘 ∈ N, the algebraic multiplicity of 𝜆𝑘 is 1, where (𝐴1) one
of following conditions holds:

(i) 𝑘, 𝑙 satisfying (𝑘, 𝑙) ∈ {(𝑘, 𝑙) | 𝑘 ∈ (−∞, 0], 𝑙 ∈ (0,∞)}\

{(0, 𝜋4/64)} ∪ {(𝑘, 𝑙) | 𝑘 ∈ (−∞, 𝜋2), 𝑙 ∈ (−∞, 0]}, are given
constants with

𝜋
2
(𝑘 − 𝜋

2
) < 𝑙 ≤

1

4
(𝑘 −

𝜋
2

4
)

2

. (4)

(ii) 𝑘, 𝑙 satisfying (𝑘, 𝑙) ∈ {(𝑘, 𝑙) | 𝑘 ∈ (0, 𝜋2/2), 𝑙 ∈

(0,∞)}, are given constants with

1

4
(𝜋
2
𝑘 −

𝜋4

4
) < 𝑙 ≤

1

4
𝑘
2
. (5)

(𝐴2) ℎ(𝑡) ∈ 𝐶([0, 1], [0,∞)) with ℎ(𝑡) ̸≡ 0 on any
subinterval of [0, 1].

On the basis of Lemma 1, Shen [30, 31] studied the
existence of nodal solutions of problem (1) by applying
Rabinowitz’s global bifurcation theorem [8].

In 2013, when 𝑘, 𝑙 satisfy (𝐴1) and (𝐴2), Shen and He
[32] also studied bifurcation from interval and the existence
of positive solutions for problem (1) by applying Rabinowitz’s
global bifurcation theorem [9].

Now, consider the following operator equation:

𝑢 = 𝜆𝐵𝑢 + 𝐻 (𝜆, 𝑢) , (6)

where 𝐵 is a compact linear operator and 𝐻 : R × 𝐸 → 𝐸 is
compact with 𝐻 = 𝑜(‖𝑢‖) at 𝑢 = 0 uniformly on bounded 𝜆
intervals, where 𝐸 is a real Banach space with the norm ‖ ⋅ ‖.
If the eigenvalue 𝜇 of 𝐵 has multiplicity 1,

S = {(𝜆, 𝑢) : (𝜆, 𝑢) satisfies (6) and 𝑢 ̸≡ 0}
R×𝐸

. (7)

Dancer [33] has shown that there are two distinct unbounded
continua 𝐶+

𝜇
and 𝐶−

𝜇
, consisting of the bifurcation branch 𝐶𝜇

of S emanating from (𝜇, 0), which satisfy either that 𝐶+
𝜇
and

𝐶−
𝜇
are both unbounded or 𝐶+

𝜇
∩𝐶−
𝜇
̸= {(𝜇, 0)}. This result has

been extended to one-dimensional 𝑝-Laplacian problem by

Dai and Ma [34]. The above results [34] have been improved
partially by Dai [35] with nonasymptotic nonlinearity at 0
or ∞. Later, Dancer’s result [33] has been also extended
to the periodic 𝑝-Laplacian problems by Dai et al. [36]. In
2013, Dai and Han [37] established Dancer-type unilateral
global bifurcation results for fourth-order problems of the
deformations of an elastic beam in equilibrium state where
both ends are simply supported by Dancer [33].

In this paper, based the spectral theory of [30, 31], we
will establishDancer-type unilateral global bifurcation results
about the continuum of solutions for the following fourth-
order eigenvalue problem:

𝑥
󸀠󸀠󸀠󸀠
+ 𝑘𝑥
󸀠󸀠
+ 𝑙𝑥 = 𝜆ℎ (𝑡) 𝑥 + 𝑔 (𝑡, 𝑥, 𝜆) , 0 < 𝑡 < 1,

𝑥 (0) = 𝑥 (1) = 𝑥
󸀠
(0) = 𝑥

󸀠
(1) = 0,

(8)

where ℎ satisfies (𝐴2), and the perturbation function 𝑔 :

(0, 1) ×R2 → R is continuous with 𝑔(𝑡, 𝑠, 0) ≡ 0 and satisfies
the following hypotheses

lim
|𝑠|→0

𝑔 (𝑡, 𝑠, 𝜆)

𝑠
= 0 (9)

uniformly for 𝑡 ∈ (0, 1) and 𝜆 on bounded sets.
Let 𝑌 = 𝐶[0, 1] with the norm ‖𝑥‖∞ = max𝑡∈[0,1]|𝑥(𝑡)|

and 𝐸 = {𝑥(𝑡) ∈ 𝐶3[0, 1] | 𝑥(0) = 𝑥(1) = 𝑥󸀠(0) = 𝑥󸀠(1) =

0} with the norm ‖𝑥‖ = max{‖𝑥‖∞, ‖𝑥
󸀠‖∞, ‖𝑥

󸀠󸀠‖∞, ‖𝑥
󸀠󸀠󸀠‖∞}.

Let 𝑆+
𝑘
denote the set of functions in 𝐸 which have exactly

𝑘 − 1 interior nodal (i.e., nondegenerate) zeros in (0, 1) and
are positive near 𝑡 = 0, set 𝑆−

𝑘
= −𝑆+
𝑘
, and 𝑆𝑘 = 𝑆

+

𝑘
∪ 𝑆−
𝑘
.They

are disjoint and open in 𝐸. Let Φ]
𝑘
= R × 𝑆]

𝑘
, ] ∈ {+, −}, and

Φ𝑘 = R × 𝑆𝑘 under the product topology. Let S denote the
closure inR×𝐸 of the set of nontrivial solutions of (1) and let
S± denote the subset of S with 𝑥 ∈ Φ±

𝑘
and S± = S+ ∪S−.

Under condition (9), we will show that (𝜇𝑘, 0) is a
bifurcation point of (8) and there are two distinct unbounded
continua, 𝐶+

𝑘
and 𝐶−

𝑘
, consisting of the bifurcation branch

𝐶𝑘 from (𝜇𝑘, 0), where 𝜇𝑘 is the 𝑘th eigenvalue of problem
(2). Based on the above result, we investigate the existence of
nodal solutions for problem (1).

Remark 2. By applying disconjugate operator theory [25, 26],
the authors [13, 14, 16] also established the spectrum structure
of the corresponding linear eigenvalue problems. On the
basis of the above spectrum structure, the authors [13, 14, 16]
studied the existence of nodal solutions of the above problem
by applying Rabinowitz’s global bifurcation theorem [8].

The rest of this paper is arranged as follows. In Section 2,
we will establish unilateral global bifurcation results. In
Section 3, we will investigate the existence of nodal solutions
for problem (1) under the linear growth condition on 𝑓.

2. Unilateral Global Bifurcation Results

We define the linear operator 𝐿 : 𝐷(𝐿) ⊂ 𝐸 → 𝑌

𝐿𝑥 = 𝑥
󸀠󸀠󸀠󸀠
+ 𝑘𝑥
󸀠󸀠
+ 𝑙𝑥, 𝑥 (𝑡) ∈ 𝐷 (𝐿) (10)
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with 𝐷(𝐿) = {𝑥(𝑡) ∈ 𝐶4[0, 1] | 𝑥(0) = 𝑥(1) = 𝑥󸀠(0) = 𝑥󸀠(1) =
0}.

From [31, p. 93], we consider the following auxiliary
problem:

𝑥
󸀠󸀠󸀠󸀠
+ 𝑘𝑥
󸀠󸀠
+ 𝑙𝑥 = 𝑒 (𝑡) , 0 < 𝑡 < 1,

𝑥 (0) = 𝑥 (1) = 𝑥
󸀠
(0) = 𝑥

󸀠
(1) = 0,

(11)

for a given 𝑒(𝑡) ∈ 𝐶[0, 1]. We can get that problem (11) can be
equivalently written as

𝑥 (𝑡) = 𝐿
−1
(𝑒) (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑒 (𝑠) 𝑑𝑠, (12)

where 𝐺(𝑡, 𝑠) > 0 was given in (2.29) of [31, p. 93].
Then 𝐿 is a closed operator and 𝐿−1 : 𝑌 → 𝐸 is completely

continuous.
Define the operator𝐻 : R × 𝐸 → 𝐸 by

𝐻(𝜆, 𝑥) (𝑡) fl 𝜆𝐿
−1
(ℎ𝑥) + 𝐿

−1
(𝑔 (𝑡, 𝑥, 𝜆)) . (13)

Furthermore, it is clear that problem (8) can be equiva-
lently written as

𝑥 = 𝐻 (𝜆, 𝑥) (𝑡) . (14)

Clearly, 𝐻 is completely continuous from R × 𝐸 → 𝐸 and
𝐻(𝜆, 0) = 0, ∀𝜆 ∈ R.

Let

𝑔 (𝑡, 𝑥, 𝜆) = max
0≤|𝑠|≤𝑥

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑠, 𝜆)
󵄨󵄨󵄨󵄨

for 𝑡 ∈ (0, 1) , 𝜆 on bounded sets,
(15)

and then 𝑔 is nondecreasing and

lim
𝑥→0+

𝑔 (𝑡, 𝑥, 𝜆)

𝑥
= 0 (16)

uniformly for 𝑡 ∈ (0, 1) and 𝜆 on bounded sets. Further it
follows from (16) that

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑥, 𝜆)
󵄨󵄨󵄨󵄨

‖𝑥‖
≤
𝑔 (𝑡, 𝑥, 𝜆)

‖𝑥‖
≤
𝑔 (𝑡, ‖𝑥‖∞ , 𝜆)

‖𝑥‖

≤
𝑔 (𝑡, ‖𝑥‖ , 𝜆)

‖𝑥‖
󳨀→ 0 as ‖𝑥‖ 󳨀→ 0,

(17)

uniformly for 𝑡 ∈ (0, 1) and 𝜆 on bounded sets.
By (17), we have that ‖𝐿−1(𝑔(𝑡, 𝑥, 𝜆))‖/‖𝑥‖ → 0 as

‖𝑥‖ → 0 uniformly for 𝑡 ∈ (0, 1) and 𝜆 on bounded sets.
Furthermore, ApplyingTheorem 2 of [33], we may obtain the
following result.

Theorem 3. Assume that (𝐴1), (𝐴2), and (9) hold. Then
(𝜆𝑘, 0) is a bifurcation point of problem (8) and there exist
two distinct unbounded continua 𝐶+

𝑘
and 𝐶−

𝑘
of problem

(8) emanating from (𝜆𝑘, 0) such that either they are both
unbounded or 𝐶+

𝑘
∩ 𝐶−
𝑘
̸= {(𝜆𝑘, 0)}.

Next, we prove that the first choice of the alternative
of Theorem 3 is the only possibility. To do it, we give the
following lemma.

Lemma 4. Let 𝐶𝑘 fl 𝐶+
𝑘
∪ 𝐶−
𝑘
. If 𝐶𝑘 ⊂ Φ𝑘 ∪ (𝜆𝑘, 0), then 𝐶𝑘

cannot contain a pair (𝜆, 0) and 𝜆 ̸= 𝜆𝑘.

Proof. Suppose on the contrary that there exists (𝜆𝑚, 𝑥𝑚) →
(𝜆𝑗, 0) when 𝑚 → +∞ with (𝜆𝑚, 𝑥𝑚) ∈ 𝐶𝑘, 𝑥𝑚 ̸= 0 and
𝑗 ̸= 𝑘. Let 𝑦𝑚 = 𝑥𝑚/‖𝑥𝑚‖; then 𝑦𝑚 should be a solution of
problem

𝑦𝑚 = 𝐿
−1
(𝜆𝑚ℎ𝑦𝑚 +

𝑔 (𝑡, 𝑥𝑚, 𝜆)
󵄩󵄩󵄩󵄩𝑥𝑚

󵄩󵄩󵄩󵄩
) . (18)

By (17), (18), and the compactness of 𝐿−1 we obtain that for
some convenient subsequence 𝑦𝑚 → 𝑦0 as 𝑚 → +∞. Now
𝑦0 verifies the equation

𝐿𝑦0 = 𝜆𝑗ℎ𝑦0 (19)

and ‖𝑦0‖ = 1.Hence 𝑦0 ∈ 𝑆𝑗 which is an open set in 𝐸, and as
a consequence for some 𝑚 large enough, 𝑦𝑚 ∈ 𝑆𝑗, and this is
a contradiction.

Lemma5. If (𝜆, 𝑥) is a solution of (9) and𝑥 ∈ 𝜕𝑆𝑘, then𝑥 ≡ 0.

Proof. By the proof of Theorem 3.1 in [16, p. 467] (see also
Corollary 1.12 and the proof of Theorem 2.3, together with
the remark following that proof, in [16]), we easily obtain the
result.

Connecting Theorem 3 with Lemma 4, we can easily
deduce the following Dancer-type unilateral global bifurca-
tion result.

Theorem 6. Assume that (𝐴1), (𝐴2), and (9) hold; then 𝐶+
𝑘

and 𝐶−
𝑘
are unbounded continua. Moreover, we have

𝐶
+

𝑘
⊂ ({(𝜆𝑘, 0)} ∪ (R × 𝑆

+

𝑘
)) ,

𝐶
−

𝑘
⊂ ({(𝜆𝑘, 0)} ∪ (R × 𝑆

−

𝑘
)) .

(20)

Proof. ByTheorem 3with Lemma 4, we only prove𝐶]
𝑘
⊂ Φ]
𝑘
∪

{(𝜆𝑘, 𝜃)} for ] ∈ {+, −}. In the following, we only prove the
case of 𝐶+

𝑘
since the proof of 𝐶−

𝑘
is similar.

We claim that there exists a neighborhood 𝐵𝛿(𝜆𝑘, 0) of
(𝜆𝑘, 0) such that (𝐵𝛿(𝜆𝑘, 0) ∩ 𝐶

+

𝑘
) ⊂ (Φ+

𝑘
∪ {(𝜆𝑘, 𝜃)}). Suppose

on the contrary that there exists (𝜆𝑚, 𝑥𝑚) → (𝜆𝑘, 0) when
𝑚 → +∞ with (𝜆𝑚, 𝑥𝑚) ∈ 𝐶

+

𝑘
\ (R × 𝑆+

𝑘
) and 𝑥𝑚 ̸= 0. Let

𝑧𝑚 = 𝑥𝑚/‖𝑥𝑚‖; then 𝑧𝑚 should be a solution of problem

𝑧𝑚 = 𝐿
−1
(𝜆𝑚ℎ𝑧𝑚 +

𝑔 (𝑡, 𝑥𝑚, 𝜆𝑚)
󵄩󵄩󵄩󵄩𝑥𝑚

󵄩󵄩󵄩󵄩
) . (21)

By (17), (21), and the compactness of 𝐿−1, we obtain that for
some convenient subsequence 𝑧𝑚 → 𝑧0 as𝑚 → +∞. Now 𝑧0
verifies the equation

𝐿𝑧0 = 𝜆𝑘ℎ𝑧0 (22)
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and ‖𝑧0‖ = 1.Hence 𝑧0 ∈ 𝑆𝑘 which is an open set in 𝐸, and as
a consequence for some𝑚 large enough, 𝑥𝑚 ∈ 𝑆

+

𝑘
, and this is

a contradiction.
Suppose that 𝐶+

𝑘
̸⊆ Φ+
𝑘
∪ {(𝜆𝑘, 𝜃)}. Then there exists

(𝜆∗, 𝑥) ∈ 𝐶+
𝑘
∩ (R × 𝜕𝑆+

𝑘
) such that (𝜆∗, 𝑥) ̸= (𝜆𝑘, 𝜃) and

(𝜆𝑛, 𝑥𝑛) → (𝜆∗, 𝑥) with (𝜆𝑛, 𝑥𝑛) ∈ 𝐶+
𝑘
∩ (R × 𝑆+

𝑘
). Since

𝑥 ∈ 𝜕𝑆
+

𝑘
, by Lemma 8, 𝑥 ≡ 0. Let 𝑦𝑛 fl 𝑥𝑛/‖𝑥𝑛‖; then 𝑦𝑛

should be a solution of problem

𝑦𝑛 = 𝜆𝑛𝐿
−1
[𝜆ℎ𝑦𝑛 +

𝑔 (𝑡, 𝑥𝑛, 𝜆𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩
] . (23)

By (17), (23), and the compactness of 𝐿−1, we obtain that
for some convenient subsequence 𝑦𝑛 → 𝑦0 ̸= 0 as 𝑛 → +∞.
Now 𝑦0 verifies the equation

𝐿𝑦0 = 𝜆
∗
ℎ (𝑡) 𝑦0 (𝑡) , 𝑡 ∈ (0, 1) (24)

and ‖𝑦0‖ = 1. Hence 𝜆∗ = 𝜆𝑖, for some 𝑖 ̸= 𝑘, 𝑖 ∈ N.
Therefore, (𝜆𝑛, 𝑥𝑛) → (𝜆𝑖, 𝜃) with (𝜆𝑛, 𝑥𝑛) ∈ 𝐶

+

𝑘
∩ (R × 𝑆+

𝑘
).

This contradicts Lemma 4.
In order to treat the case 𝑓0 ∉ (0, +∞) or 𝑓∞ ∉ (0, +∞),

we will need the following results.

Definition 7 (see [38]). Let𝑋 be a Banach space and let {𝐶𝑛 |
𝑛 = 1, 2, . . .} be a family of subsets of 𝑋. Then the superior
limit D of {𝐶𝑛} is defined by

D fl lim sup
𝑛→∞

𝐶𝑛 = {𝑥 ∈ 𝑋 | ∃ {𝑛𝑖} ⊂ N, 𝑥𝑛
𝑖

∈ 𝐶𝑛
𝑖

, such that 𝑥𝑛
𝑖

󳨀→ 𝑥} .

(25)

Lemma 8 (see [38]). Each connected subset of metric space𝑋
is contained in a component, and each connected component of
𝑋 is closed.

Lemma9 (see [39]). Let𝑋 be a Banach space and let {𝐶𝑛 | 𝑛 =
1, 2, . . .} be a family of closed connected subsets of 𝑋. Assume
that

(i) there exist 𝑧𝑛 ∈ 𝐶𝑛, 𝑛 = 1, 2, . . ., and 𝑧∗ ∈ 𝑋, such that
𝑧𝑛 → 𝑧∗;

(ii) 𝑟𝑛 = sup{‖𝑥‖ | 𝑥 ∈ 𝐶𝑛} = ∞;
(iii) for all 𝑅 > 0, (⋃∞

𝑛=1
𝐶𝑛) ∩ 𝐵𝑅 is a relative compact set

of𝑋, where

𝐵𝑅 = {𝑥 ∈ 𝑋 | ‖𝑥‖ ≤ 𝑅} . (26)

Then there exists an unbounded component𝐶 inD and 𝑧∗ ∈ 𝐶.

Lemma 10. Assume (𝐴1) and (𝐴2). Let 𝑔𝑛 ∈ 𝐶([0, 1], (0,

+∞)). Assume that 𝐼 is a subset of [0, 1] with 𝑚𝑒𝑎𝑠(𝐼) > 0,
and let

lim
𝑛→+∞

𝑔𝑛 (𝑡) = +∞ (27)

uniformly on 𝐼. Let 𝑦𝑛 be a solution of the equation

𝑦
󸀠󸀠󸀠󸀠

𝑛
+ 𝑘𝑦
󸀠󸀠

𝑛
+ 𝑙𝑦𝑛 = 𝜆ℎ (𝑡) 𝑔𝑛 (𝑡) 𝑦𝑛, 0 < 𝑡 < 1,

𝑦𝑛 (0) = 𝑦𝑛 (1) = 𝑦
󸀠

𝑛
(0) = 𝑦

󸀠

𝑛
(1) = 0,

(28)

and then 𝑦𝑛 must change sign on 𝐼 as 𝑛 is large enough.

Proof. After taking a subsequence if necessary, we may
assume that

ℎ (𝑡) 𝑔𝑛
𝑗

(𝑡) ≥ 𝑗, 𝑡 ∈ 𝐼, (29)

for 𝑗 large enough. By [32, Lemma 2.4], 𝐿(𝑥) = 0 is
disconjugate on [0, 1], which is a key condition in Elias [25].
Obviously, 𝑦𝑛 have the property 𝑃. (For the definition of
property 𝑃, see [25, p. 36].) Now, from the proof of [25,
Lemma 4] (see also the remarks in the final paragraph in [25,
p. 43]; or see the proof of [16, Lemma 3.7]), it follows that, for
all 𝑛 sufficiently large, 𝑦𝑛 must change sign on 𝐼.

3. Main Results

In this section, we first study the following eigenvalue
problem:

𝑥
󸀠󸀠󸀠󸀠
+ 𝑘𝑥
󸀠󸀠
+ 𝑙𝑥 = 𝜆𝑟ℎ (𝑡) 𝑓 (𝑥) , 0 < 𝑡 < 1,

𝑥 (0) = 𝑥 (1) = 𝑥
󸀠
(0) = 𝑥

󸀠
(1) = 0,

(30)

where 𝜆 > 0 is a parameter.
In the section, 𝑓 ∈ 𝐶(R,R) satisfy the following

conditions:

(𝐻1) 𝑠𝑓(𝑠) > 0 for 𝑠 ̸= 0.

(𝐻2) 𝑓0, 𝑓∞ ∈ (0, +∞).

(𝐻3) 𝑓0 ∈ (0,∞) and 𝑓∞ = ∞.

(𝐻4) 𝑓0 = ∞ and 𝑓∞ ∈ (0,∞).

(𝐻5) 𝑓0 ∈ (0,∞) and 𝑓∞ = 0.
(𝐻6) 𝑓0 = 0 and 𝑓∞ ∈ (0,∞).

(𝐻7) 𝑓0 = 0 and 𝑓∞ = ∞.

(𝐻8) 𝑓0 = ∞ and 𝑓∞ = 0.
(𝐻9) 𝑓0 = ∞ and 𝑓∞ = ∞.

(𝐻10) 𝑓0 = 0 and 𝑓∞ = 0,

where

𝑓0 = lim
|𝑥|→0

𝑓 (𝑥)

𝑥
,

𝑓∞ = lim
|𝑥|→∞

𝑓 (𝑥)

𝑥
.

(31)

Let 𝜁(𝑥), 𝜉(𝑥) ∈ 𝐶(R,R) be such that

𝑓 (𝑥) = 𝑓0𝑥 + 𝜁 (𝑥) ,

𝑓 (𝑥) = 𝑓∞𝑥 + 𝜉 (𝑥)
(32)

with

lim
|𝑥|→0

𝜁 (𝑥)

𝑥
= 0,

lim
|𝑥|→∞

𝜉 (𝑥)

𝑥
= 0.

(33)
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Let us consider
𝑥
󸀠󸀠󸀠󸀠
+ 𝑘𝑥
󸀠󸀠
+ 𝑙𝑥 = 𝜆𝑟ℎ (𝑡) 𝑓0𝑥 + 𝜆𝑟ℎ (𝑡) 𝜁 (𝑥) ,

0 < 𝑡 < 1,

𝑥 (0) = 𝑥 (1) = 𝑥
󸀠
(0) = 𝑥

󸀠
(1) = 0

(34)

as a bifurcation problem from the trivial solution 𝑥 ≡ 0 and

𝑥
󸀠󸀠󸀠󸀠
+ 𝑘𝑥
󸀠󸀠
+ 𝑙𝑥 = 𝜆𝑟ℎ (𝑡) 𝑓∞𝑥 + 𝜆𝑟ℎ (𝑡) 𝜉 (𝑥) ,

0 < 𝑡 < 1,

𝑥 (0) = 𝑥 (1) = 𝑥
󸀠
(0) = 𝑥

󸀠
(1) = 0

(35)

as a bifurcation problem from infinity.
We add the points {(𝜆,∞) | 𝜆 ∈ R} to space R × 𝐸.

By [40], we note that problem (34) and problem (35) are the
same, and each of them is equivalent to problem (30). By
Theorems 3 and 6 and the results of Rabinowitz [41], we have
the following Lemma.

Lemma 11. Let (𝐴1), (𝐴2), (𝐻1), and (𝐻2) hold. (𝜆𝑘/𝑟𝑓0, 0)
and (𝜆𝑘/𝑟𝑓∞,∞) are bifurcation points for problem (30).
Moreover, there are two distinct unbounded subcontinua of
solutions to problem (30),D+

𝑘
andD−

𝑘
, consisting of the bifur-

cation branchD]
𝑘
emanating from (𝜆𝑘/𝑟𝑓0, 0) or (𝜆𝑘/𝑟𝑓∞,∞).

For ] = +, −, D]
𝑘
joins (𝜆𝑘/𝑟𝑓0, 0) to (𝜆𝑘/𝑟𝑓∞,∞), such that

D]
𝑘
⊂ (Φ]
𝑘
∪ {(𝜆𝑘/𝑟𝑓0, 0)}) andD]

𝑘
⊂ (Φ]
𝑘
∪ {(𝜆𝑘/𝑟𝑓∞,∞)}).

Remark 12. Any solution of the problem (30) of the form
(1, 𝑥) yields a solution 𝑥 of the problem (1). In order to prove
our main results, one will only show that D]

𝑘
crosses the

hyperplane {1} × 𝐸 in R × 𝐸.

Theorem 13. Let (𝐴1), (𝐴2), (𝐻1), and (𝐻2) hold, and either
𝜆𝑘/𝑓∞ < 𝑟 < 𝜆𝑘/𝑓0 or 𝜆𝑘/𝑓0 < 𝑟 < 𝜆𝑘/𝑓∞.Then problem (1)
has two solutions 𝑥+

𝑘
and 𝑥−

𝑘
, 𝑥+
𝑘
has exactly 𝑘 − 1 simple zeros

in (0, 1) and is positive near 𝑡 = 0, and 𝑥−
𝑘
has exactly 𝑘 − 1

simple zeros in (0, 1) and is negative near 𝑡 = 0.

Proof of Theorem 13. By Lemma 11 and Remark 12, we only
proveD+

𝑘
andD−

𝑘
crosses the hyperplane {1}×𝐸 inR×𝐸. We

only prove the case ofD+
𝑘
since the case ofD−

𝑘
is similar.

Case 1. (i) Consider 𝜆𝑘/𝑓∞ < 𝑟 < 𝜆𝑘/𝑓0.
In this case, we only need to show that

(
𝜆𝑘

𝑟𝑓∞
,
𝜆𝑘

𝑟𝑓0
) ⊆ {𝜇 ∈ R : (𝜇, 𝑥) ∈ D

+

𝑘
} . (36)

We divide the proof into two steps.
Let (𝜆𝑛, 𝑥𝑛) ∈ D+

𝑘
satisfy

𝜆𝑛 +
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩 󳨀→ ∞. (37)

We note that 𝜆𝑛 > 0 for all 𝑛 ∈ N, since (0, 0) is the only
solution of the problem (30) for 𝜆 = 0 andD+

𝑘
∩({0}×𝐸) = 0.

Step 1. We show that if there exists a constant number𝑀 > 0

such that

𝜆𝑛 ∈ (0,𝑀] , (38)

for 𝑛 ∈ N large enough, then D+
𝑘
joins (𝜆𝑘/𝑟𝑓0, 0) to (𝜆𝑘/

𝑟𝑓∞,∞).

In this case, it follows that
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩 󳨀→ ∞. (39)

By (32) and (33), let

𝜉 (𝑥) = max {󵄨󵄨󵄨󵄨𝜉 (𝑠)
󵄨󵄨󵄨󵄨 : 0 ≤ |𝑠| ≤ 𝑥} , (40)

and then 𝜉 is nondecreasing and

lim
𝑥→∞

𝜉 (𝑥)

𝑥
= 0. (41)

We divide the equation

𝐿𝑥𝑛 = 𝜆𝑛𝑟𝑎 (𝑡) 𝑥𝑛 + 𝜆𝑛𝑟𝜉 (𝑥𝑛) (42)

by ‖𝑥𝑛‖ and set 𝑦𝑛 = 𝑥𝑛/‖𝑥𝑛‖. Since 𝑦𝑛 is bounded in 𝐸, after
taking a subsequence if necessary, we have that 𝑦𝑛 → 𝑦 for
some 𝑦 ∈ 𝐸 with ‖𝑦‖ = 1. Moreover, from (41) and the fact
that 𝜉 is nondecreasing, we have that

lim
𝑛→∞

󵄨󵄨󵄨󵄨𝜉 (𝑥𝑛 (𝑡))
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩

= 0, (43)

since
󵄨󵄨󵄨󵄨𝜉 (𝑥𝑛 (𝑡))

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩
≤
𝜉 (
󵄨󵄨󵄨󵄨𝑥𝑛 (𝑡)

󵄨󵄨󵄨󵄨)
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩
≤
𝜉 (
󵄩󵄩󵄩󵄩𝑥𝑛 (𝑡)

󵄩󵄩󵄩󵄩∞)
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩

≤
𝜉 (
󵄩󵄩󵄩󵄩𝑥𝑛 (𝑡)

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩
.

(44)

By the continuity and compactness of 𝐿−1, it follows that

𝑦
󸀠󸀠󸀠󸀠
+ 𝑘𝑦
󸀠󸀠
+ 𝑙𝑦 = 𝜆𝑟𝑎 (𝑡) 𝑓∞𝑦, (45)

where 𝜆 fl lim𝑛→∞𝜆𝑛, again choosing a subsequence and
relabeling if necessary.

We claim that 𝑦 ∈ D+
𝑘
.

It is clear that 𝑦 ∈ 𝐶+
𝑘
⊂ 𝐶+
𝑘
since D+

𝑘
is closed in R × 𝐸.

Thus, 𝜆𝑟𝑎(𝑡)𝑓∞ = 𝜆𝑘, so that

𝜆 =
𝜆𝑘

𝑟𝑓∞
. (46)

Therefore,D+
𝑘
joins (𝜆𝑘/𝑟𝑓0, 0) to (𝜆𝑘/𝑟𝑓∞,∞).

Step 2. We show that there exists a constant𝑀 such that 𝜆𝑛 ∈
(0,𝑀] for all 𝑛. On the contrary, choosing a subsequence and
relabeling if necessary, it follows that

lim
𝑛→∞

𝜆𝑛 = ∞. (47)

Since (𝜆𝑛, 𝑥𝑛) ∈ D+
𝑘
, it follows that

𝑥
󸀠󸀠󸀠󸀠

𝑛
+ 𝑘𝑥
󸀠󸀠

𝑛
+ 𝑙𝑥𝑛 = 𝜆𝑛𝑟ℎ (𝑡) 𝑓 (𝑥𝑛) . (48)
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Let

0 < 𝜏 (1, 𝑛) < 𝜏 (2, 𝑛) < ⋅ ⋅ ⋅ < 𝜏 (𝑘 − 1, 𝑛) < 1 (49)

denote the simple zeros of 𝑥𝑛(𝑡) in (0, 1). Let 𝜏(0, 𝑛) = 0 and
𝜏(𝑘, 𝑛) = 1.Then, after taking a subsequence if necessary,

lim
𝑛→+∞

𝜏 (𝑗, 𝑛) = 𝜏 (𝑗,∞) , 𝑗 = 0, 1, . . . , 𝑘. (50)

We claim that there exists 𝑗0 ∈ {0, 1, . . . , 𝑘} such that

𝜏 (𝑗0,∞) < 𝜏 (𝑗0 + 1,∞) . (51)

Otherwise, we have

1 =

𝑘−1

∑
𝑗=0

(𝜏 (𝑗 + 1, 𝑛) − 𝜏 (𝑗, 𝑛)) 󳨀→

𝑘−1

∑
𝑗=0

(𝜏 (𝑗 + 1,∞) − 𝜏 (𝑗,∞)) = 0.

(52)

This is a contradiction. Let (𝑎, 𝑏) ⊂ (𝜏(𝑗0,∞), 𝜏(𝑗0 + 1,∞))

with 𝑎 < 𝑏. For all 𝑛 sufficiently large, we have (𝑎, 𝑏) ⊂

(𝜏(𝑗0, 𝑛), 𝜏(𝑗0 + 1, 𝑛)). So 𝑥𝑛(𝑡) does not change its sign in
(𝑎, 𝑏).

On the other hand, let

𝑥
󸀠󸀠󸀠󸀠

𝑛
+ 𝑘𝑥
󸀠󸀠

𝑛
+ 𝑙𝑥𝑛 = 𝜆𝑛𝑟ℎ (𝑡) 𝑓̃𝑛 (𝑡) , (53)

where

𝑓̃
𝑛
(𝑡) =

{{

{{

{

𝑓(𝑥𝑛)

𝑥𝑛
, 𝑥𝑛 (𝑡) ̸= 0,

𝑓0, 𝑥𝑛 (𝑡) = 0.

(54)

Conditions (𝐻1) and (𝐻2) imply that there exists a positive
constant 𝑄 > 0 such that ℎ(𝑡)𝑓̃

𝑛
(𝑡) > 𝑄 for any 𝑡 ∈ (𝑎, 𝑏) and

all 𝑛 ∈ N. By Lemma 10, we get that 𝑥𝑛must change its sign in
(𝑎, 𝑏) for 𝑛 large enough, which is the contradicts. Therefore,

𝜆𝑛 ≤ 𝑀 (55)

for some constant number𝑀 > 0 and 𝑛 ∈ N sufficiently large.

Case 2. (ii) Consider 𝜆𝑘/𝑓0 < 𝑟 < 𝜆𝑘/𝑓∞.
The proof is similar to that for Case 1, so we omit it.

Theorem 14. Let (𝐴1), (𝐴2), (𝐻1), and (𝐻3) hold. Assume
condition 𝑟 ∈ (0, 𝜆𝑘/𝑓∞) holds for some 𝑘 ∈ N. Then problem
(1) has two solutions 𝑥+

𝑘
and 𝑥−

𝑘
, 𝑥+
𝑘
has exactly 𝑘 − 1 simple

zeros in (0, 1) and is positive near 𝑡 = 0, and 𝑥−
𝑘
has exactly

𝑘 − 1 simple zeros in (0, 1) and is negative near 𝑡 = 0.

Proof. Inspired by the idea of [42], we define the cut-off
function of 𝑓 as the following:

𝑓
[𝑛]
(𝑠) fl

{{{{{{{{{

{{{{{{{{{

{

𝑛𝑠, 𝑠 ∈ (−∞, −2𝑛] ∪ [2𝑛, +∞) ,

2𝑛
2 + 𝑓 (−𝑛)

𝑛
(𝑠 + 𝑛) + 𝑓 (−𝑛) , 𝑠 ∈ (−2𝑛, −𝑛) ,

2𝑛2 − 𝑓 (𝑛)

𝑛
(𝑠 − 𝑛) + 𝑓 (𝑛) , 𝑠 ∈ (𝑛, 2𝑛) ,

𝑓 (𝑠) , 𝑠 ∈ [−𝑛, 𝑛] .

(56)

We consider the following problem:

𝑥
󸀠󸀠󸀠󸀠
+ 𝑘𝑥
󸀠󸀠
+ 𝑙𝑥 = 𝜆𝑟ℎ (𝑡) 𝑓

[𝑛]
(𝑥) , 0 < 𝑡 < 1,

𝑥 (0) = 𝑥 (1) = 𝑥
󸀠
(0) = 𝑥

󸀠
(1) = 0.

(57)

Clearly, we can see that lim𝑛→+∞𝑓
[𝑛](𝑠) = 𝑓(𝑠), (𝑓[𝑛])0 =

𝑓0, and (𝑓
[𝑛])∞ = 𝑛.

Similar to the proof of Theorem 13, by Lemma 11 and
Remark 12, there are two distinct unbounded subcontinua of
solutions to problem (57), D+[𝑛]

𝑘
and D

−[𝑛]

𝑘
emanating from

(𝜆𝑘/𝑟𝑓0, 0), and joins to (𝜆𝑘/𝑟𝑛,∞).
Taking 𝑧𝑛 = (𝜆𝑘/𝑟𝑛,∞) and 𝑧∗ = (0,∞), we have that

𝑧𝑛 → 𝑧∗.

So condition (i) in Lemma 9 is satisfied with 𝑧∗ = (0,∞).

Obviously

𝑟𝑛 = sup {𝜆 + ‖𝑢‖ | (𝜆, 𝑢) ∈ D
][𝑛]
𝑘
} = ∞, (58)

and accordingly, (ii) in Lemma 9 holds. (iii) in Lemma 9 can
be deduced directly from the Arzela-Ascoli Theorem and the
definition of 𝑓[𝑛].

Therefore, by Lemma 9, lim sup
𝑛→∞

D
][𝑛]
𝑘

contains an
unbounded component D]

𝑘
emanating from (𝜆𝑘/𝑟𝑓0, 0), and

D]
𝑘
joins (𝜆𝑘/𝑟𝑓0, 0) to (0,∞).
From lim𝑛→+∞𝑓

[𝑛](𝑠) = 𝑓(𝑠), (57) can be converted
to the equivalent equation (30). Thus, D]

𝑘
is an unbounded

component of solutions of problem (30) emanating from
(𝜆𝑘/𝑟𝑓0, 0), andD]

𝑘
joins (𝜆𝑘/𝑟𝑓0, 0) to (0,∞). We can prove

the result.

Theorem 15. Let (𝐴1), (𝐴2), (𝐻1), and (𝐻4) hold. Assume
that condition 𝑟 ∈ (0, 𝜆𝑘/𝑓0) holds for some 𝑘 ∈ N. Then
problem (1) has two solutions 𝑥+

𝑘
and 𝑥−

𝑘
, 𝑥+
𝑘
has exactly 𝑘 − 1

simple zeros in (0, 1) and is positive near 𝑡 = 0, and 𝑥−
𝑘

has exactly 𝑘 − 1 simple zeros in (0, 1) and is negative near
𝑡 = 0.
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Proof. If (𝜆, 𝑥) is any nontrivial solution of problem (30),
dividing problem (30) by ‖𝑥‖2 and setting 𝑦 = 𝑥/‖𝑥‖2 yield

𝑦
󸀠󸀠󸀠󸀠
+ 𝑘𝑦
󸀠󸀠
+ 𝑙𝑦 = 𝜆𝑟ℎ (𝑡)

𝑓 (𝑥)

‖𝑥‖
2
, 0 < 𝑡 < 1,

𝑦 (0) = 𝑦 (1) = 𝑦
󸀠
(0) = 𝑦

󸀠
(1) = 0.

(59)

Define

𝑓̃ (𝑦) fl
{{

{{

{

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
2
𝑓(

𝑦

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
2
) , if 𝑦 ̸= 0,

0, if 𝑦 = 0.
(60)

Evidently, problem (59) is equivalent to

𝑦
󸀠󸀠󸀠󸀠
+ 𝑘𝑦
󸀠󸀠
+ 𝑙𝑦 = 𝜆𝑟ℎ (𝑡) 𝑓̃ (𝑦) , 0 < 𝑡 < 1,

𝑦 (0) = 𝑦 (1) = 𝑦
󸀠
(0) = 𝑦

󸀠
(1) = 0.

(61)

It is obvious that (𝜆, 0) is always the solution of problem
(59). By simple computation, we can show that 𝑓̃

0
= 𝑓∞ ∈

(0,∞) and 𝑓̃
∞

= 𝑓0 = ∞. Now, applying Theorem 13,
there are two distinct unbounded subcontinua of solutions
to problem (61),C+

𝑘
andC−

𝑘
emanating from (𝜆

]
/𝑟𝑓̃
0
, 0), and

joins to (0,∞).
Under the inversion 𝑦 → 𝑦/‖𝑦‖2 = 𝑥, we obtain C]

𝑘
→

D]
𝑘
being an unbounded component of solutions of problem

(30) emanating from (0, 0), and joins to (𝜆]/𝑟𝑓∞,∞).
Moreover, by Remark 12 and the problem (1), we can

obtain thatD]
𝑘
⊂ S]
𝑘
.

Thus, D]
𝑘
is an unbounded component of solutions of

problem (1) such thatD]
𝑘
joins (0, 0) to (𝜆]/𝑟𝑓∞,∞).

Theorem 16. Let (𝐴1), (𝐴2), (𝐻1), and (𝐻5) hold. Assume
that condition 𝑟 ∈ (𝜆𝑘/𝑓0, +∞) holds. Then problem (1) has
two solutions 𝑥+

𝑘
and 𝑥−

𝑘
, 𝑥+
𝑘
has exactly 𝑘 − 1 simple zeros in

(0, 1) and is positive near 𝑡 = 0, and 𝑥−
𝑘
has exactly 𝑘−1 simple

zeros in (0, 1) and is negative near 𝑡 = 0.

Proof. In view of the proof to proveTheorem 13, we only need
to show that D]

𝑘
joins (𝜆𝑘/𝑟𝑓0, 0) to (∞,∞). To do this, it is

enough to prove that [𝜆𝑘/𝑟𝑓0, +∞) ⊂ Proj𝑅D
]
𝑘
.

Assume on the contrary that sup{𝜆 | (𝜆, 𝑢) ∈ D]
𝑘
} < +∞,

and then there exists a sequence (𝜇𝑛, 𝑥𝑛) ∈ D]
𝑘
such that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩 = +∞,

𝜇𝑛 ≤ 𝑐0

(62)

for some positive constant 𝑐0 depending not on 𝑛.
By (𝐻3), let 𝑓(𝑥) = max0≤|𝑠|≤𝑥|𝑓(𝑠)|, and then 𝑓 is

nondecreasing and

lim
𝑥→+∞

𝑓 (𝑥)

𝑥
= 0. (63)

We consider the equation

𝑥
󸀠󸀠󸀠󸀠

𝑛
+ 𝑘𝑥
󸀠󸀠

𝑛
+ 𝑙𝑥𝑛 = 𝜇𝑛𝑟ℎ (𝑡) 𝑓 (𝑥𝑛) , 0 < 𝑡 < 1,

𝑥𝑛 (0) = 𝑥𝑛 (1) = 𝑥
󸀠

𝑛
(0) = 𝑥

󸀠

𝑛
(1) = 0.

(64)

Let 𝑦𝑛 = 𝑥𝑛/‖𝑥𝑛‖, and 𝑦𝑛 should be the solutions of
problem

𝑦
󸀠󸀠󸀠󸀠

𝑛
+ 𝑘𝑦
󸀠󸀠

𝑛
+ 𝑙𝑦𝑛 = 𝜇𝑛𝑟ℎ (𝑡)

𝑓 (𝑥𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩
, 0 < 𝑡 < 1,

𝑦𝑛 (0) = 𝑦𝑛 (1) = 𝑦
󸀠

𝑛
(0) = 𝑦

󸀠

𝑛
(1) = 0.

(65)

Since 𝑦𝑛 is bounded in 𝐸, choosing a subsequence and
relabeling if necessary, we have that 𝑦𝑛 → 𝑦 for some 𝑦 ∈ 𝐸
and ‖𝑦‖ = 1.

Furthermore, from (63) and the fact that𝑓 is nondecreas-
ing, we have that

lim
𝑛→∞

𝑓 (𝑥𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩
= 0, (66)

since

𝑓 (𝑥𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩
≤
𝑓 (
󵄨󵄨󵄨󵄨𝑥𝑛
󵄨󵄨󵄨󵄨)

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩

≤
𝑓 (
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩∞)
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩
≤
𝑓 (
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩
󳨀→ 0,

𝑛 󳨀→ +∞.

(67)

By (12), (65), (66), and the compactness of 𝐿−1, we obtain that
𝑦(𝑡) ≡ 0, ∀𝑡 ∈ [0, 1].

This contradicts ‖𝑦(𝑡)‖ = 1.

Theorem 17. Let (𝐴1), (𝐴2), (𝐻1), and (𝐻6) hold. Assume
that condition 𝑟 ∈ (𝜆𝑘/𝑓∞, +∞) holds. Then problem (1) has
two solutions 𝑥+

𝑘
and 𝑥−

𝑘
, 𝑥+
𝑘
has exactly 𝑘 − 1 simple zeros in

(0, 1) and is positive near 𝑡 = 0, and 𝑥−
𝑘
has exactly 𝑘−1 simple

zeros in (0, 1) and is negative near 𝑡 = 0.

Proof. Similar to the method of the proof of Theorem 15 and
the conclusions of Theorem 16, we can prove the conclusion.

Theorem 18. Let (𝐴1), (𝐴2), (𝐻1), and (𝐻7) hold. Assume
that condition 𝑟 ∈ (0, +∞) holds. Then problem (1) has two
solutions 𝑥+

𝑘
and 𝑥−

𝑘
, 𝑥+
𝑘
has exactly 𝑘 − 1 simple zeros in (0, 1)

and is positive near 𝑡 = 0, and 𝑥−
𝑘
has exactly 𝑘−1 simple zeros

in (0, 1) and is negative near 𝑡 = 0.
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Proof. Define

𝑓
[𝑛]
(𝑠) fl

{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑛𝑠, 𝑠 ∈ (−∞, −2𝑛] ∪ [2𝑛, +∞) ,

2𝑛
2 + 𝑓 (−𝑛)

𝑛
(𝑠 + 𝑛) + 𝑓 (−𝑛) , 𝑠 ∈ (−2𝑛, −𝑛) ,

2𝑛2 − 𝑓 (𝑛)

𝑛
(𝑠 − 𝑛) + 𝑓 (𝑛) , 𝑠 ∈ (𝑛, 2𝑛) ,

𝑓 (𝑠) , 𝑠 ∈ [−𝑛, −
2

𝑛
] ∪ [

2

𝑛
, 𝑛] ,

− [𝑓(−
2

𝑛
) +

1

𝑛2
] (𝑛𝑠 + 2) + 𝑓(−

2

𝑛
) , 𝑠 ∈ (−

2

𝑛
, −
1

𝑛
) ,

[𝑓 (
2

𝑛
) −

1

𝑛2
] (𝑛𝑠 − 2) + 𝑓(

2

𝑛
) , 𝑠 ∈ (

1

𝑛
,
2

𝑛
) ,

1

𝑛
𝑠, 𝑠 ∈ [−

1

𝑛
,
1

𝑛
] .

(68)

We consider the following problem:

𝑥
󸀠󸀠󸀠󸀠
+ 𝑘𝑥
󸀠󸀠
+ 𝑙𝑥 = 𝜆𝑟ℎ (𝑡) 𝑓

[𝑛]
(𝑥) , 0 < 𝑡 < 1,

𝑥 (0) = 𝑥 (1) = 𝑥
󸀠
(0) = 𝑥

󸀠
(1) = 0.

(69)

Clearly, we can see that lim𝑛→+∞𝑓
[𝑛]
(𝑠) = 𝑓(𝑠), (𝑓[𝑛])0 =

1/𝑛, and (𝑓[𝑛])∞ = 𝑛.
Applying the similar method used in the proof of Theo-

rem 13, by Lemma 11 and Remark 12, there are two distinct
unbounded subcontinua of solutions to problem (69), D+[𝑛]

𝑘

andD−[𝑛]
𝑘

emanating from (𝑛𝜆𝑘/𝑟, 0) or (𝜆𝑘/𝑟𝑛,∞), and joins
(𝑛𝜆𝑘/𝑟, 0) to (𝜆𝑘/𝑟𝑛,∞).

Taking 𝑧𝑛 = (𝑛𝜆𝑘/𝑟, 0) and 𝑧∗ = (∞, 0) or 𝑧𝑛 =

(𝜆𝑘/𝑟𝑛,∞) and 𝑧∗ = (0,∞), we have that 𝑧𝑛 → 𝑧∗.

By Lemma 9, we obtain that lim sup
𝑛→∞

D
][𝑛]
𝑘

contains an
unbounded componentD]

𝑘
with (∞, 0), (0,∞) ∈ D]

𝑘
.

From lim𝑛→+∞𝑓
[𝑛](𝑠) = 𝑓(𝑠), (69) can be converted

to the equivalent equation (30). Thus, D]
𝑘
is an unbounded

component of solutions of problem (30) emanating from
(∞, 0) or (0,∞) and joins (∞, 0) to (0,∞).

Moreover, by Remark 12 and (1), we can obtain thatD]
𝑘
⊂

S]
𝑘
.
Thus, D]

𝑘
is an unbounded component of solutions of

problem (1) emanating from (∞, 0) or (0,∞) and joins (∞, 0)

to (0,∞).

Theorem 19. Let (𝐴1), (𝐴2), (𝐻1), and (𝐻8) hold. Assume
that condition 𝑟 ∈ (0, +∞) holds. Then problem (2) has two
solutions 𝑥+

𝑘
and 𝑥−

𝑘
, 𝑥+
𝑘
has exactly 𝑘 − 1 simple zeros in (0, 1)

and is positive near 𝑡 = 0, and 𝑥−
𝑘
has exactly 𝑘−1 simple zeros

in (0, 1) and is negative near 𝑡 = 0.

Proof. Similar to the method of the proof of Theorem 14 and
the conclusions of Theorem 18, we can obtain the desired
results.

Theorem 20. Let (𝐴1), (𝐴2), (𝐻1), and (𝐻9) hold. There
exists 𝜆+

𝑘
> 0 such that 𝑟 ∈ (0, 𝜆+

𝑘
).Then problem (1) has two

solutions 𝑥+
𝑘
and 𝑥−

𝑘
, 𝑥+
𝑘
has exactly 𝑘 − 1 simple zeros in (0, 1)

and is positive near 𝑡 = 0, and 𝑥−
𝑘
has exactly 𝑘−1 simple zeros

in (0, 1) and is negative near 𝑡 = 0.

Proof. Define

𝑓
[𝑛]
(𝑠) fl

{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{

{

𝑛𝑠, 𝑠 ∈ (−∞, −2𝑛] ∪ [2𝑛, +∞) ,

2𝑛
2 + 𝑓 (−𝑛)

𝑛
(𝑠 + 𝑛) + 𝑓 (−𝑛) , 𝑠 ∈ (−2𝑛, −𝑛) ,

2𝑛2 − 𝑓 (𝑛)

𝑛
(𝑠 − 𝑛) + 𝑓 (𝑛) , 𝑠 ∈ (𝑛, 2𝑛) ,

𝑓 (𝑠) , 𝑠 ∈ [−𝑛, −
2

𝑛
] ∪ [

2

𝑛
, 𝑛] ,

− [𝑓(−
2

𝑛
) + 1] (𝑛𝑠 + 2) + 𝑓(−

2

𝑛
) , 𝑠 ∈ (−

2

𝑛
, −
1

𝑛
) ,

[𝑓 (
2

𝑛
) − 1] (𝑛𝑠 − 2) + 𝑓(

2

𝑛
) , 𝑠 ∈ (

1

𝑛
,
2

𝑛
) ,

𝑛𝑠, 𝑠 ∈ [−
1

𝑛
,
1

𝑛
] .

(70)
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We consider the following problem:

𝑥
󸀠󸀠󸀠󸀠
+ 𝑘𝑥
󸀠󸀠
+ 𝑙𝑥 = 𝜆𝑟ℎ (𝑡) 𝑓

[𝑛]
(𝑥) , 0 < 𝑡 < 1,

𝑥 (0) = 𝑥 (1) = 𝑥
󸀠
(0) = 𝑥

󸀠
(1) = 0.

(71)

It is of no difficulty to verify that lim𝑛→+∞𝑓
[𝑛](𝑠) = 𝑓(𝑠),

(𝑓[𝑛])0 = 𝑛, and (𝑓
[𝑛])∞ = 𝑛.

Theorem 18 implies that there exist two sequences of
unbounded continua of solutions to problem (71),D+[𝑛]

𝑘
and

D
−[𝑛]

𝑘
emanating from (𝜆𝑘/𝑟𝑛, 0) or (𝜆𝑘/𝑟𝑛,∞).

By making use of Lemma 9 again, we obtain that
there exist two unbounded components D+

𝑘
and D−

𝑘
of

lim sup
𝑛→∞

D
][𝑛]
𝑘

such that (0, 0) ∈ D]
𝑘
and (0,∞) ∈ D]

𝑘
.

Theorem 21. Let (𝐴1), (𝐴2), (𝐻1), and (𝐻10) hold. There
exists 𝜆+

𝑘
> 0, such that 𝑟 ∈ (𝜆+

𝑘
, +∞).Then problem (1) has

two solutions 𝑥+
𝑘
and 𝑥−

𝑘
, 𝑥+
𝑘
has exactly 𝑘 − 1 simple zeros in

(0, 1) and is positive near 𝑡 = 0, and 𝑥−
𝑘
has exactly 𝑘−1 simple

zeros in (0, 1) and is negative near 𝑡 = 0.

Proof. Similar to the method of the proof of Theorem 14 and
the conclusions of Theorem 20, we can obtain the desired
results.

Using the similar proof with that of Theorems 13–16, we
can obtain the result.

Theorem 22. Let (𝐴1), (𝐴2), (𝐻1), and (𝐻3) hold. Assume
that the following condition holds for some 𝑘, 𝑛 ∈ Nwith 𝑘 ≤ 𝑛:

𝑟 <
𝜆𝑘

𝑓∞
<
𝜆𝑛

𝑓∞
. (72)

Then problem (1) possesses 𝑛 − 𝑘 + 1 pairs solutions 𝑥+
𝑖
and 𝑥−

𝑖

for 𝑖 ∈ {𝑘, . . . , 𝑛} such that 𝑥+
𝑖
has exactly 𝑖 − 1 zeros in (0, 1)

and is positive near 0, and 𝑥−
𝑖
has exactly 𝑖 − 1 zeros in (0, 1)

and is negative near 0.

Theorem 23. Let (𝐴1), (𝐴2), (𝐻1), and (𝐻4) hold. Assume
that the following condition holds for some 𝑘, 𝑛 ∈ Nwith 𝑘 ≤ 𝑛:

𝑟 <
𝜆𝑘

𝑓0
<
𝜆𝑛

𝑓0
. (73)

Then problem (1) possesses 𝑛 − 𝑘 + 1 pairs solutions 𝑢+
𝑖
and 𝑥−

𝑖

for 𝑖 ∈ {𝑘, . . . , 𝑛} such that 𝑥+
𝑖
has exactly 𝑖 − 1 zeros in (0, 1)

and is positive near 0, and 𝑥−
𝑖
has exactly 𝑖 − 1 zeros in (0, 1)

and is negative near 0.

Theorem 24. Let (𝐴1), (𝐴2), (𝐻1), and (𝐻5) hold. Assume
that the following condition holds for some 𝑘, 𝑛 ∈ Nwith 𝑘 ≤ 𝑛:

𝜆𝑘

𝑓0
<
𝜆𝑛

𝑓0
< 𝑟 < +∞. (74)

Then problem (1) possesses 𝑛 − 𝑘 + 1 pairs solutions 𝑥+
𝑖
and 𝑥−

𝑖

for 𝑖 ∈ {𝑘, . . . , 𝑛} such that 𝑥+
𝑖
has exactly 𝑖 − 1 zeros in (0, 1)

and is positive near 0, and 𝑥−
𝑖
has exactly 𝑖 − 1 zeros in (0, 1)

and is negative near 0.

Theorem 25. Let (𝐴1), (𝐴2), (𝐻1), and (𝐻6) hold. Assume
that the following condition holds for some 𝑘, 𝑛 ∈ Nwith 𝑘 ≤ 𝑛:

𝜆𝑘

𝑓∞
<
𝜆𝑛

𝑓∞
< 𝑟 < +∞. (75)

Then problem (1) possesses 𝑛 − 𝑘 + 1 pairs solutions 𝑥+
𝑖
and 𝑥−

𝑖

for 𝑖 ∈ {𝑘, . . . , 𝑛} such that 𝑥+
𝑖
has exactly 𝑖 − 1 zeros in (0, 1)

and is positive near 0, and 𝑥−
𝑖
has exactly 𝑖 − 1 zeros in (0, 1)

and is negative near 0.

Remark 26. When 𝑘 = 𝑙 = 0, the authors of [2–7] studied
the existence of the solutions of the problem (1) by fixed
point theory on cones, while we study the unilateral global
bifurcation and the existence of nodal solutions of problem
(1) for the cases of 𝑓0, 𝑓∞ ∈ [0,∞] by Dancer [33]. Thus,
in this sense, our results partially extend and improve the
corresponding results of [2–7].

Remark 27. The main methods used in this work are uni-
lateral global bifurcation techniques and the approximation
of connected components, which are different from the
methods used in [13–15, 27–30, 34, 37].Moreover, we consider
the cases of 𝑓0 ∉ (0, +∞) or 𝑓∞ ∉ (0, +∞), while the authors
of [13–15, 27–30, 34, 37] only studied the cases of 𝑓0, 𝑓∞ ∈

(0,∞).

Remark 28. Since Benedikt [18–22] has established the spec-
trum structure of the corresponding eigenvalue problems,
in the following, one can study the existence of nodal
solutions for the problems in Benedikt [18–22] by applying
the bifurcation techniques in this paper.

Remark 29. When 𝑘 = 𝑙 = 0, Korman [23] and Rynne [24]
investigated the nodal properties of the solutions for problem
(1) by applying the bifurcation techniques.Thus, in this sense,
our results partially extend and improve the corresponding
results of Korman [23] and Rynne [24].

Remark 30. We consider the cases of 𝑓0, 𝑓∞ ∉ (0,∞) by
Dancer [33], while the authors of [27] (when 𝑘 = 0, 𝑙 ̸= 0)
only studied the cases of 𝑓0 = ∞,𝑓∞ ∈ (0,∞) by Rabinowitz
[8]. Hence,Theorems 13–20 extend and improveTheorem 3.1

of [27] in some sense.

Remark 31. When 𝑘 = 0, 𝑙 = 𝛽(𝑡), Ma et al. [28] only studied
the cases of 𝑓0, 𝑓∞ ∈ (0,∞). Furthermore, one can study the
cases of 𝑓0, 𝑓∞ ∉ (0,∞) of [28] by using similar methods in
this paper.

Remark 32. The authors of [30, 31] only studied the cases of
𝑓0, 𝑓∞ ∈ (0,∞) and 𝑓0 = ∞, 𝑓∞ ∈ (0,∞) by Rabinowitz
[8], respectively, while we consider the cases of 𝑓0, 𝑓∞ ∉

(0,∞) by Dancer [33]. Hence, Theorems 13–20 extend and
improve the corresponding results of [30, 31] in some sense.
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