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The numerical algorithm for solving “first-order linear differential equation in fuzzy environment” is discussed. A scheme, namely,
“Runge-Kutta-Fehlberg method,” is described in detail for solving the said differential equation. The numerical solutions are
compared with (i)-gH and (ii)-gH differential (exact solutions concepts) system. The method is also followed by complete error
analysis. The method is illustrated by solving an example and an application.

1. Introduction

Fuzzy Differential Equation. In modeling of real natural
phenomena, differential equations play an important role in
many areas of discipline, exemplary in economics, biomathe-
matics, science, and engineering. Many experts in such areas
widely use differential equations in order to make some
problems under study more comprehensible. In many cases,
information about the physical phenomena related is always
immanent with uncertainty.

Today, the study of differential equationswith uncertainty
is instantaneously growing as a new area in fuzzy analysis.
The terms such as “fuzzy differential equation” and “fuzzy
differential inclusion” are used interchangeably in mention
to differential equations with fuzzy initial values or fuzzy
boundary values or even differential equations dealing with
functions on the space of fuzzy numbers. In the year 1987,
the term “fuzzy differential equation (FDE)” was introduced
by Kandel and Byatt [1]. There are different approaches to
discuss the FDEs: (i) the Hukuhara derivative of a fuzzy
number valued function is used, (ii) Hüllermeier [2] and
Diamond andWatson [3–5] suggested a different formulation
for the fuzzy initial value problems (FIVP) based on a family
of differential inclusions, (iii) in [6, 7], Bede et al. defined

generalized differentiability of the fuzzy number valued
functions and studied FDE, and (iv) applying a parametric
representation of fuzzy numbers, Chen et al. [8] established
a new definition for the differentiation of a fuzzy valued
function and used it in FDE.

Solution of Fuzzy Differential Equation by Numerical Tech-
niques. Numerical methods are the methods by which we
can find the solution of differential equation where the exact
solution is critical to find. There exist various numerical
methods for solving differential equation such as Setia et
al. [9], Liu [10], and Setia et al. [11]. Our aim is to find
the numerical techniques by which the solution of a linear
or nonlinear first-order fuzzy differential equation comes
easily and the solution is very close to the exact solution.
There exist many techniques of numerical methods for
finding the solution of fuzzy differential equation. Authors
applied the method in certain types of fuzzy differential
equation which shows that their techniques are best fit for
that particular problem. The first paper on fuzzy differential
equation and numerical analysis was published in 1999 by
Ma et al. [12]. Allahviranloo et al. [13] apply the two-step
method on fuzzy differential equations. Allahviranloo et al.
[14] find the numerical solution by using predictor-corrector
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method. Allahviranloo et al. [15] find an algorithm for finding
the solution 𝑁th-order fuzzy linear differential equations
using numerical techniques. Pederson and Sambandham
in [16] use characterization theorem on hybrid fuzzy ini-
tial value problem. A soft computing technique, namely,
artificial neural network, is implicated for solving FDE by
Effati and Pakdaman [17]. Duraisamy and Usha [18] used
modified Euler’s method. The extension principle method
was compared by Euler’s method in Saberi Najafi et al. [19]
article. Rostami et al. [20] find a numerical algorithm for
solving nonlinear fuzzy differential equations. Moghadam
and Dahaghin [21] apply two-step methods for numerical
solution of FDE. Batiha in [22] finds an iterative solution
of multispecies predator-prey model by variational iteration
method. Ahmad and Hasan [23] proposed a new fuzzy
version of Euler’s method for solving differential equations
with fuzzy initial value. Nirmala and Chenthur Pandian
[24] give an idea for improving the numerical result on
FDE. Shafiee et al. [25] use predictor-corrector method for
nonlinear fuzzy Volterra integral equations. Comparison
results on some numerical techniques on first-order fuzzy
differential equation are illustrated by Ghanbari [26].The use
of variational iteration method for solving 𝑁th-order fuzzy
differential equations is shown by Jafari et al. [27]. Tapaswini
and Chakraverty [28] discuss a new approach to fuzzy initial
value problem by Improved Euler method. The solution of
FIVP is compared by Least Square method and Adomian
Decomposition method by Ahmed and Fadhel [29]. Solution
of differential equation by Euler’smethod using fuzzy concept
is developed by Saikia [30]. Ezzati et al. [31] find the numerical
solution of Volterra-Fredholm integral equations with the
help of inverse and direct discrete fuzzy transforms and
collocation technique. The Adomian method is applied on
second-order FDE by Wang and Guo [32]. Fard [33] uses
iterative scheme to find the solution of generalized system of
linear FDE, whereas Blockmethod is used byMehrkanoon et
al. [34]. Asady and Alavi [35] apply a numerical method for
solving𝑁th-order linear fuzzy differential equation.

Solution of Fuzzy Differential Equation by Runge-Kutta
Method. Runge-Kutta method is well known for finding the
approximate or numerical solution. In the last decade Runge-
Kutta method is applied in fuzzy differential equation for
finding the numerical solution. The researchers are giving
various types of view to apply these methods. Someone
changes the order and someone applies different types on
FDE, a comparison of another method to Runge-Kutta
method. The details of published work done in Runge-Kutta
method are summarized below.

Numerical Solution of Fuzzy Differential Equations
by Runge-Kutta method of order three is developed by
Duraisamy and Usha [36]. Solution techniques for fourth-
order Runge-Kutta method with higher order derivative
approximations are developed by Nirmala and Chenthur
Pandian [37]. Runge-Kutta method of order five is devel-
oped by Jayakumar et al. [38]. The techniques extended
Runge-Kutta-like formulae of order four are developed by
Ghazanfari and Shakerami [39]. Third-order Runge-Kutta
method is developed by Kanagarajan and Sambath [40].

Runge-Kutta-Fehlberg method for hybrid fuzzy differential
equation is solved by Jayakumar and Kanagarajan [41].
A different approach followed by Runge-Kutta method is
applied by Akbarzadeh Ghanaie and Mohseni Moghadam
[42]. “Numerical Solution of Fuzzy IVP with Trapezoidal
and Triangular Fuzzy Numbers by Using Fifth-Order Runge-
Kutta Method” is solved by Ghanbari [43]. “New Multi-
Step Runge-Kutta Method for Solving Fuzzy Differential
Equations” is solved by Nirmala and Chenthur Pandian [44].
“Numerical Solution of Fuzzy Hybrid Differential Equation
by Third Order Runge-Kutta Nystrom Method” is solved by
Saveetha and Chenthur Pandian [45]. A new approach to
solve fuzzy differential equation by using third-order Runge-
Kutta method is developed by Deshmukh [46]. Runge-
Kutta method of order four is developed by Duraisamy and
Usha [47] and order five is developed by Jayakumar and
Kanagarajan [48].

Application of Fuzzy Differential Equation. Fuzzy differential
equations play a significant role in the fields of biology,
engineering, and physics as well as among other fields
of science, for example, in population models [49], civil
engineering [50], bioinformatics and computational biology
[51], quantum optics and gravity [52], modeling hydraulic
[53], HIVmodel [54], decaymodel [55], predator-preymodel
[56], population dynamics model [57], friction model [58],
growthmodel [59], bacteria culturemodel [60], bank account
and drug concentration problem [61], barometric pressure
problem [62], concentration problem [63], weight loss and
oil production model [64], arm race model [65], vibration of
mass [66], and fractional predator-prey equation [67].

Novelties. Although some developments are done, some new
interest and newwork have been done by ourselves which are
mentioned below:

(i) Differential equation is solved in fuzzy environment
by numerical techniques; that is, coefficients and
initial condition both are taken as fuzzy number
of a differential equation and solved by numerical
techniques.

(ii) The numerical solution is compared with the exact
solution ((i)-gH and (ii)-gH both cases).

(iii) Runge-Kutta-Fehlberg method for solving fuzzy dif-
ferential equation is used.

(iv) For application purpose a mixture problem is consid-
ered.

(v) The solutions are found using different step length for
better accuracy of the result.

(vi) The necessary algorithm for numerical solution is
given.

Structure of the Paper. The paper is organized as follows: in
Preliminary Concepts, the preliminary concepts and basic
concepts on fuzzy number and fuzzy derivative are given.
The method for finding the exact solution is discussed in
Exact Solution of Fuzzy Differential Equation. In Numer-
ical Solution of Fuzzy Differential Equation we proposed
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Runge-Kutta-Fehlberg method in fuzzy environment. The
convergence of the said method and algorithm for finding
the numerical results are also discussed in this section.
Numerical Example shows a numerical example. In Appli-
cation an important application, namely, mixture problem,
is illustrated in fuzzy environment. Finally conclusions and
future research scope of this paper are drawn in last section,
Conclusion.

2. Preliminary Concepts

Definition 1 (fuzzy set). A fuzzy set �̃� is defined by �̃� =

{(𝑥, 𝜇
̃

𝐴

(𝑥)) : 𝑥 ∈ 𝐴, 𝜇
̃

𝐴

(𝑥) ∈ [0, 1]}. In the pair (𝑥, 𝜇
̃

𝐴

(𝑥))

the first element 𝑥 belongs to the classical set 𝐴 and the
second element 𝜇

̃

𝐴

(𝑥) belongs to the interval [0, 1], called
membership function.

Definition 2 (𝛼-cut of a fuzzy set). The 𝛼-level set (or interval
of confidence at level 𝛼 or 𝛼-cut) of the fuzzy set �̃� of 𝑋 is
a crisp set 𝐴

𝛼

that contains all the elements of 𝑋 that have
membership values in 𝐴 greater than or equal to 𝛼; that is,
�̃� = {𝑥 : 𝜇

̃

𝐴

(𝑥) ≥ 𝛼, 𝑥 ∈ 𝑋, 0 < 𝛼 ≤ 1}.

Definition 3 (fuzzy number). The basic definition of fuzzy
number is as follows [30]: if we denote the set of all real
numbers by R and the set of all fuzzy numbers on R is
indicated by RF then a fuzzy number is mapping such that
𝑢 : R → [0, 1], which satisfies the following four properties:

(i) 𝑢 is upper semicontinuous.
(ii) 𝑢 is a fuzzy convex; that is, 𝑢(𝜆𝑥 + (1 − 𝜆)𝑦) ≥

min{𝑢(𝑥), 𝑢(𝑦)} for all 𝑥, 𝑦 ∈ R, 𝜆 ∈ [0, 1].
(iii) 𝑢 is normal; that is, ∃𝑥

0

∈ R for which 𝑢(𝑥
0

) = 1.
(iv) supp 𝑢 = {𝑥 ∈ R | 𝑢(𝑥) > 0} is support of 𝑢 and the

closure of (supp 𝑢) is compact.

Definition 4 (parametric form of fuzzy number [31]). A
fuzzy number is represented by an ordered pair of functions
(𝑢
1

(𝛼), 𝑢
2

(𝛼)), 0 ≤ 𝛼 ≤ 1, that satisfy the following condition:
(1) 𝑢
1

(𝛼) is a bounded left continuous nondecreasing
function for any 𝛼 ∈ [0, 1].

(2) 𝑢
2

(𝛼) is a bounded left continuous nonincreasing
function for any 𝛼 ∈ [0, 1].

(3) 𝑢
1

(𝛼) ≤ 𝑢
2

(𝛼) for any 𝛼 ∈ [0, 1].

Note. If 𝑢
1

(𝛼) = 𝑢
2

(𝛼) = 𝛼, then 𝛼 is a crisp number.

Definition 5 (generalized Hukuhara difference [20]). The
generalized Hukuhara difference of two fuzzy numbers 𝑢, V ∈

RF is defined as follows:

𝑢⊖gHV = 𝑤 ⇐⇒
{

{

{

(i) 𝑢 = V ⊕ 𝑤,

or (ii) V = 𝑢 ⊕ (−1)𝑤.

(1)

Consider [𝑤]
𝛼

= [𝑤
1

(𝛼), 𝑤
1

(𝛼)]; then 𝑤
1

(𝛼) = min{𝑢
1

(𝛼) −

V
1

(𝛼), 𝑢
2

(𝛼) − V
2

(𝛼)} and𝑤
2

(𝛼) = max{𝑢
1

(𝛼) − V
1

(𝛼), 𝑢
2

(𝛼) −

V
2

(𝛼)}.

Here the parametric representation of a fuzzy valued
function 𝑓 : [𝑎, 𝑏] → RF is expressed by [𝑓(𝑡)]

𝛼

=

[𝑓
1

(𝑡, 𝛼), 𝑓
2

(𝑡, 𝛼)], 𝑡 ∈ [𝑎, 𝑏], 𝛼 ∈ [0, 1].

Definition 6 (generalized Hukuhara derivative for first order
[20]). The generalized Hukuhara derivative of a fuzzy valued
function 𝑓 : (𝑎, 𝑏) → RF at 𝑡

0

is defined as

𝑓


(𝑡
0

) = lim
ℎ→0

𝑓 (𝑡
0

+ ℎ) ⊖gH𝑓 (𝑡
0

)

ℎ
. (2)

If 𝑓


(𝑡
0

) ∈ RF satisfying (2) exists, we say that 𝑓 is
generalized Hukuhara differentiable at 𝑡

0

.

Also we say that 𝑓(𝑡) is (i)-gH differentiable at 𝑡
0

if

[𝑓


(𝑡
0

)]
𝛼

= [𝑓


1

(𝑡
0

, 𝛼) , 𝑓


2

(𝑡
0

, 𝛼)] , (3)

and 𝑓(𝑡) is (ii)-gH differentiable at 𝑡
0

if

[𝑓


(𝑡
0

)]
𝛼

= [𝑓


2

(𝑡
0

, 𝛼) , 𝑓


1

(𝑡
0

, 𝛼)] . (4)

Definition 7 (see [6]). For arbitrary 𝑢 = (𝑢
1

, 𝑢
2

) and V =

(V
1

, V
2

) ∈ 𝐸
1, the quantity

𝐷 (𝑢, V) = (∫

1

0

(𝑢
1

− V
1

)
2

+ ∫

1

0

(𝑢
2

− V
2

)
2

)

1/2

(5)

is the distance between fuzzy numbers 𝑢 and V.

Definition 8 (triangular fuzzy number). A triangular fuzzy
number (TFN) denoted by �̃� is defined as (𝑎, 𝑏, 𝑐) where the
membership function

𝜇
̃

𝐴

(𝑥) =

{{{{{{{{{{{

{{{{{{{{{{{

{

0, 𝑥 ≤ 𝑎,

𝑥 − 𝑎

𝑏 − 𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏,

1, 𝑥 = 𝑏,

𝑐 − 𝑥

𝑐 − 𝑏
, 𝑏 ≤ 𝑥 ≤ 𝑐,

0, 𝑥 ≥ 𝑐.

(6)

Definition 9 (𝛼-cut of a fuzzy set �̃�). The 𝛼-cut of �̃� = (𝑎, 𝑏, 𝑐)

is given by

𝐴
𝛼

= [𝑎 + 𝛼 (𝑏 − 𝑎) , 𝑐 − 𝛼 (𝑐 − 𝑏)] , ∀𝛼 ∈ [0, 1] . (7)

Definition 10 (fuzzy ordinary differential equation (FODE)).
Consider a simple 1st-order linear ordinary differential equa-
tion as follows:

𝑑𝑥

𝑑𝑡
= 𝑘𝑥 + 𝑥

0

with initial condition 𝑥 (𝑡
0

) = 𝛾. (8)

The above ordinary differential equation is called fuzzy
ordinary differential equation if any one of the following three
cases holds:

(i) Only 𝛾 is a fuzzy number (Type-I).
(ii) Only 𝑘 is a fuzzy number (Type-II).
(iii) Both 𝑘 and 𝛾 are fuzzy numbers (Type-III).
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3. Exact Solution of
Fuzzy Differential Equation

Consider the fuzzy initial value problem

𝑦


(𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) , 𝑡 ∈ 𝐼 = [0, 𝑇] with 𝑦 (0) = 𝑦
0

, (9)

where 𝑓 is a continuous mapping from 𝑅
+

× 𝑅 into 𝑅 and
𝑦
0

∈ 𝐸 with 𝑟-level sets

[𝑦
0

]
𝑟

= [𝑦
1

(0; 𝛼) , 𝑦
2

(0; 𝛼)] , 𝛼 ∈ (0, 1] . (10)

We write 𝑓(𝑡, 𝑦) = [𝑓
1

(𝑡, 𝑦), 𝑓
2

(𝑡, 𝑦)] and 𝑓
1

(𝑡, 𝑦) =

𝐹[𝑡, 𝑦
1

, 𝑦
2

], 𝑓
2

(𝑡, 𝑦) = 𝐺[𝑡, 𝑦
1

, 𝑦
2

].
Because of 𝑦(𝑡) = 𝑓(𝑡, 𝑦) we have the following.
When 𝑦(𝑡, 𝑦) is (i)-gH differentiable

𝑦


1

(𝑡, 𝛼) = 𝐹 [𝑡; 𝑦
1

(𝑡; 𝛼) , 𝑦
2

(𝑡; 𝛼)] ,

𝑦


2

(𝑡, 𝛼) = 𝐺 [𝑡; 𝑦
1

(𝑡; 𝛼) , 𝑦
2

(𝑡; 𝛼)] .

(11)

When 𝑦(𝑡, 𝑦) is (ii)-gH differentiable

𝑦


2

(𝑡, 𝛼) = 𝐹 [𝑡; 𝑦
1

(𝑡; 𝛼) , 𝑦
2

(𝑡; 𝛼)] ,

𝑦


1

(𝑡, 𝛼) = 𝐺 [𝑡; 𝑦
1

(𝑡; 𝛼) , 𝑦
2

(𝑡; 𝛼)] ,

(12)

where, by using extension principle, we have themembership
function

𝑓 (𝑡; 𝑦 (𝑡)) (𝑠) = Sup {𝑦 (𝑡) (𝜏) \ 𝑠 = 𝑓 (𝑡, 𝜏)} , 𝑠 ∈ 𝑅. (13)

So fuzzy number is 𝑓(𝑡; 𝑦(𝑡)). From this it follows that

[𝑓 (𝑡; 𝑦 (𝑡))]
𝛼

= [𝑓
1

(𝑡, 𝑦 (𝑡) ; 𝛼) , 𝑓
2

(𝑡, 𝑦 (𝑡) ; 𝛼)] ,

𝛼 ∈ [0; 1] ,

(14)

where

𝑓
1

(𝑡, 𝑦 (𝑡) ; 𝛼) = 𝐹 [𝑡; 𝑦
1

(𝑡; 𝛼) , 𝑦
2

(𝑡; 𝛼)]

= min {𝑓 (𝑡, 𝑢) \ 𝑢 ∈ [𝑦
1

(𝑡; 𝛼) , 𝑦
2

(𝑡; 𝛼)]} ,

𝑓
2

(𝑡, 𝑦 (𝑡) ; 𝛼) = 𝐺 [𝑡; 𝑦
1

(𝑡; 𝛼) , 𝑦
2

(𝑡; 𝛼)]

= max {𝑓 (𝑡, 𝑢) \ 𝑢 ∈ [𝑦
1

(𝑡; 𝛼) , 𝑦
2

(𝑡; 𝛼)]} .

(15)

Note. (1) Both cases ((i)-gH and (ii)-gH) can be applied to a
FDE for finding exact solution.

(2) After taking 𝛼-cut of the given FDE, it transforms to
system of ordinary differential equation.

4. Numerical Solution of
Fuzzy Differential Equation

4.1. Runge-Kutta-FehlbergMethod for Ordinary (Crisp) Differ-
ential Equation. Consider the initial value problem 𝑦



(𝑡) =

𝑓(𝑡, 𝑦(𝑡)); 𝑦(𝑡
0

) = 𝑦
0

.
The Runge-Kutta-Fehlberg method (denoted as RKF45)

is one way to try to resolve this problem.

The problem is to solve the initial value problem in above
equation by means of Runge-Kutta methods of order 4 and
order 5.

First we need some definitions:

𝑘
1

= ℎ𝑓 (𝑡
𝑖

, 𝑦
𝑖

) ,

𝑘
2

= ℎ𝑓(𝑡
𝑖

+
1

4
ℎ, 𝑦
𝑖

+
1

4
𝑘
1

) ,

𝑘
3

= ℎ𝑓(𝑡
𝑖

+
3

8
ℎ, 𝑦
𝑖

+
3

32
𝑘
1

+
9

32
𝑘
2

) ,

𝑘
4

= ℎ𝑓(𝑡
𝑖

+
12

13
ℎ, 𝑦
𝑖

+
1932

2197
𝑘
1

−
7200

2197
𝑘
2

+
7296

2197
𝑘
3

) ,

𝑘
5

= ℎ𝑓(𝑡
𝑖

+ ℎ, 𝑦
𝑖

+
439

216
𝑘
1

− 8𝑘
2

+
3680

513
𝑘
3

−
845

4104
𝑘
4

) ,

𝑘
6

= ℎ𝑓(𝑡
𝑖

+ ℎ, 𝑦
𝑖

−
8

27
𝑘
1

+ 2𝑘
2

−
3544

2565
𝑘
3

+
1859

4104
𝑘
4

−
11

40
𝑘
5

) .

(16)

Then an approximation to the solution of initial value
problem is made using Runge-Kutta method of order 4:

𝑦
𝑖+1

= 𝑦
𝑖

+
25

216
𝑘
1

+
1408

2565
𝑘
3

+
2197

4101
𝑘
4

−
1

5
𝑘
5

. (17)

A better value for the solution is determined using a Runge-
Kutta method of order 5:

𝑧
𝑖+1

= 𝑦
𝑖

+
16

135
𝑘
1

+
6656

12,825
𝑘
3

+
28,561
56,430

𝑘
4

−
9

50
𝑘
5

+
2

55
𝑘
6

.

(18)

The optimal step size 𝑠ℎ can be determined bymultiplying the
scalar 𝑠 times the step size ℎ. The scalar 𝑠 is

𝑠 = (
𝜖ℎ

2
𝑧𝑖+1 − 𝑦

𝑖+1



)

1/4

= 0.0840896(
𝜖ℎ

𝑧𝑖+1 − 𝑦
𝑖+1



)

1/4

,

(19)

where 𝜖 is the specified error control tolerance.
Note that RK4 requires 4 function evaluations and RK5

requires 6 evaluations, that is, 10 for RK4 and RK5. Fehlberg
devised a method to get RK4 and RK5 results using only
6 function evaluations by using some of 𝐾 values in both
methods.

4.2. Runge-Kutta-Fehlberg Method for Solving Fuzzy Differen-
tial Equations. Let 𝑌 = [𝑌

1

, 𝑌
2

] be the exact solution and let
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𝑦 = [𝑦
1

, 𝑦
2

] be the approximated solution of the fuzzy initial
value problem.

Let [𝑌(𝑡)]
𝛼

= [𝑌
1

(𝑡, 𝛼), 𝑌
2

(𝑡, 𝛼)], [𝑦(𝑡)]
𝑟

= [𝑦
1

(𝑡, 𝛼), 𝑦
2

(𝑡,

𝛼)].
Throughout this argument, the value of 𝑟 is fixed. Then

the exact and approximated solution at 𝑡
𝑛

are, respectively,
denoted by

[𝑌 (𝑡
𝑛

)]
𝛼

= [𝑌
1

(𝑡
𝑛

, 𝛼) , 𝑌
2

(𝑡
𝑛

, 𝛼)] ,

[𝑦 (𝑡
𝑛

)]
𝛼

= [𝑦
1

(𝑡
𝑛

, 𝛼) , 𝑦
2

(𝑡
𝑛

, 𝛼)] .

(20)

The grid points at which the solution is calculated are ℎ =

(𝑇 − 𝑡
0

)/𝑁, 𝑡
𝑖

= 𝑡
0

+ 𝑖ℎ, 0 ≤ 𝑖 ≤ 𝑁.
Then we obtained

𝑦
1

(𝑡
𝑛+1

, 𝛼) = 𝑦
1

(𝑡
𝑛

, 𝛼) +
16

135
𝐾
1

+
6656

12,825
𝐾
3

+
28,561
56,430

𝐾
4

−
9

50
𝐾
5

+
2

55
𝐾
6

,

(21)

where

𝐾
1

= ℎ𝐹 (𝑡
𝑛

, 𝑦
1

(𝑡
𝑛

, 𝛼) , 𝑦
2

(𝑡
𝑛

, 𝛼)) ,

𝐾
2

= ℎ𝐹(𝑡
𝑛

+
1

4
ℎ, 𝑦
1

(𝑡
𝑛

, 𝛼) +
1

4
𝐾
1

, 𝑦
2

(𝑡
𝑛

, 𝛼)

+
1

4
𝐾
1

) ,

𝐾
3

= ℎ𝐹(𝑡
𝑛

+
3

8
ℎ, 𝑦
1

(𝑡
𝑛

, 𝛼) +
3

32
𝐾
1

+
9

32
𝐾
2

, 𝑦
2

(𝑡
𝑛

, 𝛼) +
3

32
𝐾
1

+
9

32
𝐾
2

) ,

𝐾
4

= ℎ𝐹(𝑡
𝑛

+
12

13
ℎ, 𝑦
1

(𝑡
𝑛

, 𝛼) +
1932

2197
𝐾
1

−
7200

2197
𝐾
2

+
7296

2197
𝐾
3

, 𝑦
2

(𝑡
𝑛

, 𝛼) +
1932

2197
𝐾
1

−
7200

2197
𝐾
2

+
7296

2197
𝐾
3

) ,

𝐾
5

= ℎ𝐹(𝑡
𝑛

+ ℎ, 𝑦
1

(𝑡
𝑛

, 𝛼) +
439

216
𝐾
1

− 8𝐾
2

+
3680

513
𝐾
3

−
845

4104
𝐾
4

, 𝑦
2

(𝑡
𝑛

, 𝛼) +
439

216
𝐾
1

− 8𝐾
2

+
3680

513
𝐾
3

−
845

4104
𝐾
4

) ,

𝐾
6

= ℎ𝐹(𝑡
𝑛

+ ℎ, 𝑦
1

(𝑡
𝑛

, 𝛼) −
8

27
𝐾
1

+ 2𝐾
2

−
3544

2565
𝐾
3

+
1859

4104
𝐾
4

−
11

40
𝐾
5

, 𝑦
2

(𝑡
𝑛

, 𝛼) −
8

27
𝐾
1

+ 2𝐾
2

−
3544

2565
𝐾
3

+
1859

4104
𝐾
4

−
11

40
𝐾
5

) ,

(22)

𝑦
2

(𝑡
𝑛+1

, 𝛼) = 𝑦
2

(𝑡
𝑛

, 𝛼) +
16

135
𝐿
1

+
6656

12,825
𝐿
3

+
28,561
56,430

𝐿
4

−
9

50
𝐿
5

+
2

55
𝐿
6

,

(23)

where

𝐿
1

= ℎ𝐺 (𝑡
𝑛

, 𝑦
1

(𝑡
𝑛

, 𝛼) , 𝑦
2

(𝑡
𝑛

, 𝛼)) ,

𝐿
2

= ℎ𝐺(𝑡
𝑛

+
1

4
ℎ, 𝑦
1

(𝑡
𝑛

, 𝛼) +
1

4
𝐿
1

, 𝑦
2

(𝑡
𝑛

, 𝛼)

+
1

4
𝐿
1

) ,

𝐿
3

= ℎ𝐺(𝑡
𝑛

+
3

8
ℎ, 𝑦
1

(𝑡
𝑛

, 𝛼) +
3

32
𝐿
1

+
9

32
𝐿
2

, 𝑦
2

(𝑡
𝑛

, 𝛼) +
3

32
𝐿
1

+
9

32
𝐿
2

) ,

𝐿
4

= ℎ𝐺(𝑡
𝑛

+
12

13
ℎ, 𝑦
1

(𝑡
𝑛

, 𝛼) +
1932

2197
𝐿
1

−
7200

2197
𝐿
2

+
7296

2197
𝐿
3

, 𝑦
2

(𝑡
𝑛

, 𝛼) +
1932

2197
𝐿
1

−
7200

2197
𝐿
2

+
7296

2197
𝐿
3

) ,

𝐿
5

= ℎ𝐺(𝑡
𝑛

+ ℎ, 𝑦
1

(𝑡
𝑛

, 𝛼) +
439

216
𝐿
1

− 8𝐿
2

+
3680

513
𝐿
3

−
845

4104
𝐿
4

, 𝑦
2

(𝑡
𝑛

, 𝛼) +
439

216
𝐿
1

− 8𝐿
2

+
3680

513
𝐿
3

−
845

4104
𝐿
4

) ,

𝐿
6

= ℎ𝐺(𝑡
𝑛

+ ℎ, 𝑦
1

(𝑡
𝑛

, 𝛼) −
8

27
𝐿
1

+ 2𝐿
2

−
3544

2565
𝐿
3

+
1859

4104
𝐿
4

−
11

40
𝐿
5

, 𝑦
2

(𝑡
𝑛

, 𝛼) −
8

27
𝐿
1

+ 2𝐿
2

−
3544

2565
𝐿
3

+
1859

4104
𝐿
4

−
11

40
𝐿
5

) .

(24)

4.3. Convergence of Fuzzy Runge-Kutta-FehlbergMethod. The
solution is calculated by grid points at 𝑎 = 𝑡

0

≤ 𝑡
1

≤ ⋅ ⋅ ⋅ ≤

𝑡
𝑁

= 𝑏 and ℎ = (𝑏 − 𝑎)/𝑁 = 𝑡
𝑛+1

− 𝑡
𝑛

.
Therefore, we have

𝑌
1

(𝑡
𝑛+1

, 𝛼) = 𝑌
1

(𝑡
𝑛

, 𝛼) + 𝐹 (𝑡
𝑛

, 𝑌
1

(𝑡
𝑛

, 𝛼) , 𝑌
2

(𝑡
𝑛

, 𝛼)) ,

𝑌
2

(𝑡
𝑛+1

, 𝛼) = 𝑌
2

(𝑡
𝑛

, 𝛼)

+ 𝐺 (𝑡
𝑛

, 𝑌
1

(𝑡
𝑛

, 𝛼) , 𝑌
2

(𝑡
𝑛

, 𝛼)) ,

𝑦
1

(𝑡
𝑛+1

, 𝛼) = 𝑦
1

(𝑡
𝑛

, 𝛼) + 𝐹 (𝑡
𝑛

, 𝑦
1

(𝑡
𝑛

, 𝛼) , 𝑦
2

(𝑡
𝑛

, 𝛼)) ,

𝑦
2

(𝑡
𝑛+1

, 𝛼) = 𝑦
2

(𝑡
𝑛

, 𝛼) + 𝐺 (𝑡
𝑛

, 𝑦
1

(𝑡
𝑛

, 𝛼) , 𝑦
2

(𝑡
𝑛

, 𝛼)) .

(25)
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Clearly, 𝑦
1

(𝑡, 𝛼) and 𝑦
2

(𝑡, 𝛼) converge to 𝑌
1

(𝑡, 𝛼) and 𝑌
2

(𝑡, 𝛼),
respectively, whenever ℎ → 0; that is,

lim
ℎ→0

𝑦
1

(𝑡, 𝛼) = 𝑌
1

(𝑡, 𝛼) ,

lim
ℎ→0

𝑦
2

(𝑡, 𝛼) = 𝑌
2

(𝑡, 𝛼) .

(26)

Proof. Before we go to the main proof we need to know some
results.

Lemma 11. Let the sequence of numbers {𝑊}
𝑁

𝑛=0

satisfy
𝑊𝑛+1

 ≤ 𝐴
𝑊𝑛

 + 𝐵, 0 ≤ 𝑛 ≤ 𝑁 − 1, (27)

for some given positive constants 𝐴 and 𝐵. Then

𝑊𝑛
 ≤ 𝐴
𝑛 𝑊0

 + 𝐵
𝐴
𝑛

− 1

𝐴 − 1
, 0 ≤ 𝑛 ≤ 𝑁. (28)

Lemma 12. Let the sequence of numbers {𝑊}
𝑁

𝑛=0

and {𝑉}
𝑁

𝑛=0

satisfy
𝑊𝑛+1

 ≤
𝑊𝑛

 + 𝐴max {
𝑊𝑛

 ,
𝑉𝑛

} + 𝐵,

𝑉𝑛+1
 ≤

𝑉𝑛
 + 𝐴max {

𝑊𝑛
 ,

𝑉𝑛
} + 𝐵,

(29)

for some given positive constants 𝐴 and 𝐵, and denote

𝑈
𝑛

=
𝑊𝑛

 +
𝑉𝑛

 , 0 ≤ 𝑛 ≤ 𝑁. (30)

Then

𝑈
𝑛

≤ 𝐴
𝑛

𝑈
0

+ 𝐵
𝐴
𝑛

− 1

𝐴 − 1

, 0 ≤ 𝑛 ≤ 𝑁, (31)

where 𝐴 = 1 + 2𝐴 and 𝐵 = 2𝐵.

Let 𝐹(𝑡, 𝑢, V) and 𝐺(𝑡, 𝑢, V) be obtained by substituting
[𝑦
1

(𝑡, 𝛼), 𝑦
2

(𝑡, 𝛼)] = [𝑢, V] in (21) and (23); that is,

𝐹 (𝑡, 𝑢, V) =
16

135
𝐾
1

(𝑡, 𝑢, V) +
6656

12,825
𝐾
3

(𝑡, 𝑢, V)

+
28,561
56,430

𝐾
4

(𝑡, 𝑢, V) −
9

50
𝐾
5

(𝑡, 𝑢, V)

+
2

55
𝐾
6

(𝑡, 𝑢, V) ,

𝐺 (𝑡, 𝑢, V) =
16

135
𝐿
1

(𝑡, 𝑢, V) +
6656

12,825
𝐿
3

(𝑡, 𝑢, V)

+
28,561
56,430

𝐿
4

(𝑡, 𝑢, V) −
9

50
𝐿
5

(𝑡, 𝑢, V)

+
2

55
𝐿
6

(𝑡, 𝑢, V) .

(32)

The domain where 𝐹 and 𝐺 are defined is as

𝐻 = {(𝑡, 𝑢, V) | 0 ≤ 𝑡 ≤ 𝑇, −∞ < V < ∞, −∞ < 𝑢

≤ V} .
(33)

Theorem 13. Let 𝐹(𝑡, 𝑢, V) and 𝐺(𝑡, 𝑢, V) belong to 𝐶
𝑝−1

(𝐾)

and let the partial derivative of 𝐹 and 𝐺 be bounded over 𝐾.
Then for arbitrary fixed 0 ≤ 𝛼 ≤ 1, the numerical solu-
tion of (9), [𝑦

1

(𝑡, 𝛼), 𝑦
2

(𝑡, 𝛼)] converges to the exact solution
[𝑌
1

(𝑡, 𝛼), 𝑌
2

(𝑡, 𝛼)].

Proof (see [46]). By using Taylor’s theorem we get

𝑌
1

(𝑡
𝑛+1

, 𝛼) = 𝑌
1

(𝑡
𝑛

, 𝛼)

+ ℎ𝐹 (𝑡
𝑛

, 𝑌
1

(𝑡
𝑛

, 𝛼) , 𝑌
2

(𝑡
𝑛

, 𝛼))

+
ℎ
𝑝+1

(𝑝 + 1)!
𝑌
(𝑝+1)

1

(𝜉
𝑛,1

) ,

𝑌
2

(𝑡
𝑛+1

, 𝛼) = 𝑌
2

(𝑡
𝑛

, 𝛼)

+ ℎ𝐺 (𝑡
𝑛

, 𝑌
1

(𝑡
𝑛

, 𝛼) , 𝑌
2

(𝑡
𝑛

, 𝛼))

+
ℎ
𝑝+1

(𝑝 + 1)!
𝑌
(𝑝+1)

2

(𝜉
𝑛,2

) ,

(34)

where 𝜉
𝑛,1

, 𝜉
𝑛,2

∈ (𝑡
𝑛

, 𝑡
𝑛+1

).
Now if we denote

𝑊
𝑛

= 𝑌
1

(𝑡
𝑛

, 𝛼) − 𝑦
1

(𝑡
𝑛

, 𝛼) ,

𝑉
𝑛

= 𝑌
2

(𝑡
𝑛

, 𝛼) − 𝑦
2

(𝑡
𝑛

, 𝛼) ,

(35)

then the above two expressions converted to

𝑊
𝑛+1

= 𝑊
𝑛

+ ℎ {𝐹 (𝑡
𝑛

, 𝑌
1

(𝑡
𝑛

, 𝛼) , 𝑌
2

(𝑡
𝑛

, 𝛼))

− 𝐹 (𝑡
𝑛

, 𝑦
1

(𝑡
𝑛

, 𝛼) , 𝑦
2

(𝑡
𝑛

, 𝛼))} +
ℎ
𝑝+1

(𝑝 + 1)!

⋅ 𝑌
(𝑝+1)

1

(𝜉
𝑛,1

) ,

𝑉
𝑛+1

= 𝑉
𝑛

+ ℎ {𝐺 (𝑡
𝑛

, 𝑌
1

(𝑡
𝑛

, 𝛼) , 𝑌
2

(𝑡
𝑛

, 𝛼))

− 𝐺 (𝑡
𝑛

, 𝑦
1

(𝑡
𝑛

, 𝛼) , 𝑦
2

(𝑡
𝑛

, 𝛼))} +
ℎ
𝑝+1

(𝑝 + 1)!

⋅ 𝑌
(𝑝+1)

2

(𝜉
𝑛,2

) .

(36)

Hence we can write
𝑊𝑛+1

 ≤
𝑊𝑛

 + 2𝐿ℎmax {
𝑊𝑛

 ,
𝑉𝑛

} +
ℎ
𝑝+1

(𝑝 + 1)!
𝑀,

𝑉𝑛+1
 ≤

𝑉𝑛
 + 2𝐿ℎmax {

𝑊𝑛
 ,

𝑉𝑛
} +

ℎ
𝑝+1

(𝑝 + 1)!
𝑀,

(37)

where 𝑀 = max{max |𝑌
(𝑝+1)

1

(𝑡; 𝛼)|,max |𝑌
(𝑝+1)

2

(𝑡; 𝛼)|} for 𝑡 ∈

[0, 𝑇] and 𝐿 > 0 is a bound for the partial derivative of 𝐹 and
𝐺.

Therefore we can write
𝑊𝑛

 ≤ (1 + 4𝐿ℎ)
𝑛 𝑈0

 +
2ℎ
𝑝+1

(𝑝 + 1)!
𝑀

(1 + 4𝐿ℎ)
𝑛

− 1

4𝐿ℎ
,

𝑉𝑛
 ≤ (1 + 4𝐿ℎ)

𝑛 𝑈0
 +

2ℎ
𝑝+1

(𝑝 + 1)!
𝑀

(1 + 4𝐿ℎ)
𝑛

− 1

4𝐿ℎ
,

(38)

where |𝑈
0

| = |𝑊
0

| + |𝑉
0

|.
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In particular,

𝑊𝑁
 ≤ (1 + 4𝐿ℎ)

𝑁 𝑈0


+
2ℎ
𝑝+1

(𝑝 + 1)!
𝑀

(1 + 4𝐿ℎ)
𝑇/ℎ

− 1

4𝐿ℎ
,

𝑉𝑁
 ≤ (1 + 4𝐿ℎ)

𝑁 𝑈0


+
2ℎ
𝑝+1

(𝑝 + 1)!
𝑀

(1 + 4𝐿ℎ)
𝑇/ℎ

− 1

4𝐿ℎ
.

(39)

Since𝑊
0

= 𝑉
0

= 0, we have

𝑊𝑁
 ≤ 𝑀

𝑒
4𝐿𝑇

− 1

2𝐿 (𝑝 + 1)!
ℎ
𝑝

,

𝑉𝑁
 ≤ 𝑀

𝑒
4𝐿𝑇

− 1

2𝐿 (𝑝 + 1)!
ℎ
𝑝

.

(40)

Thus, if ℎ → 0, we get𝑊
𝑁

→ 0 and𝑉
𝑁

→ 0, which completes
the proof.

4.4. Algorithm for Finding the Numerical Solution

Step 1. 𝐹(𝑡, 𝑦
1

, 𝑦
2

) ← “Function to be supplied”

𝐺(𝑡, 𝑦
1

, 𝑦
2

) ← “Function to be supplied”

Step 2. Read 𝑡(0), 𝑦
1

(0), 𝑦
2

(0), ℎ, limit.

Step 3. For 𝑖 = 0(1) limit

𝐾
1

← ℎ𝐹(𝑡
𝑖

, 𝑦
1

(𝑡
𝑖

, 𝑟), 𝑦
2

(𝑡
𝑖

, 𝑟))

𝐾
2

← ℎ ⋅ 𝐹(𝑡
𝑖

+ (1/4)ℎ, 𝑦
1

(𝑡
𝑖

, 𝑟) + (1/4)𝐾
1

, 𝑦
2

(𝑡
𝑖

, 𝑟) +

(1/4)𝐾
1

)

𝐾
3

← ℎ⋅𝐹(𝑡
𝑖

+(3/8)ℎ, 𝑦
1

(𝑡
𝑖

, 𝑟)+(3/32)𝐾
1

+(9/32)𝐾
2

,

𝑦
2

(𝑡
𝑖

, 𝑟) + (3/32)𝐾
1

+ (9/32)𝐾
2

)

𝐾
4

← ℎ ⋅ 𝐹(𝑡
𝑖

+ (12/13)ℎ, 𝑦
1

(𝑡
𝑖

, 𝑟) + (1932/2197)𝐾
1

−

(7200/2197)𝐾
2

+ (7296/2197)𝐾
3

, 𝑦
2

(𝑡
𝑖

, 𝑟) + (1932/

2197)𝐾
1

− (7200/2197)𝐾
2

+ (7296/2197)𝐾
3

)

𝐾
5

← ℎ𝐹(𝑡
𝑖

+ℎ, 𝑦
1

(𝑡
𝑖

, 𝑟)+(439/216)𝐾
1

−8𝐾
2

+(3680/

513)𝐾
3

− (845/4104)𝐾
4

, 𝑦
2

(𝑡
𝑖

, 𝑟) + (439/216)𝐾
1

−

8𝐾
2

+ (3680/513)𝐾
3

− (845/4104)𝐾
4

)

𝐾
6

← ℎ𝐹(𝑡
𝑖

+ ℎ, 𝑦
1

(𝑡
𝑖

, 𝑟) − (8/27)𝐾
1

+ 2𝐾
2

− (3544/

2565)𝐾
3

+ (1859/4104)𝐾
4

− (11/40)𝐾
5

, 𝑦
2

(𝑡
𝑖

, 𝑟) −

(8/27)𝐾
1

+ 2𝐾
2

− (3544/2565)𝐾
3

+ (1859/4104)𝐾
4

−

(11/40)𝐾
5

)

𝐿
1

← ℎ ⋅ 𝐺(𝑡
𝑖

, 𝑦
1

(𝑡
𝑖

, 𝑟), 𝑦
2

(𝑡
𝑖

, 𝑟))

𝐿
2

← ℎ𝐺(𝑡
𝑖

+ (1/4)ℎ, 𝑦
1

(𝑡
𝑖

, 𝑟) + (1/4)𝐿
1

, 𝑦
2

(𝑡
𝑖

, 𝑟) +

(1/4)𝐿
1

)

𝐿
3

← ℎ𝐺(𝑡
𝑖

+ (3/8)ℎ, 𝑦
1

(𝑡
𝑖

, 𝑟) + (3/32)𝐿
1

+ (9/32)𝐿
2

,

𝑦
2

(𝑡
𝑖

, 𝑟) + (3/32)𝐿
1

+ (9/32)𝐿
2

)

𝐿
4

← ℎ𝐺(𝑡
𝑖

+ (12/13)ℎ, 𝑦
1

(𝑡
𝑖

, 𝑟) + (1932/2197)𝐿
1

−

(7200/2197)𝐿
2

+ (7296/2197)𝐿
3

, 𝑦
2

(𝑡
𝑖

, 𝑟) + (1932/

2197)𝐿
1

− (7200/2197)𝐿
2

+ (7296/2197)𝐿
3

)

𝐿
5

← ℎ𝐺(𝑡
𝑖

+ ℎ, 𝑦
1

(𝑡
𝑖

, 𝑟) + (439/216)𝐿
1

− 8𝐿
2

+

(3680/513)𝐿
3

− (845/4104)𝐿
4

, 𝑦
2

(𝑡
𝑖

, 𝑟) + (439/

216)𝐿
1

− 8𝐿
2

+ (3680/513)𝐿
3

− (845/4104)𝐿
4

)

𝐿
6

← ℎ𝐺(𝑡
𝑖

+ ℎ, 𝑦
1

(𝑡
𝑖

, 𝑟) − (8/27)𝐿
1

+ 2𝐿
2

−

(3544/2565)𝐿
3

+ (1859/4104)𝐿
4

− (11/40)𝐿
5

, 𝑦
2

(𝑡
𝑖

,

𝑟) − (8/27)𝐿
1

+ 2𝐿
2

− (3544/2565)𝐿
3

+ (1859/

4104)𝐿
4

− (11/40)𝐿
5

)

Step 4.

𝑦
1

(𝑡
𝑖+1

, 𝑟) = 𝑦
1

(𝑡
𝑖

, 𝑟)+(16/135)𝐾
1

+(6656/12,825)𝐾
3

+

(28,561/56,430)𝐾
4

− (9/50)𝐾
5

+ (2/55)𝐾
6

Step 5.

𝑦
2

(𝑡
𝑖+1

, 𝑟) = 𝑦
2

(𝑡
𝑖

, 𝑟)+(16/135)𝐿
1

+(6656/12,825)𝐿
3

+

(28,561/56,430)𝐿
4

− (9/50)𝐿
5

+ (2/55)𝐿
6

Step 6. 𝑡
𝑖+1

= 𝑡
𝑖

+ ℎ. Write 𝑦
1

(𝑡
𝑖+1

, 𝑟), 𝑦
2

(𝑡
𝑖+1

, 𝑟), 𝑡
𝑖+1

.

Step 7. Next 𝑖

Step 8. End.

5. Numerical Example

Example. Solve 𝑦


= −𝑦 + 𝑡 + 1 with initial condition 𝑦(0) =

(0.96, 1, 1.01). Then find the solution at 𝑡 = 0.1.

Solution. For (i)-gH differentiable case the exact solution is

𝑦
1

(𝑟, 𝑡) = 𝑡 + (0.96 + 0.04𝑟) 𝑒
−𝑡

,

𝑦
2

(𝑟, 𝑡) = 𝑡 + (1.01 − 0.01𝑟) 𝑒
−𝑡

(41)

and for (ii)-gH differentiable case the exact solution is

𝑦
1

(𝑟, 𝑡) = 1 + 𝑡 + (−0.04 + 0.04𝑟) 𝑒
𝑡

,

𝑦
2

(𝑟, 𝑡) = 1 + 𝑡 + (0.01 − 0.01𝑟) 𝑒
𝑡

.

(42)

Remark 14. From Figure 1 and Table 1 we conclude that the
lower exact solution ((i)-gH case) is approximately equal to
the numerical solution when we take the step length ℎ =

0.01 (for ℎ = 0.001 is nearly equal), whereas the lower
exact solution ((ii)-gH case) is approximately equal to the
numerical solution when we take the step length ℎ = 0.1.

Remark 15. From Figure 2 and Table 1 we conclude that the
upper exact solution ((i)-gH case) is approximately equal to
the numerical solution when we take the step length ℎ =

0.001 (for ℎ = 0.01 is nearly equal), whereas the upper
exact solution ((ii)-gH case) is approximately equal to the
numerical solution when we take the step length ℎ = 0.1.

6. Application

Problem. A tank initially contains 300 gals of brine which has
dissolved in 𝑐 lbs of salt. Coming into the tank at 3 gals/min
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Figure 3: Comparison of lower exact solutions and numerical solution for different step lengths at 𝑡 = 0.4.

is brine with concentration 𝑘 lbs salt/gals and the well stirred
mixture leaves at the rate 3 gals/min. Let𝑦(𝑥) lbs be the salt in
the tank at any time 𝑡 ≥ 0. Then 𝑑𝑦(𝑥)/𝑑𝑥+ (1/100)𝑦(𝑥) = 𝑘,
𝑥 ∈ [0, 0.5] with 𝑦(0) = 𝑐, if the initial condition is being
modeled as fuzzy numbers 𝑐 = (1, 2, 3) and 𝑘 = (1, 2, 4). Find
solution at 𝑥 = 0.4.

Solution. For (i)-gH differentiable case the exact solution is

𝑦
1

(𝑥, 𝛼) =
(1 + 𝛼)

100
(1 + 99𝑒

−(1/100)𝑥

) ,

𝑦
2

(𝑥, 𝛼) =
(2 − 𝛼)

50
+

(148 − 49𝛼)

50
𝑒
−(1/100)𝑥

.

(43)

For (ii)-gH differentiable case the exact solution is

𝑦
1

(𝑥, 𝛼) = (149 − 149𝛼) 𝑒
(1/100)𝑥

+ (−248 + 50𝛼) 𝑒
−(1/100)𝑥

+ (100 + 100𝛼) ,

𝑦
2

(𝑥, 𝛼) = − (149 − 149𝛼) 𝑒
(1/100)𝑥

+ (−248 + 50𝛼) 𝑒
−(1/100)𝑥

+ (400 − 200𝛼) .

(44)

Remark 16. From Figure 3 and Table 2 we conclude that the
lower exact solution ((i)-gH case) is approximately equal to
the numerical solution when we take the step length ℎ =

0.001 (for ℎ = 0.01 is nearly equal), whereas the lower exact
solution ((ii)-gH case) is not equal to any numerical solution.

Remark 17. From Figure 4 and Table 2 we conclude that the
upper exact solution ((i)-gH case) is approximately equal to
the numerical solution when we take the step length of ℎ =

0.01 and ℎ = 0.001. For ℎ = 0.1 it is nearly equal, whereas
the upper exact solution ((ii)-gH case) is not equal to any
numerical solution.

7. Conclusion

In this paper we applied Runge-Kutta-Fehlberg method for
finding the numerical solution of first-order linear differential
equation in fuzzy environment. The numerical solution is
compared with the exact solution ((i)-gH and (ii)-gH both
cases). The results presented in the contribution show that
Runge-Kutta-Fehlberg method is a powerful mathemati-
cal tool for solving first-order linear differential equation
in fuzzy environment. The convergence of Runge-Kutta-
Fehlberg method has been discussed. The process method
is applied to a mechanical problem in fuzzy environment
which shows that it is a promising method to solve the said
types of differential equation. In the future we can apply
these methods for solving higher order linear and nonlinear
differential equation in fuzzy environment.
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