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We discuss the existence and uniqueness of positive solutions for the following fractional switched system: ( 𝑐𝐷𝛼
0+
𝑢(𝑡)+𝑓

𝜎(𝑡)
(𝑡, 𝑢(𝑡))+

𝑔
𝜎(𝑡)

(𝑡, 𝑢(𝑡)) = 0, 𝑡 ∈ 𝐽 = [0, 1]); (𝑢(0) = 𝑢


(0) = 0, 𝑢(1) = ∫
1

0

𝑢(𝑠) 𝑑𝑠), where 𝑐𝐷𝛼
0+
is theCaputo fractional derivativewith 2 < 𝛼 ≤ 3,

𝜎(𝑡) : 𝐽 → {1, 2, . . . , 𝑁} is a piecewise constant function depending on 𝑡, andR+ = [0, +∞), 𝑓
𝑖
, 𝑔
𝑖
∈ 𝐶[𝐽×R+,R+], 𝑖 = 1, 2, . . . , 𝑁.

Our results are based on a fixed point theorem of a sum operator and contraction mapping principle. Furthermore, two examples
are also given to illustrate the results.

1. Introduction

Fractional differential equations arise in various areas of
science and engineering. Due to their applications, fractional
differential equations have gained considerable attention (cf.,
e.g., [1–15] and references therein). Moreover, the theory of
boundary value problems with integral boundary conditions
has various applications in applied fields. For example, heat
conduction, chemical engineering, underground water flow,
thermoelasticity, and population dynamics can be reduced
to the nonlocal problems with integral boundary conditions.
In [2], Cabada and Wang considered the following m-point
boundary value problem for fractional differential equation

𝑐

𝐷
𝛼

0+
𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) = 0, 0 < 𝑡 < 1,

𝑢 (0) = 𝑢


(0) = 0, 𝑢 (1) = 𝜆∫

1

0

𝑢 (𝑠) 𝑑𝑠,

(1)

where 2 < 𝛼 ≤ 3, 𝑐𝐷𝛼
0+

is the Caputo fractional derivative,
and 𝑓 : [0, 1] × [0,∞) → [0,∞) is a continuous function.

On the other hand, a switched system consists of a
family of subsystems described by differential or difference
equations, which has many applications in traffic control,
switching power converters, network control, multiagent

consensus, and so forth (see [16–18]). When we consider
a switched system, we always suppose that the solution is
unique. So it is important to study the uniqueness of solution
for a switched system. In [1], Li and Liu investigated the
uniqueness of positive solution for the following switched
system:

𝑥


(𝑡) + 𝑓
𝜎(𝑡)

(𝑡, 𝑥 (𝑡)) = 0, 𝑡 ∈ 𝐽 = [0, 1] ,

𝑥 (0) = 0, 𝑥 (1) = ∫

1

0

𝑎 (𝑠) 𝑥 (𝑠) 𝑑𝑠,

(2)

where 𝜎(𝑡) : 𝐽 → {1, 2, . . . , 𝑁} is a piecewise constant
function depending on 𝑡, and R+ = [0, +∞), 𝑓

𝑖
∈ 𝐶[𝐽 ×

R+,R+], 𝑖 = 1, 2, . . . , 𝑁.
In this paper, we discuss the existence and uniqueness

of positive solutions for the following fractional switched
system:

𝑐

𝐷
𝛼

0+
𝑢 (𝑡) + 𝑓

𝜎(𝑡)
(𝑡, 𝑢 (𝑡)) + 𝑔

𝜎(𝑡)
(𝑡, 𝑢 (𝑡)) = 0,

𝑡 ∈ 𝐽 = [0, 1] ,

𝑢 (0) = 𝑢


(0) = 0, 𝑢 (1) = ∫

1

0

𝑢 (𝑠) 𝑑𝑠,

(3)
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where 𝑐𝐷𝛼
0+

is the Caputo fractional derivative with 2 < 𝛼 ≤

3, 𝜎(𝑡) : 𝐽 → {1, 2, . . . , 𝑁} is a piecewise constant function
depending on 𝑡, and R+ = [0, +∞), 𝑓

𝑖
, 𝑔
𝑖
∈ 𝐶[𝐽 × R+,R+],

𝑖 = 1, 2, . . . , 𝑁.
The paper is organized as follows. In Section 2, we present

some background materials and preliminaries. Section 3
deals with some existence results. In Section 4, two examples
are given to illustrate the results.

2. Background Materials and Preliminaries

Definition 1 (see [3, 4]). The fractional integral of order𝛼with
the lower limit 𝑡

0
for a function 𝑓 is defined as

𝐼
𝛼

𝑓 (𝑡) =
1

Γ (𝛼)
∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠, 𝑡 > 𝑡
0
, 𝛼 > 0, (4)

where Γ is the gamma function.

Definition 2 (see [3, 4]). For a function 𝑓 : [0,∞) → R, the
Caputo derivative of fractional order is defined as

𝑐

𝐷
𝛼

0+
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝑛−𝛼−1

𝑓
(𝑛)

(𝑠) 𝑑𝑠,

𝛼 > 0, 𝑛 = [𝛼] + 1.

(5)

In the following, let us recall some basic information on
cone (see more from [19, 20]). Let 𝐸 be a real Banach space
and let 𝑃 be a cone in 𝐸 which defined a partial ordering in
𝐸 by 𝑥 ≤ 𝑦 if and only if 𝑦 − 𝑥 ∈ 𝑃. 𝑃 is said to be normal if
there exists a positive constant𝑁 such that 𝜃 ≤ 𝑥 ≤ 𝑦 implies
‖𝑥‖ ≤ 𝑁‖𝑦‖. 𝑃 is called solid if its interior

∘

𝑃 is nonempty. If
𝑥 ≤ 𝑦 and 𝑥 ̸= 𝑦, we write 𝑥 < 𝑦. We say that an operator𝐴 is
increasing if 𝑥 ≤ 𝑦 implies 𝐴𝑥 ≤ 𝐴𝑦.

For all 𝑥, 𝑦 ∈ 𝐸, the notation 𝑥 ∼ 𝑦means that there exist
𝜆 > 0 and 𝜇 > 0 such that 𝜆𝑥 ≤ 𝑦 ≤ 𝜇𝑥. Clearly, ∼ is an
equivalence relation. Given ℎ > 𝜃 (i.e., ℎ ≥ 𝜃 and ℎ ̸= 𝜃), we
denote by 𝑃

ℎ
the set 𝑃

ℎ
= {𝑥 ∈ 𝐸 | 𝑥 ∼ ℎ} . It is easy to see

that 𝑃
ℎ
⊂ 𝑃.

Definition 3. Let 𝐷 = 𝑃 or 𝐷 =
∘

𝑃 and let 𝛾 be a real number
with 0 ≤ 𝛾 < 1. An operator 𝐴 : 𝑃 → 𝑃 is said to be
𝛾-concave if it satisfies

𝐴 (𝑡𝑥) ≥ 𝑡
𝛾

𝐴𝑥, ∀𝑡 ∈ (0, 1) , 𝑥 ∈ 𝐷. (6)

Definition 4. An operator 𝐴 : 𝐸 → 𝐸 is said to be
homogeneous if it satisfies

𝐴 (𝑡𝑥) = 𝑡𝐴𝑥, ∀𝑡 > 0, 𝑥 ∈ 𝐸. (7)

An operator 𝐴 : 𝑃 → 𝑃 is said to be subhomogeneous if it
satisfies

𝐴 (𝑡𝑥) ≥ 𝑡𝐴𝑥, ∀𝑡 ∈ (0, 1) , 𝑥 ∈ 𝑃.

(8)

From [2], we have the following result.

Lemma 5. Assume that 2 < 𝛼 ≤ 3 and 𝑓
𝑖
, 𝑔
𝑖
∈ 𝐶[𝐽×R+,R+],

𝑖 = 1, 2, . . . , 𝑁. Then the problem (3) has a solution if and only
if 𝑢 is a solution of the integral equation

𝑢 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) (𝑓
𝜎(𝑠)

(𝑠, 𝑢 (𝑠)) + 𝑔
𝜎(𝑠)

(𝑠, 𝑢 (𝑠))) 𝑑𝑠, (9)

where

𝐺 (𝑡, 𝑠)

=

{{{

{{{

{

2𝑡(1 − 𝑠)
𝛼−1

(𝛼 − 1 + 𝑠) − 𝛼(𝑡 − 𝑠)
𝛼−1

Γ (𝛼 + 1)
, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

2𝑡(1 − 𝑠)
𝛼−1

(𝛼 − 1 + 𝑠)

Γ (𝛼 + 1)
, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

(10)

Lemma 6. 𝐺(𝑡, 𝑠) in Lemma 5 has the following property:

(i) 𝐺(𝑡, 𝑠) > 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡, 𝑠 ∈ (0, 1).

(ii) (1/Γ(𝛼 + 1))ℎ(𝑡)(1 − 𝑠)
𝛼−1

(𝛼 − 2 + 2𝑠) ≤ 𝐺(𝑡, 𝑠) ≤

(2/Γ(𝛼 + 1))ℎ(𝑡)(1 − 𝑠)
𝛼−1

(𝛼 − 1 + 𝑠), 𝑡, 𝑠 ∈ [0, 1], 2 <

𝛼 ≤ 3, ℎ(𝑡) = 𝑡.

Proof. From [2], we know that (i) is obvious. For 0 ≤ 𝑠 ≤ 𝑡 ≤

1, 2 < 𝛼 ≤ 3, we have

2𝑡(1 − 𝑠)
𝛼−1

(𝛼 − 1 + 𝑠) − 𝛼(𝑡 − 𝑠)
𝛼−1

= 2𝑡(1 − 𝑠)
𝛼−1

(𝛼 − 1 + 𝑠) − 𝛼𝑡
𝛼−1

(1 −
𝑠

𝑡
)

𝛼−1

≥ 2𝑡(1 − 𝑠)
𝛼−1

(𝛼 − 1 + 𝑠) − 𝛼𝑡(1 − 𝑠)
𝛼−1

= 𝑡(1 − 𝑠)
𝛼−1

(𝛼 − 2 + 2𝑠) .

(11)

This means that (ii) holds.

Theorem 7 (see [19]). Let 𝑃 be a normal cone in a real Banach
space 𝐸, 𝐴 : 𝑃 → 𝑃 an increasing 𝛾-concave operator, and
𝐵 : 𝑃 → 𝑃 an increasing subhomogeneous operator. Assume
that

(i) there is ℎ > 𝜃 such that 𝐴ℎ ∈ 𝑃
ℎ
and 𝐵ℎ ∈ 𝑃

ℎ
;

(ii) there exists a constant 𝛿
0
> 0 such that 𝐴𝑥 ≥ 𝛿

0
𝐵𝑥,

∀𝑥 ∈ 𝑃.

Then the operator equation𝐴𝑥+𝐵𝑥 = 𝑥 has a unique solution
𝑥
∗ in 𝑃
ℎ
. Moreover, constructing successively the sequence 𝑦

𝑛
=

𝐴𝑦
𝑛−1

+ 𝐵𝑦
𝑛−1

, 𝑛 = 1, 2, . . ., for any initial value 𝑦
0
∈ 𝑃
ℎ
, we

have 𝑦
𝑛
→ 𝑥
∗ as 𝑛 → ∞.

3. Main Results

In this section, we will deal with the existence and uniqueness
of positive solutions for problem (3). Let

𝐺
1
(𝑠, 𝑠) =

2

Γ (𝛼 + 1)
(1 − 𝑠)

𝛼−1

(𝛼 − 1 + 𝑠) . (12)
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It is obvious that

𝐺 (𝑡, 𝑠) ≤ 𝐺
1
(𝑠, 𝑠) , 𝑡, 𝑠 ∈ [0, 1] . (13)

We consider the Banach space𝐸 = 𝐶[[0, 1],R] endowedwith
the norm defined by ‖ 𝑢 ‖= sup

0≤𝑡≤1
|𝑢(𝑡)|. Letting 𝑃 = {𝑢 ∈

𝐸 | 𝑢(𝑡) ≥ 0}, then 𝑃 is a cone in 𝐸. Define an operator ϝ :

𝐸 → 𝐸 as

(ϝ𝑢) (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) (𝑓
𝜎(𝑠)

(𝑠, 𝑢 (𝑠)) + 𝑔
𝜎(𝑠)

(𝑠, 𝑢 (𝑠))) 𝑑𝑠.

(14)

Then ϝ has a solution if and only if the operator ϝ has a fixed
point.

Theorem 8. Let 𝑓
𝑖
, 𝑔
𝑖
∈ 𝐶[𝐽 × R+,R+], 𝑖 = 1, 2, . . . , 𝑁.

Suppose that the following conditions are satisfied:
𝑓𝑖 (𝑡, 𝑢 (𝑡)) − 𝑓

𝑖
(𝑡, V (𝑡)) ≤ 𝑙

𝑖
(𝑡) |𝑢 (𝑡) − V (𝑡)| ,

𝑔𝑖 (𝑡, 𝑢 (𝑡)) − 𝑔
𝑖
(𝑡, V (𝑡)) ≤ 𝑙

𝑖
(𝑡) |𝑢 (𝑡) − V (𝑡)| ,

0 < ∫

1

0

𝐺
1
(𝑠, 𝑠) (𝑙

𝑖
(𝑠) + 𝑙

𝑖
(𝑠)) 𝑑𝑠 < 1,

(15)

where

𝑙
𝑖
, 𝑙
𝑖
∈ 𝐶 [𝐽,R

+

] , 𝑖 = 1, 2, . . . , 𝑁. (16)

Then the problem (3) has a unique solution on [0, 1].

Proof. It follows from Lemma 6 that ϝ : 𝑃 → 𝑃. For 𝑡 ∈

𝐽, 𝑖 = 1, 2, . . . , 𝑁, we set max
𝑖=1,2,...,𝑁

sup
𝑡∈𝐽

|𝑓
𝑖
(𝑡, 0)| = 𝑀,

max
𝑖=1,2,...,𝑁

sup
𝑡∈𝐽

|𝑔
𝑖
(𝑡, 0)| = 𝑀, and 𝐵

𝑟
= {𝑢 ∈ 𝐶[𝐽,R+] :

‖𝑢‖ ≤ 𝑟}, where

𝑟 ≥

(𝑀 +𝑀)∫
1

0

𝐺
1
(𝑠, 𝑠) 𝑑𝑠

1 −max
𝑖=1,2,...,𝑁

∫
1

0

𝐺
1
(𝑠, 𝑠) (𝑙

𝑖
(𝑠) + 𝑙

𝑖
(𝑠)) 𝑑𝑠

. (17)

Step 1.We show that ϝ (𝐵
𝑟
) ⊂ 𝐵
𝑟
.

For 𝑢 ∈ 𝐵
𝑟
and 𝑡 ∈ 𝐽, 𝑖 = 1, 2, . . . , 𝑁,

∫

1

0

𝐺 (𝑡, 𝑠)
𝑓𝑖 (𝑠, 𝑢 (𝑠)) + 𝑔

𝑖
(𝑠, 𝑢 (𝑠))

 𝑑𝑠

≤ ∫

1

0

𝐺
1
(𝑠, 𝑠) (

𝑓𝑖 (𝑠, 𝑢 (𝑠)) − 𝑓
𝑖
(𝑠, 0)

 +
𝑓𝑖 (𝑠, 0)

) 𝑑𝑠

+ ∫

1

0

𝐺
1
(𝑠, 𝑠) (

𝑔𝑖 (𝑠, 𝑢 (𝑠)) − 𝑔
𝑖
(𝑠, 0)

 +
𝑔𝑖 (𝑠, 0)

) 𝑑𝑠

≤ 𝑟 max
𝑖=1,2,...,𝑁

∫

1

0

𝐺
1
(𝑠, 𝑠) (𝑙

𝑖
(𝑠) + 𝑙

𝑖
(𝑠)) 𝑑𝑠

+ (𝑀 +𝑀)∫

1

0

𝐺
1
(𝑠, 𝑠) 𝑑𝑠

≤ 𝑟,

(18)

which implies that |(ϝ𝑢)(𝑡)| ≤ 𝑟. Thus, ‖ϝ𝑢‖ ≤ 𝑟. Therefore,

ϝ (𝐵
𝑟
) ⊂ 𝐵
𝑟
. (19)

Step 2.We show that ϝ is a contraction mapping.
For 𝑢, V ∈ 𝐵

𝑟
and for each 𝑡 ∈ 𝐽, 𝑖 = 1, 2, . . . , 𝑁, we have

∫

1

0

𝐺 (𝑡, 𝑠)
𝑓𝑖 (𝑠, 𝑢 (𝑠)) − 𝑓

𝑖
(𝑠, V (𝑠)) 𝑑𝑠

+ ∫

1

0

𝐺 (𝑡, 𝑠)
𝑔𝑖 (𝑠, 𝑢 (𝑠)) − 𝑔

𝑖
(𝑠, V (𝑠)) 𝑑𝑠

≤ ∫

1

0

𝐺
1
(𝑠, 𝑠) 𝑙

𝑖
(𝑠) |𝑢 (𝑠) − V (𝑠)| 𝑑𝑠

+ ∫

1

0

𝐺
1
(𝑠, 𝑠) 𝑙

𝑖
(𝑠) |𝑢 (𝑠) − V (𝑠)| 𝑑𝑠

≤ ∫

1

0

𝐺
1
(𝑠, 𝑠) (𝑙

𝑖
(𝑠) + 𝑙

𝑖
(𝑠)) 𝑑𝑠 ‖𝑢 − V‖ .

(20)

This, together with 0 < ∫
1

0

𝐺
1
(𝑠, 𝑠)(𝑙

𝑖
(𝑠) + 𝑙

𝑖
(𝑠))𝑑𝑠 < 1, 𝑖 =

1, 2, . . . , 𝑁, yields that
(ϝ𝑢) (𝑡) − (ϝV) (𝑡) ≤ 𝑘 ‖𝑢 − V‖ , (21)

where

0 < 𝑘 = max
𝑖=1,2,...,𝑁

∫

1

0

𝐺
1
(𝑠, 𝑠) (𝑙

𝑖
(𝑠) + 𝑙

𝑖
(𝑠)) 𝑑𝑠 < 1. (22)

Thus,
ϝ𝑢 − ϝV ≤ 𝑘 ‖𝑢 − V‖ . (23)

This means that ϝ is a contraction mapping.
It follows from Banach’s contraction mapping that ϝ has

a unique fixed point in 𝐵
𝑟
. Therefore, the problem (3) has a

unique solution.

Corollary 9. Let 𝑓
𝑖
∈ 𝐶[𝐽 ×R+,R+], 𝑖 = 1, 2, . . . , 𝑁. Suppose

that the following conditions are satisfied:
𝑓𝑖 (𝑡, 𝑢 (𝑡)) − 𝑓

𝑖
(𝑡, V (𝑡)) ≤ 𝑙

𝑖
(𝑡) |𝑢 (𝑡) − V (𝑡)| ,

0 < ∫

1

0

𝐺
1
(𝑠, 𝑠) 𝑙

𝑖
(𝑠) 𝑑𝑠 < 1,

(24)

where

𝑙
𝑖
∈ 𝐶 [𝐽,R

+

] , 𝑖 = 1, 2, . . . , 𝑁. (25)

Then the following fractional switched system
𝑐

𝐷
𝛼

0+
𝑢 (𝑡) + 𝑓

𝜎(𝑡)
(𝑡, 𝑢 (𝑡)) = 0, 𝑡 ∈ 𝐽 = [0, 1] ,

𝑢 (0) = 𝑢


(0) = 0, 𝑢 (1) = ∫

1

0

𝑢 (𝑠) 𝑑𝑠,

(26)

has a unique solution on [0, 1].

Theorem 10. Assume that;

(H
1
) 𝑓
𝑖
, 𝑔
𝑖

∈ 𝐶[𝐽 × R+,R+] and 𝑓
𝑖
(𝑡, 𝑥), 𝑔

𝑖
(𝑡, 𝑥) are

increasing in 𝑥 for 𝑥 ∈ R+, 𝑔
𝑖
(𝑡, 0) ̸= 0, 𝑖 = 1, 2, . . . , 𝑁;

(H
2
) 𝑔
𝑖
(𝑡, 𝜆𝑥) ≥ 𝜆𝑔

𝑖
(𝑡, 𝑥) for 𝜆 ∈ (0, 1), 𝑡 ∈ 𝐽, 𝑥 ∈

R+, and there exists a constant 𝛾 ∈ (0, 1) such that
𝑓
𝑖
(𝑡, 𝜆𝑥) ≥ 𝜆

𝛾

𝑓
𝑖
(𝑡, 𝑥), ∀𝑡 ∈ 𝐽, 𝜆 ∈ (0, 1), 𝑥 ∈ R+,

𝑖 = 1, 2, . . . , 𝑁;
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(H
3
) there exists a constant 𝛿

0
> 0 such that 𝑓

𝑖
(𝑡, 𝑥) ≥

𝛿
0
𝑔
𝑖
(𝑡, 𝑥), 𝑡 ∈ 𝐽, 𝑥 ∈ R+, 𝑖 = 1, 2, . . . , 𝑁.

Then problem (3) has a unique solution 𝑢
∗ in 𝑃
ℎ
, where ℎ(𝑡) =

𝑡, 𝑡 ∈ 𝐽. Moreover, for any initial value 𝑢
0
∈ 𝑃
ℎ
, constructing

successively the sequence

𝑢
𝑛+1

(𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) (𝑓
𝜎(𝑠)

(𝑠, 𝑢
𝑛
(𝑠)) + 𝑔

𝜎(𝑠)
(𝑠, 𝑢
𝑛
(𝑠))) 𝑑𝑠,

𝑛 = 0, 1, 2, . . . ,

(27)

we have 𝑢
𝑛
(𝑡) → 𝑢

∗

(𝑡) as 𝑛 → ∞.

Proof. Define the two operators

𝐴𝑢 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓
𝜎(𝑠)

(𝑠, 𝑢 (𝑠)) 𝑑𝑠,

𝐵𝑢 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑔
𝜎(𝑠)

(𝑠, 𝑢 (𝑠)) 𝑑𝑠.

(28)

From Lemma 6, we have 𝐴 : 𝑃 → 𝑃 and 𝐵 : 𝑃 → 𝑃. It is
obvious that 𝑢 is the solution of problem (3) if and only if 𝑢 =

𝐴𝑢+𝐵𝑢. It follows from (H
1
) that𝐴 and 𝐵 are two increasing

operators. Thus, for 𝑢, V ∈ 𝑃, 𝑢 ≥ V, we have 𝐴𝑢 ≥ 𝐴V and
𝐵𝑢 ≥ 𝐵V.
Step 1. We show that 𝐴 is a 𝛾-concave operator and 𝐵 is a
subhomogeneous operator.

In fact, for 𝜆 ∈ (0, 1), 𝑢 ∈ 𝑃, 𝑡 ∈ 𝐽, 𝑖 = 1, 2, . . . , 𝑁, from
(H
2
), we have

∫

1

0

𝐺 (𝑡, 𝑠) 𝑓
𝑖
(𝑠, 𝜆𝑢 (𝑠)) 𝑑𝑠 ≥ 𝜆

𝛾

∫

1

0

𝐺 (𝑡, 𝑠) 𝑓
𝑖
(𝑠, 𝑢 (𝑠)) 𝑑𝑠,

(29)

which yields that

𝐴 (𝜆𝑢) (𝑡) ≥ 𝜆
𝛾

𝐴𝑢 (𝑡) . (30)

Thus, 𝐴 is a 𝛾-concave operator. By a closely similar way, we
can see that 𝐵 is a subhomogeneous operator.

Step 2. We show that 𝐴ℎ ∈ 𝑃
ℎ
and 𝐵ℎ ∈ 𝑃

ℎ
.

From Lemma 6 and (H
1
), we have, for 𝑡 ∈ 𝐽, 𝑖 =

1, 2, . . . , 𝑁,

∫

1

0

𝐺 (𝑡, 𝑠) 𝑓
𝑖
(𝑠, ℎ (𝑠)) 𝑑𝑠

≤
2

Γ (𝛼 + 1)
ℎ (𝑡)

× ∫

1

0

(1 − 𝑠)
𝛼−1

(𝛼 − 1 + 𝑠) 𝑓
𝑖
(𝑠, 1) 𝑑𝑠,

∫

1

0

𝐺 (𝑡, 𝑠) 𝑓
𝑖
(𝑠, ℎ (𝑠)) 𝑑𝑠

≥
1

Γ (𝛼 + 1)
ℎ (𝑡)

× ∫

1

0

(1 − 𝑠)
𝛼−1

(𝛼 − 2 + 2𝑠) 𝑓
𝑖
(𝑠, 0) 𝑑𝑠.

(31)

For 𝑖 = 1, 2, . . . , 𝑁, let

𝑚
𝑖
=

1

Γ (𝛼 + 1)
∫

1

0

(1 − 𝑠)
𝛼−1

(𝛼 − 2 + 2𝑠) 𝑓
𝑖
(𝑠, 0) 𝑑𝑠,

𝑚
𝑖
=

2

Γ (𝛼 + 1)
∫

1

0

1 − 𝑠
𝛼−1

(𝛼 − 1 + 𝑠) 𝑓
𝑖
(𝑠, 1) 𝑑𝑠.

(32)

It follows from 𝑔(𝑡, 0) ̸= 0 that ∫1
0

𝑓
𝑖
(𝑠, 1) 𝑑𝑠 ≥ ∫

1

0

𝑓
𝑖
(𝑠, 0) 𝑑𝑠 ≥

𝛿
0
∫
1

0

𝑔
𝑖
(𝑠, 0) 𝑑𝑠 > 0.

Thus,

𝑚
𝑖
> 0, 𝑚

𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑁. (33)

Letting �̃� = min{𝑚
𝑖
, 𝑖 = 1, 2, . . . , 𝑁} and �̂� = max{𝑚

𝑖
, 𝑖 =

1, 2, . . . , 𝑁}, then �̃� > 0 and �̂� > 0. Therefore,

�̃�ℎ (𝑡) ≤ 𝐴ℎ (𝑡) ≤ �̂�ℎ (𝑡) , (34)

which implies that

𝐴ℎ ∈ 𝑃
ℎ
. (35)

Similarly, we have 𝐵ℎ ∈ 𝑃
ℎ
.

Step 3. There exists a constant 𝛿
0
> 0 such that 𝐴𝑢 ≥ 𝛿

0
𝐵𝑢,

∀𝑢 ∈ 𝑃.
For 𝑢 ∈ 𝑃 and 𝑡 ∈ 𝐽, 𝑖 = 1, 2, . . . , 𝑁, by (H

3
), we have

∫

1

0

𝐺 (𝑡, 𝑠) 𝑓
𝑖
(𝑠, 𝑢 (𝑠)) 𝑑𝑠 ≥ 𝛿

0
∫

1

0

𝐺 (𝑡, 𝑠) 𝑔
𝑖
(𝑠, 𝑢 (𝑠)) 𝑑𝑠. (36)

This means that

𝐴𝑢 ≥ 𝛿
0
𝐵𝑢, 𝑢 ∈ 𝑃. (37)

Therefore, the conditions of Theorem 7 are satisfied. By
means of Theorem 7, we obtain that the operator equation
𝐴𝑢+𝐵𝑢 = 𝑢 has a unique solution 𝑢∗ in𝑃

ℎ
. Moreover, for any

initial value 𝑢
0
∈ 𝑃
ℎ
, constructing successively the sequence

𝑢
𝑛+1

(𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) (𝑓
𝜎(𝑠)

(𝑠, 𝑢
𝑛
(𝑠)) + 𝑔

𝜎(𝑠)
(𝑠, 𝑢
𝑛
(𝑠))) 𝑑𝑠,

𝑛 = 0, 1, 2, . . . ,

(38)

we have 𝑢
𝑛
(𝑡) → 𝑢

∗

(𝑡) as 𝑛 → ∞.

In Theorem 10, if we let 𝐵 be a null operator, we have the
following conclusion.

Corollary 11. Assume that;

(H
4
) 𝑓
𝑖
∈ 𝐶[𝐽 × R+,R+] and 𝑓

𝑖
(𝑡, 𝑥) is increasing in 𝑥 for

𝑥 ∈ R+, 𝑓
𝑖
(𝑡, 0) ̸= 0, 𝑖 = 1, 2, . . . , 𝑁;
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(H
5
) there exists a constant 𝛾 ∈ (0, 1) such that 𝑓

𝑖
(𝑡, 𝜆𝑥) ≥

𝜆
𝛾

𝑓
𝑖
(𝑡, 𝑥), ∀𝑡 ∈ 𝐽, 𝜆 ∈ (0, 1), 𝑥 ∈ R+, 𝑖 = 1, 2, . . . , 𝑁.

Then the following fractional switched system

𝑐

𝐷
𝛼

0+
𝑢 (𝑡) + 𝑓

𝜎(𝑡)
(𝑡, 𝑢 (𝑡)) = 0, 𝑡 ∈ 𝐽 = [0, 1] ,

𝑢 (0) = 𝑢


(0) = 0, 𝑢 (1) = ∫

1

0

𝑢 (𝑠) 𝑑𝑠,

(39)

has a unique solution𝑢∗ in𝑃
ℎ
, where ℎ(𝑡) = 𝑡, 𝑡 ∈ 𝐽.Moreover,

for any initial value 𝑢
0

∈ 𝑃
ℎ
, constructing successively the

sequence

𝑢
𝑛+1

(𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓
𝜎(𝑠)

(𝑠, 𝑢
𝑛
(𝑠)) 𝑑𝑠, 𝑛 = 0, 1, 2, . . . ,

(40)

we have 𝑢
𝑛
(𝑡) → 𝑢

∗

(𝑡) as 𝑛 → ∞.

4. Examples

Example 1. Consider the following boundary value problem:

𝑐

𝐷
𝛼

0+
𝑢 (𝑡) + 𝑓

𝜎(𝑡)
(𝑡, 𝑢 (𝑡)) + 𝑔

𝜎(𝑡)
(𝑡, 𝑢 (𝑡)) = 0,

𝑡 ∈ 𝐽 = [0, 1] ,

𝑢 (0) = 𝑢


(0) = 0, 𝑢 (1) = ∫

1

0

𝑢 (𝑠) 𝑑𝑠,

(41)

where 𝛼 = 5/2, 𝜎(𝑡) : 𝐽 → 𝑀 = {1, 2} is a finite switching
signal,

𝑓
1
(𝑡, 𝑥) =

1

4(𝑡 + 2)
2

𝑥

1 + 𝑥
+ 1,

𝑔
1
(𝑡, 𝑥) =

1

16
sin2𝑥 + 𝑡

2

,

𝑓
2
(𝑡, 𝑥) =

1

8(𝑡 + 2)
2

𝑥

1 + 𝑥
+ 1,

𝑔
2
(𝑡, 𝑥) =

1

32
sin2𝑥 + 𝑡

2

.

(42)

Thus,

𝑓
𝑖
, 𝑔
𝑖
∈ 𝐶 [𝐽 ×R

+

,R
+

] , 𝑖 = 1, 2. (43)

By computation, we deduce that

𝑓1 (𝑡, 𝑥1) − 𝑓
1
(𝑡, 𝑥
2
)
 ≤

1

16

𝑥2 − 𝑥
1

 ,

𝑔1 (𝑡, 𝑥1) − 𝑔
1
(𝑡, 𝑥
2
)
 ≤

1

16

𝑥2 − 𝑥
1

 ,

𝑓2 (𝑡, 𝑥1) − 𝑓
2
(𝑡, 𝑥
2
)
 ≤

1

32

𝑥2 − 𝑥
1

 ,

𝑔2 (𝑡, 𝑥1) − 𝑔
2
(𝑡, 𝑥
2
)
 ≤

1

32

𝑥2 − 𝑥
1

 .

(44)

On the other hand,

∫

1

0

𝐺
1
(𝑠, 𝑠) (𝑙

1
(𝑠) + 𝑙

1
(𝑠)) 𝑑𝑠

= ∫

1

0

2(1 − 𝑠)
(5/2)−1

((5/2) − 1 + 𝑠)

Γ ((5/2) + 1)
(
1

16
+

1

16
) 𝑑𝑠

=
1

4Γ (7/2)
∫

1

0

(1 − 𝑠)
3/2

(
3

2
+ 𝑠) 𝑑𝑠

≤
1

4Γ (7/2)
∫

1

0

(1 − 𝑠)
3/2

(
3

2
+ 1) 𝑑𝑠

=
1

3√𝜋
×
2

5

< 1,

∫

1

0

𝐺
1
(𝑠, 𝑠) (𝑙

1
(𝑠) + 𝑙

1
(𝑠)) 𝑑𝑠

= ∫

1

0

2(1 − 𝑠)
(5/2)−1

((5/2) − 1 + 𝑠)

Γ ((5/2) + 1)
(
1

32
+

1

32
) 𝑑𝑠

=
1

3√𝜋
×
1

5

< 1.

(45)

Hence, byTheorem 8, BVP (41) has a unique positive solution
on [0, 1].

Example 2. Consider the following boundary value problem:

𝑐𝐷
𝛼

0+
𝑢 (𝑡) + 𝑓

𝜎(𝑡)
(𝑡, 𝑢 (𝑡)) + 𝑔

𝜎(𝑡)
(𝑡, 𝑢 (𝑡)) = 0,

𝑡 ∈ 𝐽 = [0, 1] ,

𝑢 (0) = 𝑢


(0) = 0, 𝑢 (1) = ∫

1

0

𝑢 (𝑠) 𝑑𝑠,

(46)

where 𝛼 = 5/2, 𝜎(𝑡) : 𝐽 → {1, 2, 3} is a finite switching signal,

𝑓
1
(𝑡, 𝑥) = 𝑥

1/3

+ 𝑡
2

+ 𝑐,

𝑔
1
(𝑡, 𝑥) =

𝑥

(1 + 𝑡2) (1 + 𝑥)
+ 𝑏 − 𝑐,

𝑓
2
(𝑡, 𝑥) = 2𝑥

1/3

+ 𝑡
2

+ 2𝑐,

𝑔
2
(𝑡, 𝑥) =

2𝑥

(1 + 𝑡2) (1 + 𝑥)
+ 2 (𝑏 − 𝑐) ,
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𝑓
3
(𝑡, 𝑥) = 3𝑥

1/3

+ 𝑡
2

+ 3𝑐,

𝑔
3
(𝑡, 𝑥) =

3𝑥

(1 + 𝑡2) (1 + 𝑥)
+ 3 (𝑏 − 𝑐) .

(47)

Let 𝛾 = 1/3 and 0 < 𝑐 < 𝑏. It is obvious that 𝑓
𝑖
, 𝑔
𝑖
∈

𝐶[𝐽 × R+,R+] and are increasing with respect to the second
argument, 𝑔

𝑖
(𝑡, 0) = 𝑏 − 𝑐 > 0, 𝑖 = 1, 2, 3. On the other hand,

for 𝜆 ∈ (0, 1), 𝑡 ∈ 𝐽, 𝑥 ∈ [0, +∞), 𝑖 = 1, 2, 3, we have

𝑔
𝑖
(𝑡, 𝜆𝑥) =

𝑖𝜆𝑥

(1 + 𝑡2) (1 + 𝜆𝑥)
+ 𝑖 (𝑏 − 𝑐)

≥
𝑖𝜆𝑥

(1 + 𝑡2) (1 + 𝜆𝑥)
+ 𝑖𝜆 (𝑏 − 𝑐)

= 𝜆𝑔
𝑖
(𝑡, 𝑥) ,

𝑓
𝑖
(𝑡, 𝜆𝑥) = 𝑖𝜆

1/3

𝑥
1/3

+ 𝑡
2

+ 𝑖𝑐

≥ 𝜆
1/3

(𝑖𝑥
1/3

+ 𝑡
2

+ 𝑖𝑐)

= 𝜆
𝛾

𝑓
𝑖
(𝑡, 𝑥) .

(48)

Moreover, for 𝑡 ∈ 𝐽, 𝑥 ∈ R+, 𝑖 = 1, 2, 3, we have

𝑓
𝑖
(𝑡, 𝑥) = 𝑖𝑥

1/3

+ 𝑡
2

+ 𝑖𝑐

≥ 𝑖𝑐 ≥
𝑐

3 + (𝑏 − 𝑐)
(𝑖 + 𝑖 (𝑏 − 𝑐))

≥
𝑐

3 + (𝑏 − 𝑐)
(

𝑖𝑥

(1 + 𝑡2) (1 + 𝑥)
+ 𝑖 (𝑏 − 𝑐))

= 𝛿
0
𝑔
𝑖
(𝑡, 𝑥) ,

(49)

where

𝛿
0
=

𝑐

3 + (𝑏 − 𝑐)
. (50)

Hence all the conditions of Theorem 10 are satisfied. Thus,
BVP (46) has a unique positive solution in 𝑃

ℎ
, where ℎ(𝑡) = 𝑡,

𝑡 ∈ [0, 1].
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