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A novel fractional-order hyperchaotic system is proposed; the theoretical analysis and numerical simulation of this system are
studied. Based on the stability theory of fractional calculus, we propose a novel drive-response synchronization scheme. In
order to achieve this synchronization control, the Adams-Bashforth-Moulton algorithm is studied. And then, a drive-response
synchronization controller is designed to realize the synchronization of the drive and response system, and the simulation results
are given. At last, the fractional oscillator circuit of the new fractional-order hyperchaotic system is designed based on the EWB
software, and it is verified that the simulation results of the fractional-order oscillator circuit are consistent with the numerical
simulation results through circuit simulation.

1. Introduction

Fractional-order calculus is a mathematical theory which
studies the characteristic and application of the arbitrary-
order differential and integral operator. It has the same his-
tory as the integer-order calculus and can be dated back to the
17th century [1, 2]. It has attracted more researchers’ interest
and has more broad application prospects due to its unique
advantages. But until the last 20 years, the fractional-order
calculus theory has been applied to the practical projects;
it has been applied to the chaos system, electromagnetism,
signal processing, mechanical engineering, robot control,
and so on.

Since hyperchaos was firstly reported by Rossler [3],
there have been considerable achievements in the study
of hyperchaos. Hyperchaotic systems have more than one
positive Lyapunov exponent, and the strange attractor is
usually unstable in more than one direction. Hyperchaotic
system is a high-dimensional chaotic system. The fractional-
order differential operator is introduced into hyperchaotic

system which can reflect the hyperchaotic system with
complicated nonlinear dynamic characteristics. Fractional-
order hyperchaotic system implementation and application
have been attracted more researchers’ interest and in-depth
study. In recent years, the fractional-order chaotic dynamical
systems began to attract more researchers’ attention, such
as the fractional-order Chua system, the fractional-order
Lorenz system, Chen’s system, and Liu’s system and so on [4–
9].

In this paper, a novel fractional-order hyperchaotic sys-
tem is presented. Based on the stability theory of fractional
calculus, a novel drive-response synchronization scheme is
proposed. Section 4 studied the Adams-Bashforth-Moulton
algorithm to achieve this synchronization scheme. The frac-
tional oscillator circuit of the new hyperchaotic system is
designed based on the EWB software in Section 5, and
the simulation results are given to demonstrate that the
fractional-order oscillator is a hyperchaotic system. Finally,
conclusions end this paper.
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Figure 1: 2D strange attractors of the fractional-order hyperchaotic system: (a) 𝑥-𝑦 phase plane; (b) 𝑦-𝑧 phase plane; (c) 𝑥-𝑧 phase plane; (d)
𝑥-𝑤 phase plane.

2. A Novel Fractional-Order
Hyperchaotic System

A novel four-dimensional fractional-order hyperchaotic sys-
tem is given as follows:

𝑑
𝛼

𝑥

𝑑𝑡
𝛼
= 𝑦 − 𝑥 − 𝑦

2

− 𝑤,

𝑑
𝛼

𝑦

𝑑𝑡
𝛼
= 𝑎𝑦 + 𝑥𝑧 + 𝑤,

𝑑
𝛼

𝑧

𝑑𝑡
𝛼
= − 𝑏𝑥𝑦 − 𝑐𝑧 + 𝑤,

𝑑
𝛼

𝑤

𝑑𝑡
𝛼
= − 𝑦,

(1)

where (𝑎, 𝑏, 𝑐) = (2.5, 4, 4) and 𝛼 is the fractional order
satisfying 0 < 𝛼 < 1.

By calculating, this system has two positive Lyapunov
exponents: LE1 = 0.7980 and LE1 = 0.1841, and the negative

Lyapunov exponents are LE3 = −0.9656 and LE4 = −2.5164.
According to chaos theory, there are two positive Lyapunov
exponents implying that its dynamics is expanded in more
than one direction simultaneously and that the system is a
hyperchaotic system.

Based on the Lyapunov exponents, we can calculate the
Hausdorff dimension (Lyapunov dimension) of the nonlinear
autonomous system.

𝐷
𝐿
= 𝑗 +

1






LE
𝑗+1







𝑗

∑

𝑖=1

LE
𝑖
= 3 +

LE1 + LE2 + LE3




LE4






= 3.007.

(2)

In this paper, the following simulations are all performed
by using 𝛼 = 0.9, (𝑎, 𝑏, 𝑐) = (2.5, 4, 4). By simulations, we
have obtained the 2D phase portraits of the fractional-order
system as shown in Figure 1 and the time domain waveform
of the 𝑥(𝑡) as shown in Figure 2. These figures clearly show
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Figure 2: The time domain waveform of the 𝑥(𝑡).

that the fractional-order hyperchaotic system exhibits chaotic
behaviors.

3. The Theory of the Fractional
Drive-Response Synchronization

In this section, the drive-response method is used to real-
ize synchronization control of the fractional-order system,
assuming that the fractional order chaotic system is studied
in the form of the driving equation

𝑑
𝛼

𝑥

𝑑𝑡
𝛼
= 𝐴𝑥 + 𝐵𝑓 (𝐶𝑥) + 𝐷, (3)

where 0 < 𝛼 < 1, 𝑥 ∈ 𝑅
𝑛 is the column vector, 𝐴 ∈ 𝑅

𝑛×𝑛, 𝐵 ∈

𝑅
𝑛×𝑚, 𝐶 ∈ 𝑅

1×𝑛, and 𝐷 ∈ 𝑅
𝑛×1 are the continuous matrixes,

and 𝐶𝑥 ∈ 𝑅, 𝑓 : 𝑅
1

→ 𝑅
𝑚 is the nonlinear function.

It is worth noting that we must select the appropriate
driving signal to drive the response system; generally we
select the linear term which can be written as follows:

𝑦 = 𝐶𝑥. (4)

The fractional-order response system is defined

𝑑
𝛼

𝑥

𝑑𝑡
𝛼
= 𝐴𝑥 + 𝐵𝑓 (𝑦) + 𝐷 + 𝐾 (𝑦 − 𝑦) , (5)

where 𝑦 = 𝐶𝑥, 𝑥 ∈ 𝑅
𝑛 are the column vectors and 𝐾 =

[𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑛
]
𝑇 are the synchronization control parameters.

The error system is defined as 𝑒(𝑡) = 𝑥(𝑡) − 𝑥(𝑡). By (3), (4),
and (5), the error equation of the two fractional order chaotic
systems can be obtained as follows:

𝑑
𝛼

𝑒

𝑑𝑡
𝛼
= (𝐴 − 𝐾𝐶) 𝑒. (6)

Obviously, the system (6) and the following system (7)
have the same stability:

𝑑
𝛼

𝑒

𝑑𝑡
𝛼
= (𝐴
𝑇

− 𝐶
𝑇

𝐾
𝑇

) 𝑒, (7)

where 𝑢(𝑡) = −𝐾
𝑇

𝑒(𝑡) is the feedback control signal; it
determines the synchronization effect of the fractional-order
system. Based on the stability theory of the fractional-order
system, we propose a novel synchronization theorem [10, 11].

Theorem 1. If the fractional order linear system (7) is asymp-
totically stable, the necessary and sufficient condition is that all
the eigenvalues 𝜆

𝑛𝑐𝑗
of the coefficient matrix (𝐴𝑇 − 𝐶

𝑇

𝐾
𝑇

) are
satisfied:

𝛼𝜋

2

<






arg (𝜆

𝑛𝑐𝑗
)






<

3𝛼𝜋

2

, (8)

where arg(𝜆
𝑛𝑐𝑗
) is the explement of the eigenvalues 𝜆

𝑛𝑐𝑗
.

Proof. If the coefficient matrix 𝑀 = (𝐴
𝑇

− 𝐶
𝑇

𝐾
𝑇

) of the
system (7) has 𝑛 different eigenvalues 𝜆

𝑖
(𝑖 = 1, . . . , 𝑛), there

exists a nonsingular transformation matrix, which makes the
system (7) convert into

𝑑
𝛼

𝑒 (𝑡)

𝑑𝑡
𝛼

= Λ𝑒 (𝑡) , (9)

where 𝑒(𝑡) = 𝑇𝑒(𝑡), Λ = 𝑇𝑀𝑇
−1

= diag{𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑛
}, 𝜎max

is themaximum singular value of𝑇; and 𝜎min is theminimum
singular value of 𝑇, hence

𝜎min ‖𝑒 (𝑡)‖ ≤ ‖𝑒 (𝑡)‖ ≤ 𝜎max ‖𝑒 (𝑡)‖ . (10)

The analytical solution of the system (9) can be expressed
as the function 𝐸

𝛼,𝛽
(𝑧) as follows:

𝑒 (𝑡) = 𝐸
𝛼,1

(Λ𝑡
𝛼

) 𝑒 (0) . (11)



4 Mathematical Problems in Engineering

If ‖𝑒(𝑡)‖ → 0 is established, it is necessary that 𝐸
𝛼,1

(𝜆
𝑖
𝑡
𝛼

) → 0, and this is equivalent to that all the eigenvalues
𝜆ncj are satisfied: 𝛼𝜋/2 < | arg(𝜆ncj)| < 3𝛼𝜋/2.

Then, the proof is completed.

4. Drive-Response Synchronization of
the Fractional-Order System

The proposed fractional-order hyperchaotic system (1) as
the drive system, the controlled fractional-order response
system, is described:

𝑑
𝛼

𝑥

𝑑𝑡
𝛼
= 𝑦 − 𝑥 − 𝑦

2

− 𝑤 − 𝑘
1
(𝑥 − 𝑥) ,

𝑑
𝛼

𝑦

𝑑𝑡
𝛼
= 𝑎𝑦 + 𝑥𝑧 + 𝑤 − 𝑘

2
(𝑦 − 𝑦) ,

𝑑
𝛼

�̃�

𝑑𝑡
𝛼
= − 𝑏𝑥𝑦 − 𝑐�̃� + 𝑤 − 𝑘

3
(�̃� − 𝑧) ,

𝑑
𝛼

𝑤

𝑑𝑡
𝛼
= − 𝑦 − 𝑘

4
(𝑤 − 𝑤) ,

(12)

where 𝑘
1
, 𝑘
2
, 𝑘
3
, and 𝑘

4
are the control parameters of the

response system. The error system is defined: 𝑒
1
(𝑡) = 𝑥(𝑡) −

𝑥(𝑡), 𝑒
2
(𝑡) = 𝑦(𝑡) − 𝑦(𝑡), 𝑒

3
(𝑡) = �̃�(𝑡) − 𝑧(𝑡), and 𝑒

4
(𝑡) =

𝑤(𝑡) − 𝑤(𝑡); based on the systems (1) and (12), we can obtain
the error system:

𝑑
𝛼

𝑒
1

𝑑𝑡
𝛼

= 𝑒
2
− 𝑒
1
− 𝑒
4
− 𝑘
1
𝑒
1
,

𝑑
𝛼

𝑒
2

𝑑𝑡
𝛼

= 𝑎𝑒
2
+ 𝑒
4
− 𝑘
2
𝑒
2
,

𝑑
𝛼

𝑒
3

𝑑𝑡
𝛼

= − 𝑐𝑒
3
+ 𝑒
4
− 𝑘
3
𝑒
3
,

𝑑
𝛼

𝑒
4

𝑑𝑡
𝛼

= − 𝑒
2
− 𝑘
4
𝑒
4
,

𝐺 =

[

[

[

[

−1 − 𝑘
1

1 0 −1

0 𝑎 − 𝑘
2

0 1

0 0 −𝑐 − 𝑘
3

1

0 −1 0 −𝑘
4

]

]

]

]

,

(13)

where 𝛼 = 0.9, (𝑎, 𝑏, 𝑐) = (2.5, 4, 4).
In order to achieve the synchronization control of the

above system, the Adams-Bashforth-Moulton algorithm is
applied to the systems (1) and (12). Consider the following
differential equations:

𝑑
𝛼

𝑦 (𝑡)

𝑑𝑡
𝛼

= 𝑓 (𝑡, 𝑦 (𝑡)) , 0 ≤ 𝑡 ≤ 𝑇,

𝑦
(𝑘)

(0) = 𝑦
(𝑘)

0
, 𝑘 = 0, 1, . . . , [𝛼] − 1.

(14)

They are equivalent to the Volterra integral equation as
follows [12, 13]:

𝑦 (𝑡) =

[𝛼]−1

∑

𝑘=0

𝑡
𝑘

𝑘!

𝑦
(𝑘)

0
+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑤)
𝛼−1

𝑓 (𝑤, 𝑦 (𝑤)) 𝑑𝑤.

(15)

Here, ℎ = 𝑇/𝑁, 𝑡
𝑛
= 𝑛ℎ, 𝑛 = 0, 1, . . . , 𝑁 ∈ 𝑍, and (15) can

be discretized into [6]:

𝑦
ℎ
(𝑡
𝑛+1

) =

[𝛼]−1

∑

𝑘=0

𝑡
𝑘

𝑛+1

𝑘!

𝑦
(𝑘)

0
+

ℎ
𝛼

Γ (𝛼 + 2)

(𝑓 (𝑡
𝑛+1

, 𝑦
∗

ℎ
(𝑡
𝑛+1

)))

+

𝑛

∑

𝑗=0

𝑎
𝑗,𝑛+1

𝑓 (𝑡
𝑗
, 𝑦
ℎ
(𝑡
𝑗
)) ,

(16)

𝑎
𝑗,𝑛+1

=

{
{
{
{
{

{
{
{
{
{

{

𝑛
𝛼+1

− (𝑛 − 𝛼) (𝑛 + 1)
𝛼

, 𝑗 = 0,

(𝑛 − 𝑗 + 2)
𝛼+1

+ (𝑛 − 𝑗)
𝛼+1

1 ≤ 𝑗 ≤ 𝑛,

−2(𝑛 − 𝑗 + 1)
𝛼+1

,

1, 𝑗 = 𝑛 + 1,

𝑦
∗

ℎ
(𝑡
𝑛+1

) =

[𝛼]−1

∑

𝑘=0

𝑡
𝑘

𝑛+1

𝑘!

𝑦
(𝑘)

0
+

1

Γ (𝛼)

𝑛

∑

𝑗=0

𝑏
𝑗,𝑛+1

𝑓 (𝑡
𝑗
, 𝑦
ℎ
(𝑡
𝑗
)) ,

𝑏
𝑗,𝑛+1

=

ℎ
𝛼

𝛼

((𝑛 + 1 − 𝑗)
𝛼

− (𝑛 − 𝑗)
𝛼

) .

(17)

The error equation is,max
𝑗=0,1,...,𝑁

|𝑦(𝑡
𝑗
)−𝑦
ℎ
(𝑡
𝑗
)| = 𝑂(ℎ

𝑝

),
where 𝑝 = min(2, 1 + 𝛼).

By (14), (15), and (16), we can obtain the discrete form of
the drive system (1) and response system (12):

𝑥
𝑛+1

= 𝑥
0
+

ℎ
𝛼

Γ (𝛼 + 2)

⋅ ( (𝑦
∗

𝑛+1
− 𝑥
∗

𝑛+1
− 𝑦
∗

𝑛+1

2

− 𝑤
∗

𝑛+1
)

+

𝑛

∑

𝑗=0

𝑎
𝑗,𝑛+1

⋅ (𝑦
𝑗
− 𝑥
𝑗
− 𝑦
2

𝑗
− 𝑤
𝑗
)) ,

𝑦
𝑛+1

= 𝑦
0
+

ℎ
𝛼

Γ (𝛼 + 2)

⋅ ( (𝑎𝑦
∗

𝑛+1
+ 𝑥
∗

𝑛+1
𝑧
∗

𝑛+1
+ 𝑤
∗

𝑛+1
)

+

𝑛

∑

𝑗=0

𝑎
𝑗,𝑛+1

⋅ (𝑎𝑦
𝑗
+ 𝑥
𝑗
𝑧
𝑗
+ 𝑤
𝑗
)) ,
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𝑧
𝑛+1

= 𝑧
0
+

ℎ
𝛼

Γ (𝛼 + 2)

⋅ ( (−𝑏𝑥
∗

𝑛+1
𝑦
∗

𝑛+1
− 𝑐𝑧
∗

𝑛+1
+ 𝑤
∗

𝑛+1
)

+

𝑛

∑

𝑗=0

𝑎
𝑗,𝑛+1

⋅ (−𝑏𝑥
𝑗
𝑦
𝑗
− 𝑐𝑧
𝑗
+ 𝑤
𝑗
)) ,

𝑤
𝑛+1

= 𝑤
0
+

ℎ
𝛼

Γ (𝛼 + 2)

(−𝑦
∗

𝑛+1
+

𝑛

∑

𝑗=0

𝑎
𝑗,𝑛+1

⋅ (−𝑦
𝑗
)) ,

𝑥
𝑛+1

= 𝑥
0
+

ℎ
𝛼

Γ (𝛼 + 2)

⋅ (𝑦
∗

𝑛+1
− 𝑥
∗

𝑛+1
− 𝑦
∗

𝑛+1

2

− 𝑤
∗

𝑛+1
− 𝑘
1
(𝑥
∗

𝑛+1
− 𝑥
∗

𝑛+1
)

+

𝑛

∑

𝑗=0

𝑎
𝑗,𝑛+1

⋅ (𝑦
𝑗
− 𝑥
𝑗
− 𝑦
2

𝑗
− 𝑤
𝑗
− 𝑘
1
(𝑥
𝑗
− 𝑥
𝑗
))) ,

𝑦
𝑛+1

= 𝑦
0
+

ℎ
𝛼

Γ (𝛼 + 2)

⋅ (𝑎𝑦
∗

𝑛+1
+ 𝑥
∗

𝑛+1
𝑧
∗

𝑛+1
+ 𝑤
∗

𝑛+1
− 𝑘
2
(𝑦
∗

𝑛+1
− 𝑦
∗

𝑛+1
)

+

𝑛

∑

𝑗=0

𝑎
𝑗,𝑛+1

⋅ (𝑎𝑦
𝑗
+ 𝑥
𝑗
𝑧
𝑗
+ 𝑤
𝑗
− 𝑘
2
(𝑦
𝑗
− 𝑦
𝑗
))) ,

�̃�
𝑛+1

= �̃�
0
+

ℎ
𝛼

Γ (𝛼 + 2)

⋅ ( − 𝑏𝑥
∗

𝑛+1
𝑦
∗

𝑛+1
− 𝑐�̃�
∗

𝑛+1
+ 𝑤
∗

𝑛+1

− 𝑘
3
(�̃�
∗

𝑛+1
− 𝑧
∗

𝑛+1
)

+

𝑛

∑

𝑗=0

𝑎
𝑗,𝑛+1

⋅ (−𝑏𝑥
𝑗
𝑦
𝑗
− 𝑐�̃�
𝑗

+ 𝑤
𝑗
− 𝑘
3
(�̃�
𝑗
− 𝑧
𝑗
))) ,

𝑤
𝑛+1

= 𝑤
0
+

ℎ
𝛼

Γ (𝛼 + 2)

⋅ ( − 𝑦
∗

𝑛+1
− 𝑘
4
(𝑤
∗

𝑛+1
− 𝑤
∗

𝑛+1
)

+

𝑛

∑

𝑗=0

𝑎
𝑗,𝑛+1

⋅ (−𝑦
𝑗
− 𝑘
4
(𝑤
𝑗
− 𝑤
𝑗
))) ,

𝑥
∗

𝑛+1
= 𝑥
0
+

1

Γ (𝛼)

⋅

𝑛

∑

𝑗=0

𝑏
𝑗,𝑛+1

⋅ (𝑦
𝑗
− 𝑥
𝑗
− 𝑦
2

𝑗
− 𝑤
𝑗
) ,

𝑦
∗

𝑛+1
= 𝑦
0
+
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(18)

When 𝑘
1

= 10, 𝑘
2

= 20, 𝑘
3

= 10, 𝑘
4

= 40 and
the values of 𝑎, 𝑏, 𝑐 and 𝑘

1
, 𝑘
2
, 𝑘
3
, 𝑘
4
are substituted into the

system (13), and we can obtain the following: arg(𝜆
1
(𝐺)) = 𝜋,
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Figure 3: The synchronization phase diagram of the systems (1) and (12) when 𝑘
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Figure 4: The circuit realization of the fractional-order system.
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(a) 𝑥-𝑦 phase plane (b) 𝑦-𝑧 phase plane

(c) 𝑥-𝑧 phase plane (d) 𝑥-𝑤 phase plane

Figure 5: 2D strange attractors of the fractional-order hyperchaotic system by EWB: (a) 𝑥-𝑦 phase plane; (b) 𝑦-𝑧 phase plane; (c) 𝑥-𝑧 phase
plane; (d) 𝑥-𝑤 phase plane.

arg(𝜆
2
(𝐺)) = 𝜋, arg(𝜆

3
(𝐺)) = 𝜋, and arg(𝜆

4
(𝐺)) = 𝜋, which

are satisfied 0.45𝜋 < | arg(𝜆
𝑖
(𝐺))| < 1.35𝜋. The drive system

(1) and response system (12) realized the synchronization.
The initial values of the system (1) and the system (12) are
𝑥(0) = 0.1, 𝑦(0) = 0.2, 𝑧(0) = 0.3, 𝑤(0) = 0.4 and 𝑥(0) = 0.2,
𝑦(0) = 0.3, �̃�(0) = 0.4, 𝑤(0) = 0.5, respectively. Based
on the above discrete form of the two systems, we can get
the synchronization phase diagram by using MATLAB when
𝑘
1
= 10, 𝑘

2
= 20, 𝑘

3
= 10, and 𝑘

4
= 40 as shown in Figure 3.

5. Circuit Implementation of the Fractional-
Order Hyperchaotic System

In the circuit design, we use linear resistor, capacitor, linear
operational amplifier (LM741), analog multiplier (AD633),
and the fractional unit circuit structure in the fractional-
order hyperchaotic circuits. The linear operational amplifier
is used for addition and subtraction, and the analogmultiplier
is used to realize the nonlinear term. Then, we designed the
circuit of fractional-order system (6) with 𝛼 = 0.9, as shown
in Figure 4.

The resistance values of this circuit are (𝑅
1
, 𝑅
2
, 𝑅
3
, 𝑅
4
,

𝑅
7
, 𝑅
8
, 𝑅
13
, 𝑅
15
) = 1MΩ, (𝑅

5
, 𝑅
6
, 𝑅
10
, 𝑅
11
, 𝑅
16
, 𝑅
17
) = 10 kΩ,

𝑅
9

= 400 kΩ, and (𝑅
12
, 𝑅
14
) = 250 kΩ. The component

parameter values of the fractional order system with 𝛼 = 0.9

are as follows [14, 15]:
𝑅
𝑎
= 62.84MΩ, 𝑅

𝑏
= 250 kΩ, 𝑅

𝑐
= 2.5 kΩ,

𝐶
1
= 1.232 uF, 𝐶

2
= 1.835 uF, 𝐶

3
= 1.1 uF.

(19)

From Figure 5, the fractional-order hyperchaotic system
oscillator circuit simulation results are consistent with the
MATLABnumerical simulation results. Figure 6 shows phase
diagrams of the integer-order hyperchaotic system based on
the circuit experimental.

6. Conclusions

In this paper, we proposed a new fractional-order hyper-
chaotic system and analyzed the basic properties of this new
system. Based on the stability theory of fractional calculus,
we proposed a novel drive-response synchronization scheme
and studied the Adams-Bashforth-Moulton algorithm. The
drive-response synchronization controller is designed to
realize synchronization based on the discrete form of the two
systems by MATLAB software. And based on the fractional-
order unit circuit, we designed the fractional-order oscillator
circuit of this system by EWB software.The simulation results
of this circuit are consistent with the numerical simulation
results.This fractional-order hyperchaotic circuit can be used
for the other electronic oscillator and the controller can be
used for application in the chaos control due to its simple
construction.
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