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Numerical models are presently applied in many fields for simulation and prediction, operation, or research. The output from
these models normally has both systematic and random errors. The study compared January 2015 temperature data for Uganda
as simulated using the Weather Research and Forecast model with actual observed station temperature data to analyze the bias
using parametric (the root mean square error (RMSE), the mean absolute error (MAE), mean error (ME), skewness, and the bias
easy estimate (BES)) and nonparametric (the sign test, STM) methods. The RMSE normally overestimates the error compared to
MAE. The RMSE and MAE are not sensitive to direction of bias. The ME gives both direction and magnitude of bias but can be
distorted by extreme values while the BES is insensitive to extreme values. The STM is robust for giving the direction of bias; it is
not sensitive to extreme values but it does not give the magnitude of bias. The graphical tools (such as time series and cumulative
curves) show the performance of the model with time. It is recommended to integrate parametric and nonparametric methods
along with graphical methods for a comprehensive analysis of bias of a numerical model.

1. Introduction

The models are used in many fields such as engineering,
agriculture, health, business, and weather and climate for
simulation and prediction. They help to understand the
different subprocesses underlying a given process and have
undergone tremendous improvements due to developments
in computing technology. These models range from simple
(e.g., linear regression models) to complex models (e.g.,
weather and climate predictionmodels); Glahn and Lowry [1]
categorized the models as dynamical and statistical. A com-
bination of dynamical and statistical models is also used in
operational forecasting especially using statistical techniques
to correct output from a dynamical model.

The national meteorological services usually operate high
resolution numerical weather prediction models so as to

give accurate guidance to users of weather information [2].
The accuracy of a given model is the measure of how close
the model predicted fields are compared to independently
observed atmospheric fields [3, 4] but it can be affected by
errors in initial conditions, imperfections in the model, and
inappropriate parameterizations. When a model agrees with
observations, the confidence in using the model is higher [5]
but the present agreement does not necessarily guarantee the
skill for the future model prediction.

The main advantage of models is their objectivity [1].
However, the presence of systematic errors is due to bias
[6] which occurs due to difference in model response to
external forcing [7] such as errors in initial conditions. This
bias can manifest as overprediction or underprediction and
is defined by the World Meteorology Organization as the
mean difference between forecast values and mean actual
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Table 1: Statistical bias measures of actual andmodel simulation for
maximum temperatures.

Measure arua ebb ksse jinja mbra gulu
RMSE 2.19 7.50 4.41 8.86 2.47 2.37
MAE 2.01 7.22 4.05 8.60 2.24 1.98
ME −2.01 −7.22 −4.05 −8.60 −1.92 −1.91
Rel. bias −0.06 −0.26 −0.12 −0.28 −0.07 −0.06
BES −2.06 −7.13 −4.03 −8.69 −2.21 −1.94
Skewness 0.80 −0.17 0.34 0.12 0.89 0.10
STM −0.97 −1.00 −0.94 −1.00 −0.81 −0.81

observations [8] while Haerter et al. [9] define bias as time
independent component of error in model output.

A couple of methods have been proposed to correct
for the bias. Maraun [10] used quantile-quantile method
and found that uncorrected regional climate models under-
estimated precipitation and produced many drizzle cases.
Durai and Bhradwaj [11] investigated four statistical bias
correction methods (namely, best easy systematic method,
lagged linear regression, nearest neighbor, and runningmean
removal) and noted that the running mean and nearest
neighbormethods improved the forecast skill.Thesemethods
attempt to reduce the bias in the next forecast using the
information from the bias of the previous forecast [12];
however they influence the model output if prediction is
based on bias corrected data [8] and they cannot correct
improper representation of processes producing the model
output [9].

Many studies have employed the parametric methods
such as RMSE [13–15], MAE [14, 15], and ME [16] relative
error [13, 16] to analyze the bias of numerical models but
have put less emphasis on graphical tools as well as the
nonparametric method. In the present study, we investigate
the performance of the bias analysis methods on actual
January 2015 temperature data and simulated temperature
data using the Weather Research and Forecast (WRF) model
(Tables 1 and 2). The rest of the paper is organized as follows:
Section 2 describes the data sources, Section 3 presents
overview of the methods of bias analysis, Section 4 presents
results and discussion, and Section 5 gives summary and
conclusion.

2. Data

We simulate January 2015 temperature using WRF model
version 3.7 [17], with parameterizations schemes: WRF
single moment 6-class scheme microphysics, the Kain-
Fritsch cumulus parameterization, the Asymmetric Convec-
tive Model option for planetary boundary layer, the Rapid
Radiative Transfer Model for longwave radiation, and the
Dudhia scheme for shortwave radiation. This data is com-
pared with observed January 2015 temperature (maximum
and minimum temperature) data obtained from the Uganda
National Meteorological Authority (UNMA). We use six
stations (namely, Arua (arua), Entebbe (ebb), Kasese (ksse),
Jinja (jinja), Mbarara (mbra), and Gulu (gulu)). For a given

Table 2: Statistical biasmeasures of actual andmodel simulation for
minimum temperatures.

Measure arua ebb ksse jinja mbra gulu
RMSE 5.59 2.77 1.58 3.90 2.83 2.19
MAE 5.31 2.37 1.25 3.31 2.50 1.72
ME 5.31 −1.69 0.78 3.25 −2.39 0.21
Rel. bias 0.46 −0.09 0.05 0.21 −0.15 0.01
BES 5.23 −1.86 0.66 3.31 −2.29 0.11
Skewness 0.32 0.39 0.44 −0.06 −0.16 0.09
STM 1.00 −0.55 0.35 0.87 −0.94 −0.03

day and station, the maximum simulated temperature is
compared with the maximum observed temperature and
the minimum simulated temperature is compared with the
minimum observed temperature.

3. Methods of Bias Analysis

In order to comprehensively investigate the performance
of numerical models, it is important to evaluate them on
many metrics other than using a single method [5]. In this
section, we present the popular methods for analyzing bias of
numerical models. The parametric methods are presented in
Sections 3.1–3.6 while the nonparametric method considered
is described in Section 3.7.

3.1. The Difference Measures. Willmott et al. [3] suggested a
difference variable, 𝐷, given by the difference between the
model predicted value,𝑀, and observed value, 𝑂, that is,

𝐷 = 𝑀 − 𝑂. (1)

This is appropriate for point measurements. It is this measure
that gives rise to other measures like the root mean square
error (RMSE), the bias or mean error (ME), and the mean
absolute error (MAE).

For a model 𝑗, with time-ordered data set {𝑀
𝑖
} we define

the difference𝐷
𝑖𝑗
as follows:

𝐷

𝑖𝑗
= 𝑀

𝑖𝑗
− 𝑂

𝑖
, (2)

where 𝑖 is the 𝑖th data point and 𝑂
𝑖
is the corresponding 𝑖th

observed value from time-ordered actual observed data set
{𝑂

𝑖
}. A positive (negative) value indicates that model output

is higher (lower) than the actual values.

3.2. The RMSE. The RMSE is the square root of the average
squared differences (𝐷2

𝑖𝑗
) and is a popular statistical measure

for the performance of numerical model in atmospheric
research [15]. For a model, 𝑗, the RMSE is thus defined as
follows:

RMSE
𝑗
= [

1

𝑛

𝑛

∑

𝑖=1

𝐷

2

𝑖𝑗
]

1/2

.

(3)

The RMSE is a good criteria to classify the accuracy of a
model and a low index indicates higher accuracy.
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3.3. The MAE. TheMAE is the average of the magnitudes of
differences (𝐷

𝑖𝑗
taken as positive) and is also a popular index

for estimating bias in atmospheric studies. For a model, 𝑗, the
MAE is defined as follows:

MAE
𝑗
=

1

𝑛

𝑛

∑
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󵄨

󵄨

󵄨

󵄨

󵄨

𝐷
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󵄨

󵄨

󵄨

󵄨

󵄨

(4)

and, just like RMSE, a low index indicates higher accuracy.

3.4.The Bias. Thebias, also known as themean error (ME), is
obtained by averaging the differences (𝐷

𝑖𝑗
) over the number

of cases. For a given model output,𝑀
𝑗
, the ME is calculated

from

ME
𝑗
=

1

𝑛

𝑛

∑

𝑖=1

𝐷

𝑖𝑗
. (5)

Themagnitude of ME is equal to the MAE if all the predicted
values of the model are higher (or lower) than the actual
values. A value of bias close to zero indicates that model
values are in fair agreement with actual values with zero
implying no bias.

The relative bias is another bias measure suggested by
Christakis et al. [16] in which ME is divided by average
observations and given as follows:

Rel. bias
𝑗
=

ME
𝑗

𝑂

× 100%. (6)

The bias given by (5) and (6) gives both the direction and
probable magnitude of the error.

3.5. The Skewness Coefficient. The skewness coefficient is a
moment measure based on symmetry [18]. Having obtained
the differences between the model and actual values (𝐷

𝑖𝑗
),

positive (or negative) skewness indicates that model outputs
are largely lower (or higher) than actual observations. The
skewness coefficient is defined as follows:

𝛾

𝑗
=

(1/ (𝑛 − 1))∑

𝑛

𝑖=1
(𝐷

𝑖𝑗
− 𝐷

𝑗
)

3

𝑠

3

𝑗

(7)

with 𝑠
𝑗
as the standard error of the sample biases forming a

distribution {𝐷
1𝑗
, 𝐷

2𝑗
, . . . , 𝐷

𝑛𝑗
} and calculated as follows:

𝑠
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(8)

3.6. The Bias Easy Systematic Method. The bias easy system-
atic (BES) method considers location measures (especially
quartiles) and is given by Durai and Bhradwaj [11] as follows:

BES =
𝑞

1
+ 2𝑞

2
+ 𝑞

3

4

,
(9)

where 𝑞
1
, 𝑞
2
, and 𝑞

3
are the sample lower quartile, median,

and upper quartile, respectively, of the differences,𝐷
𝑖𝑗
, and it

is commended for its robustness for taking care of extreme
values by Woodcock and Engel [12].

3.7. Sign Test Method. The sign test method (STM) is a
nonparametric method based on assigning a score, ̂𝜃

𝑖𝑗
, that

compares the prediction,𝑀
𝑖𝑗
, and observation, 𝑂

𝑖
, at a given

point. If the model predicts higher values than observation
(𝑀

𝑖𝑗
> 𝑂

𝑖
), we assign positive one (i.e., ̂𝜃

𝑖𝑗
= +1), if themodel

prediction is equal to observed value (𝑀
𝑖𝑗
= 𝑂

𝑖
), we assign

zero (i.e., ̂𝜃
𝑖𝑗
= 0), and if themodel predicts a value lower than

observation (𝑀
𝑖𝑗
< 𝑂

𝑖
), we assign negative one (i.e., ̂𝜃

𝑖𝑗
= −1);

thus
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=
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(10)

For a model 𝑗 forming a distribution of scores, {̂𝜃
𝑖𝑗
}, of

size 𝑛, such that {̂𝜃
1𝑗
,

̂

𝜃

2𝑗
, . . . ,

̂

𝜃

𝑛𝑗
}, the mean is computed as

follows:

Θ
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. (11)

If the mean score, Θ
𝑗
, for a given model is positive,

the model is generally considered to overpredict; if it is
negative then themodel underpredicts. Otherwise there is no
significant bias. We suggest the hypothesis as

𝐻

0
:Θ
𝑗
= 0,

𝐻

1
:Θ
𝑗
̸= 0,

(12)

and consider for unbiased model (i.e., zero bias)

Θ

𝑗
= 𝐸 (

̂

𝜃

𝑖𝑗
) = 0. (13)

For a distribution of sample size less than 30 (𝑛 < 30),
we propose the use of Student’s 𝑡-distribution and make
approximation to normal distribution for large samples (𝑛 >
30). The standard error is computed using
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The nonparametric statistic for measuring bias is then cor-
rected and calculated using
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(15)

We can then test this for a given significance level and make
statistical inferences.
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Figure 1: Arua: max temp.

4. Results and Discussion

In comparing model results with observations, we assume
that observed values are accurate and that it is the model
predicted values that contain error because, as explained by
Piani et al. [19], the models have inconsistencies that are
sometimes not solved by bias correction.This thus brings the
necessity of clearly determining the direction and magnitude
of the bias.Themagnitude of the bias can be affected by other
factors, namely, the geographical location and season [11].
These factors are not considered in the study but it is possible
to compare spatial and temporal bias using the different bias
analysis methods.

Table 1 presents bias estimation using maximum tem-
peratures as simulated by WRF model and actual observed
values for maximum temperature while Table 2 presents bias
estimation usingmodel simulated values and actual observed
values forminimum temperature.These tables help to explore
the different possible cases and we obtain a negative bias
for all maximum temperatures (Table 1) and some stations
have positive bias for someminimum temperatures (Table 2).
These cases are also presented using time series figures
(Figures 1–12). The time series figures help to investigate how
the biases change with time and the greater the departure
from the curves (model simulated curve and observed curve),
the greater the bias. For Gulu, (Figures 11 and 12) the model
and actual observations follow roughly the same trend. For
Kasese (Figure 6) there is high variability for actualminimum
temperatures compared to those presented by model. For
Jinja (Figure 7) actual observations have increasing trend
while model values have a decreasing trend over the period
(20–30 days).These results imply that a givenmodel can have
varying performance in different geographical regions, hence
bias.

4.1. Traditional Bias Analysis Methods. The popular tra-
ditional parametric bias analysis tools were presented in
Section 3. A discussion of these methods is presented below.
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Figure 5: Kasese: max temp.
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Figure 6: Kasese: min temp.

The RMSE and MAE vary with both magnitude of error
and sample size [15]. If an extreme event happens and is not
correctly predicted (simulated) by the model, a big error will
result and can manifest as outliers, thus distorting the index.
The problem of estimating bias using the RMSE and MAE is
as follows: (i) it does not show the direction of bias and (ii)
it treats all the biases in one direction, thus amplifying the
bias. The bias given by (5) and the relative bias defined by (6)
are of great importance as they suggest both magnitude and
possible direction of the bias. This is helpful as it indicates
whether the model overpredicts or underpredicts the field
being predicted, but, as explained by Knutti et al. [5], simple
averaging (e.g., bias or ME) is not effective as it is affected by
extremes and biases in different directions canceling.TheBES
is however a location measure and is less affected by extreme
values.
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Figure 7: Jinja: max temp.
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Figure 8: Jinja: min temp.

4.2. The Sign Test Method (STM). In this method, we assign
positive (or negative) one depending on the direction of the
bias and then compute the mean of the assigned values.
A value of mean greater (less) than zero indicates positive
(negative) bias. By STM, we believe that the direction of the
bias is preserved while not being influence by extreme values
which occur rarely. For example, a model can have many
drizzle dayswhen in reality the days are dry but underpredicts
a heavy rainfall event [8]. Aggregating these results using
traditional bias estimation methods can lead to confusing
results suggesting that the model has no or less bias than
should be expected.

If the number of biases in opposite directions is equal, the
STM will give a zero score. Although this may appear to be a
drawback, its meaning is easily understood. It simply means
that themodel can equally overpredict or underpredict; how-
ever, it rarely occurs in numerical models. On the contrary,
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Figure 9: Mbarara: max temp.
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Figure 10: Mbarara: min temp.

if the other methods gave zero, the meaning would not
immediately imply that the number of biases in one direction
is exactly equal to the number of biases in the other direction
and that there has been an offset. It could imply that themodel
is unbiased which could be misleading. The inferences made
using STM statistic are based on general assumption that lead
to some function of the sample observation whose sampling
distribution can be determined without knowledge of the
specific distribution function underlying the population [20].
The STM is also less concerned with the distribution of the
population which is why it is noted to be affected by extreme
values.

It is possible for the STM and the parametric methods to
disagree (Table 2). In results presented by Table 2, for gulu,
the STM gives a negative index while the ME gives a positive
index. By STM, it means that the model had more value
underpredicted than overpredictedwhich, unfortunately, was
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Figure 11: Gulu: max temp.

Time series for gulu minimum temperature
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Figure 12: Gulu: min temp.

weakly resolved by the ME. This probably means that there
are cases of partial cancelation of values by the ME which is
why it is giving a positive bias.

In principle, we believe that the direction presented by the
STM should approach the direction presented by ME for a
large sample of values.

5. Summary and Conclusions

The numerical models normally have both systematic and
nonsystematic errors. The systematic errors manifest as bias
in the model which may lead to either overprediction or
underprediction. In the study, we analyzed the parametric
methods of analyzing bias and compared themwith STM but
have not considered spatial bias and methods of correcting
the bias.
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The parametric methods are based on difference measure
and the STM is based on assigning a score of +1 to positive
biases and −1 to negative biases and then getting an average of
these scores. We believe that STM is ideal for estimating bias
in prediction or simulation of scalar geophysical variables
(e.g., wind speed, rainfall amount, and temperature) by
numericalmodels and that it is reliable and robust because the
values presented are clear to understand as far as determining
the direction of the bias is needed.The direction of the bias is
needed in order to tune themodel to correct for future biases.
By STM a value of +1 (−1) indicates that all the values are
higher (lower) than the actual ones. The STM can be used in
inferences, thus reducing uncertainty, and is also based on a
simple algorithm.

However, we do not suggest neglecting other measures
but propose a complement because, in order to get a com-
plete analysis of the data, it is important to compare both
parametric and nonparametric tools [3].We also recommend
the use of graphical tools especially the density plots and
investigating the skewness as well as tail properties. The time
series plots can be used to investigate the performance of
the model for extended period of time, with an intention of
ascertaining whether the model worsens or improves with
time. Lastly, while assigning ±1 loses the magnitude of the
bias, STM only helps to determine the direction of the bias.
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