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This paper investigates a hybrid structure based synchronous control strategy for multimotor system of shaftless-driven printing
press. Many existing algorithms can obtain a stable synchronous system; however, the obtained stable systemmay encounter a large
enough disturbance that can destroy the synchronization. Focusing on this challenging technological problem about how to receive
more robust synchronization during steady-state process, this paper first proposes a state-dependent-switching based leader-
following control approach, in which synchronization includes two parts, one associated with tracking control for all members, and
the other one associated with consensus maintained among followers in the case that one follower loses synchronization with the
leader during steady-state motion. By employing the algebra graph theory, matrix theory, and Lyapunov analysis, the convergence
and stability of the givenmultimotor system are proved. Finally, simulation examples are presented to demonstrate the effectiveness
and robustness of the theoretical results.

1. Introduction

Recent years have witnessed increasing interests in the study
of shaftless-driven systems. Owing to excellent synchronous
performance, shaftless-driven printing presses play a central
role in printing industry [1, 2]. However, the accuracy of
multiaxis synchronization has a direct effect on produc-
tion quality and efficiency [3]. Accordingly, finding more
advanced multiaxis synchronous control technology remains
a challenge.

Existing synchronization related literatures for multiaxis
printing presses are mostly directed toward coupling control
[4, 5] and virtual line shaft control [6, 7]. In the past years,
considerable algorithms on synchronization for multiple
motors pose advantages as well as limitations. References
[4, 5] achieved synchronization by introducing parameter
coupling into control strategies. However, the increasing
coordinated axes induce intensive online computational
work. References [6, 7] presented novel synchronous control

lawswith a virtual line shaft.However, there is no information
exchange among followers, and it is difficult to find a satisfac-
tory solution for the measurement of acceleration.

Meanwhile, we notice that consensus of multiagent sys-
tem is arousing extensive attention in various disciplines,
including biology, computer science, and control engineering
[8–10]. Many existing papers have made great contributions
in distributed coordinated control. Vicsek et al. first pro-
posed the emergence of self-ordered motion in systems of
particles with biologically motivated interaction and received
interesting results [11]. Jadbabaie et al. provided a theoretical
explanation for this convergence behavior andderived several
other similar models [12]. Cortes extended the application
of consensus algorithms to general continuous functions
[13]. Thereafter, various consensus algorithms were investi-
gated, ranging from single-integrator dynamics to double-
integrator and high-order-integrator dynamics [14–16], from
continuous time to discrete time [17, 18], from fixed topolo-
gies to switching topologies [19], from average consensus to
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consensus tracking [20–22], and so forth. Extension consen-
sus algorithms that considered many other extra conditions
were studied afterwards, and an adaptive synchronization
algorithm of coupled oscillators was proposed [23]. In [24],
an adaptive algorithm of coupled oscillators with multiple
leaders was investigated. In [25], a superior decentralized
adaptive cluster synchronization was introduced to inves-
tigate the pinning-control problem of complex dynamical
networks. In [26, 27], input saturation was taken into account
in the leader-following consensus of agents described by
general linear systems. Due to different versions of con-
sensus algorithms, various cooperation control capabilities
were developed; examples include flocking [28, 29], task
assignment [30, 31], containment control [32, 33], formation
control [34–36], and rendezvous [37].

To our knowledge, many existing algorithms can obtain
a stable synchronous system; however, when the obtained
stable system encounters these unanticipated situations, such
as parameter perturbations, external load disturbances, and
model nonlinearities, the created consistent system may be
inconsistent. Moreover, amounts of wastes would be pro-
duced in the high speed printing process.Therefore, in indus-
trial manufacturing areas, one of the main challenges is how
to find a control strategy that keeps all motors maintaining
consensus all the time, especially in the case that one follower
loses synchronization with reference signal. If the other
followers turn to track the faulty one rather than the given
reference in this circumstance, the problem would be solved.
Inspired by the aforementioned researches and industrial
requirement, based on a state-dependent-switching law, this
paper proposes a virtual-leader-based consensus tracking
control with hybrid structure for multimotor system.

The remainder of this paper is organized as follows.
Section 2 states the problems to be solved according to a
multimotor system. Section 3 establishes the control strategy
and presents theoretical analysis. Simulation results are given
in Section 4. Finally, Section 5 draws a conclusion.

2. Preliminaries and Problem Statement

Consider a shaftless-driven printing press (SDPP), which can
be regarded as amultimotor system (MMS). Let each printing
roller be driven by a servomotor, and each servomotor system
stands for an agent with actual motion ability; multiple servo
systems compose a multiagent system.

Let 𝑅 denote the set of real number.The SDPP consists of
𝑛 different motors, together with an additional motor labeled
0(𝐿), which acts as the unique virtual leader of the group, and
motors 1, 2, . . . , 𝑛 are followers.

The motion of each DC motor is described by [38]
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Equation (1) can be rewritten as
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Here, 𝑖 = 0, 1, . . . , 𝑛,𝐹
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Define
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1
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𝑇 (3)

to be the actual output position of each motor in MMS (2).
Let 𝜃𝑑 be the given reference, which is only transmitted to
virtual leader.The output of leader 𝜃

0
(𝜃
𝐿
) acts as the reference

of followers. Since the power of inverter is limited, the driven
control system provides a limited torque; that is, 𝜃

𝑖
(𝑖 =

0, 1, . . . , 𝑛) is bounded. Our results will rely on the following
assumption.
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The interaction topology of MMS (2) is represented by
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only on followers 1 to 𝑛, we use a follower graph𝐺
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0
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followers, and the followers have only local interactions with
their neighbors and graphs 𝐺

𝑛+1
and 𝐺

𝑛
are fixed and have a

spanning tree.
Problems to be addressed in this paper can be divided

into two parts. One is the tracking control of all group
members, under normal circumstances (i.e., the followers can
track the motion trajectory of virtual leader with the given
tracking control law), designing a tracking control algorithm
to achieve ‖𝜃

𝑖
− 𝜃
𝐿
‖ → 0 (𝑖 = 1, 2, . . . , 𝑛), such that all

followers will track the trajectory of virtual leader. The other
one is consensus control among followers, under abnormal
circumstance (i.e., at least one follower cannot follow the
virtual leader during large enough disturbances), designing
a consensus algorithm to guarantee that the other followers
can track the faulty one; if it satisfies ‖𝜃

𝑖
− 𝜃
𝑗
‖ → 0 (𝑖, 𝑗 =

1, 2, . . . , 𝑛), then followers would maintain consensus. It
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contributes to solving the technological problem about how
to reduce the production of vast amounts of wastes due to the
existent printing-registration deviation when a high speed
SDPP is in response to local environment disturbances.

3. Main Results

In this section, we design control algorithms to satisfy the
conditions proposed in Section 2 and give the theoretical
analysis.

Lemma 2 (see [39]). Given a matrix 𝐿
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Corollary 3 (see [39]). Thenonsymmetrical Laplacianmatrix
𝐿
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associated eigenvector 1
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and all of the other eigenvalues are in
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Here, operator ∘ expresses the Hadamard product of matrix.

Theorem 4. Consider the MMS (2) and suppose graphs 𝐺
𝑛+1

and 𝐺
𝑛
are connected and both have a spanning tree, under

normal circumstance; 𝑛 followers track the virtual leader if and
only if 𝑒 = 0; under abnormal circumstance, the followers
maintain consensus if and only if 𝐸 = 0.

Proof. From (5), 𝑒 = [𝑒
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= 𝐿𝑒. (7)

If we have 𝐸 = 0, according to Lemma 2 and Corollary 3,
we can also have 𝑒 ∈ span{1}, it means that each ele-
ment of 𝑒 is nonzero and the same as the others; that is,
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Figure 1: Structure diagram of the position controller.
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𝑖
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𝑛
and vice versa. Therefore, we can

conclude that followers maintain consensus under abnormal
circumstance if and only if synchronous coordination error𝐸
asymptotically converges to zero.

This completes the proof.

Our control scheme is composed by tracking control
under normal circumstance and coordinated consensus con-
trol under abnormal circumstance. The position controller
structure of the follower servomotor 𝑖 (𝑖 = 1, 2, . . . , 𝑛) is
shown in Figure 1. Define a state-dependent-switching law
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where 𝛿 is a positive constant, and 𝑢
𝑖
and 𝑢

∗

𝑖
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equations (9) and (10).
The tracking control law of each motor is given by
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𝑖
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) denotes a signum function,
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The consensus control law is given by

𝑢
∗

𝑖
= 𝑘
𝑝
𝐸
𝑖
+ 𝑘
𝑖
∫𝐸
𝑖
𝑑𝑡 + 𝑘

𝑑

𝑑𝐸
𝑖

𝑑𝑡
(𝑖 = 1, 2, . . . , 𝑛) , (10)

where the gains 𝑘
𝑝
, 𝑘
𝑖
, and 𝑘

𝑑
are to be designed.

Theorem 5. Consider the MMS (2). Let each motor be steered
by the control input (8). Then choose arbitrary proper gains 𝑘

𝑝
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𝑘
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(ii) under abnormal circumstances, ‖𝜃

𝑖
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𝑗
‖ → 0 (𝑖 = 1,

2, . . . , 𝑛), as 𝑡 → ∞.
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Proof. Case (i). Under the normal circumstances (i.e., when
unanticipated environmental disturbances can be tolerated
by followers, that is, (1/2)∑𝑛

𝑖,𝑗=1
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Motor 1 Motor 2 Motor 3 Motor 4Motor 0 (L)

Figure 2: Interaction topology among five motors where 𝜃
𝐿
is avail-

able to all the followers.

Letting 𝑄
𝑖
= [
𝜆𝑖 −1/2

−1/2 ℎ𝑖
], we have |𝑄

𝑖
| = 𝜆

𝑖
ℎ
𝑖
− 1/4 and

supposing 𝜆
𝑖
ℎ
𝑖
> 1/4, then, |𝑄

𝑖
| > 0, 𝑄

𝑖
is a positive definite

matrix

𝛼
𝑇

𝑖
𝑄
𝑖
𝛼
𝑖
= [𝑒𝑖 𝜎𝑖]

[
[

[

𝜆
𝑖

−
1

2

−
1

2
ℎ
𝑖

]
]

]

[
𝑒
𝑖

𝜎
𝑖

]

= 𝜆
𝑖
𝑒
2

𝑖
− 𝑒
𝑖
𝜎
𝑖
+ ℎ
𝑖
𝜎
2

𝑖
.

(17)

Substituting (17) into (16) yields

�̇� (𝑡) ≤

𝑛

∑

𝑖=1

(−𝛼
𝑇

𝑖
𝑄
𝑖
𝛼
𝑖
− ℎ
𝑖
𝛽
𝑖

𝜎𝑖
)

≤

𝑛

∑

𝑖=1

− 𝛼
𝑇

𝑖
𝑄
𝑖
𝛼
𝑖

≤

𝑛

∑

𝑖=1

− 𝜆min (𝑄𝑖)

𝛼
𝑇

𝑖



2

≤ 0,

(18)

where 𝜆min(𝑄𝑖) is the minimum eigenvalue of 𝑄
𝑖
.

It implies that 𝑉(𝑡) ≤ 𝑉(0); that is, 𝑒
𝑖
, 𝛿
𝑖
are bounded;

̇𝑒
𝑖
is bounded since 𝛿

𝑖
is bounded. ̈𝑒

𝑖
is bounded from (15)

and Assumption 1, and thus ̇𝑒
𝑖
, �̇�
𝑖
are bounded, and then 𝑒

𝑖
,

𝜎
𝑖
are uniformly continuous; from Barbalat lemma, 𝛼𝑇

𝑖
=

[𝑒𝑖 𝜎𝑖] → 0 as 𝑡 → ∞; that is, 𝜃
𝑖
→ 𝜃
𝐿
, which is equivalent

to ‖𝜃
𝑖
− 𝜃
𝐿
‖ → 0.

Case (ii). Under the abnormal circumstances (i.e., when
unanticipated environmental disturbances cannot be toler-
ated by followers, at least one member fails to follow the
referencemotion state; that is, it satisfies (1/2)∑𝑛

𝑖,𝑗=1
|𝑒
𝑖
−𝑒
𝑗
| ≥

𝛿), when (1/2)∑
𝑛

𝑖,𝑗=1
|𝑒
𝑖
− 𝑒
𝑗
| is above a specified threshold 𝛿,

the system will switch to consensus control law 𝑢
∗

𝑖
which is

shown in (10), controller 𝑢∗
𝑖
provides 𝐸 → 0, as the proof

of Theorem 4, and 𝐸 → 0 is equivalent to 𝑒
1
= ⋅ ⋅ ⋅ = 𝑒

𝑖
=

⋅ ⋅ ⋅ = 𝑒
𝑛

̸= 0 (i.e., 𝜃
1

= ⋅ ⋅ ⋅ = 𝜃
𝑖
= ⋅ ⋅ ⋅ = 𝜃

𝑛
). Thus

‖𝜃
𝑖
− 𝜃
𝑗
‖ → 0, and all the followers maintain consensus. In

the regulation of switching law and consensus control law, the
system ultimately switches to tracking control and converges
to the leader again.

This completes the proof.

4. Simulations

In this section, three different cases are considered to validate
the theoretical results. The network topology of MMS (2)
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Table 1: Parameters of five driven motors.

Motor 0 (𝐿) 1 2 3 4
𝑅 (Ω) 0.2 0.5 0.4 0.6 0.7
𝐾
𝑡

0.005 0.01 0.008 0.015 0.02
𝐽 (Kg⋅m2

) 0.02 0.03 0.025 0.05 0.04
𝐾
𝑒

0.1 0.2 0.2 0.18 0.25
Initial position (rad) 0.5 −0.8 1.3 −2.0 −2.4
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Figure 3: Simulation results for motor 1 with a slowly varying disturbance under protocol (8) corresponding to topology in Figure 2.

is shown in Figure 2. Apparently, it has a spanning tree in
this graph, for which the virtual leader 0(𝐿) acts as the root
node, and the reference state 𝜃

𝐿
is available to all the

followers. Follower motor 1 is selected to be added to various
disturbances. The parameters of the five driven motors are
given in Table 1. Let each motor be steered by the control

input (8), set 𝛿 = 0.075, and let the consensus reference state
of virtual leader be 𝜃𝑑 = sin(2𝜋𝑡)rad.

From Figure 2, let

𝐴 = [
0 𝐵

𝐶 𝐴
] , (19)
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Figure 4: Simulation results for motor 1 with a step disturbance under protocol (8) corresponding to topology in Figure 2.

and supposing all the neighbors have the same effect on each
motor, we have

𝐵 = [0 0 0 0] , 𝐶 = [1 1 1 1]
𝑇
,

𝐴 =
[
[
[

[

0 1 0 0

0.5 0 0.5 0

0 0.5 0 0.5

0 0 1 0

]
]
]

]

.

(20)

Case (1). In the first case, we choose a slowly varying distur-
bance that is shown in subplot 3(d). Subplot 3(a) shows the
position tracking of each motor, subplot 3(b) is the tracking
error of each teammember, and subplot (c) in Figure 3 shows

the synchronous cooperation error of each follower. From
subplot 3(a), each follower can follow the reference state at
first. As the disturbance 𝐹

1
increases gradually, motor 1 will

lose tracking. Simultaneously, from subplots 3(a) and 3(b), we
can see that other followers maintain consensus with motor 1
in this situation.

Case (2). In the second case, we consider a step disturbance

𝐹
1
= {

0𝑁 ⋅ 𝑚 𝑡 < 2𝑠

50𝑁 ⋅ 𝑚 𝑡 ≥ 2𝑠,
(21)

which is shown in subplot 4(d). It is obvious from subplot 4(a)
that the control protocol (8) is capable of tracking the virtual
leader and that the followers maintain a consensus state even
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Figure 5: Simulation results for motor 1 with a high-frequency disturbance under protocol (8) corresponding to topology in Figure 2.

during a step disturbance. Subplot 4(b) corresponds to the
tracking error of each motor and subplot 4(c) corresponds to
the synchronous cooperation error of each follower.

Case (3). The third case considers a high-frequency distur-
bance shown in subplot 5(d). It is clear from subplot (a) in
Figure 5 that the control protocol (8) is capable of tracking the
virtual leader at first and followers maintain consensus even
during high-frequency disturbance 𝐹

1
in 5(d). Subplot 5(b)

presents the tracking error of each motor, and subplot 5(c)
shows the synchronous cooperation error of each follower.

5. Conclusion
In this paper, we have studied approaches of improving
synchronous accuracy for multiple motors. Compared with

other relevant results which refer only to a final synchro-
nization, our novel control strategy in this paper additionally
considers the synchronous process by integrating tracking
with consensus control based onhybrid structure.Theoretical
analysis has shown that all followers asymptotically converge
to a consistent state even when one follower fails to follow the
virtual leader during a large enough disturbance. Simulation
results show good performance of synchronization control
accuracy, interference immunity, and convergence for the
suggested algorithms.
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