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Falling is one of the main causes of trauma, disability, and death among older people. Inertial sensors-based devices are able to
detect falls in controlled environments. Often this kind of solution presents poor performances in real conditions. The aim of
this work is the development of a computationally low-cost algorithm for feature extraction and the implementation of a machine-
learning scheme for people fall detection, by using a triaxial MEMSwearable wireless accelerometer.The proposed approach allows
to generalize the detection of fall events in several practical conditions. It appears invariant to the age, weight, height of people, and
to the relative positioning area (even in the upper part of the waist), overcoming the drawbacks of well-known threshold-based
approaches in which several parameters need to be manually estimated according to the specific features of the end user. In order
to limit the workload, the specific study on posture analysis has been avoided, and a polynomial kernel function is used while
maintaining high performances in terms of specificity and sensitivity. The supervised clustering step is achieved by implementing
an one-class support vector machine classifier in a stand-alone PC.

1. Introduction

The problem of falls in the elderly has become a health care
priority due to the related high social and economic costs
[1]. In fact the European population aged 65 years or more,
which may be in need of assistance is increasing. This trend
asks care-holders institutions to employ more efficient and
optimized methods in order to be able to grant the required
service at lower costs.The consequences of falls in the elderly
may lead to psychological trauma, physical injuries, hospi-
talization, and even death in the worst scenario [2–5]. The
main reason that pushed for the development of the presented
system is to allow noncompletely self-sufficient people (e.g.,
older people) to live safely in their own houses as long as
possible. This is important not only for aspects of health
regarding assisted people, but also for the consequent social
advantages. The European community issued and funded
various projects and consortia. The mission focuses on sev-
eral purposes, all addressed to older people, varying from the
assistance in case of need, to the prevention of dangerous or
unhealthy situations. The purpose of the work described in
this paper is to focus on people fall detection.

Many solutions have been proposed in the detection and
prevention of falls, and some excellent review studies were
presented [1, 6]. Basically, fall-detection solutions can be
classified in three main classes: wearable devices, ambi-
ent devices, and camera-based devices. The first approach
requires that the elderly holds some kind of devices (e.g., an
assistive cane) or wears sensors like accelerometers and/or
gyroscopes to detect the motion of the body. In partic-
ular, recent miniaturization and cost reduction of MEMS
accelerometers and the availability of reliable wireless com-
munication technologies enabled the realization of affordable
wearable monitoring systems that can be worn by people
performing their normal daily activities [7–10]. For these
reasons, in the last few years, the use of portable devices in
the health monitoring of chronic patients has increased con-
siderably. However, these devices have some drawbacks: they
are prone to be forgotten, worn in a wrong body position, or
accidentally damaged. Regarding fall detection, with respect
to vision or acoustic sensors, the accelerometer module has
the advantage of not having to be set up and installed in all
rooms of the “smart home,” as it is required for instance for 3D
video trackers or acoustic scene analyzers. On the other hand,
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Figure 1: Picture and block diagram of the wireless accelerometer-
based device.

the camera-based approach is a nonintrusive solution, since
the sensor is a camera installed on a wall and is able to detect
falls, switching off when the monitored person is no longer
alone [11]. On the other hand, camera-based monitoring
solutions suffer when large occluding objects (i.e., furniture)
obstruct camera’s viewing. Another significant drawback of
any camera-based solution is the violation of monitored per-
son’s privacy.

In this paper a fall detector through a wearable triaxial
MEMS accelerometer is presented. The proposed solution
overcomes the limitation of well-known threshold-based
approaches [12–17] for which the accelerometer-based device
need, to be tuned in an appropriate way for each installation
(i.e., the parameters setup may be different for different peo-
ple). For these reasons, a machine-learning scheme [18] is
used, showing high generalization capabilities in the fall
detection discrimination process. The expert system uses
robust features extracted taking into account important
constraints and requirements ofmobile solutions (workload).
The extracted features are (quasi-)invariant both to specific
characteristics of the mounting setup (device on chest, on
waist, and on abdomen) and specific characteristics of the end
users in terms of age, weight, height, and gender.

2. Materials and Methods

2.1. Triaxial Accelerometer Sensor System. Thehardware used
is a wearable device composed by commercial discrete cir-
cuits, according to the design proposed in [19]. The pic-
ture and the logical block diagram are shown in Figure 1.
The system integrates an ST LIS3LV02DL tri-axial MEMS
accelerometer with digital output, an FPGA for computing
functionalities, and a ZigBee module for wireless communi-
cation up to 30m. The power consumption is about 190mW
in streaming mode and 9mW in idle.

The wearable device can operate in streaming (raw data
are sent via ZigBee to an external computing platform for data
analysis with a 10Hz frequency) or in standalonemodality, by
running the threshold-based fall detection implementation
on the on-board FPGA (the power consumption is limited
since the ZigBee module is activated just when a fall event

occurs). The LIS3LV02DL MEMS accelerometer is DC cou-
pled, and it responds up to 0Hz, with 16-bits resolution and
a full scale in the range ±2𝑔. Data can be transmitted in
hexadecimal format. The sensor measures both static and
dynamic accelerations along the 3 axes and allows one to
receive information on the 3D spatial relative position (com-
pared to the Earth gravity vector) of the person who wears
it.

In stationary conditions, assuming a particular axis, the
component of the acceleration (amplitude 𝐴, rif. (1)) is
defined according to the value of the sine of the angle 𝛼

between the considered axis and the horizontal plane, which
is perpendicular to the Earth gravity component (𝑔):

𝐴 = 𝑔 sin (𝛼) . (1)

In this way, if the accelerometer relative orientation is known,
the resulting data can be used to determinate the angle of the
user posture respect to the vertical direction.

2.2. Simulated Falls and ADL Tasks. In order to analyse the
waveforms along each axis in the presence of falls and other
kind of events (Activities of Daily Living, ADLs), a data col-
lection has been defined in controlled (simulated) conditions
by involving 11 healthy male and 2 healthy female volunteers.
The simulated falls were performed by using a crash mat
(height 2 cm) and knee/elbow pad protectors, meeting safety
and ethical requirements. The range of actors age was 39.3 ±

12.3 years, weighing 73.7 ± 13.4 kg, and a height of 1.76 ±

0.1m. 450 actions were simulated in which 250 were falls
compliant to the specifications proposed by Noury et al. [20].
The following falls have been simulated for study:

(1) backward falls ending in the lying position,
(2) backward falls with recovery,
(3) forward falls ending in lying flat,
(4) forward falls with recovery,
(5) lateral falls.

During the data collection the wearable device was placed
with an elastic band in a different positioning area on the
upper part of the torso (on the chest, on the waist, and on the
abdomen). Some ADLs were simulated in order to evaluate
the ability of fall-detection algorithms to discriminate falls
fromADLs.The simulated ADL tasks belong to the following
categories:

(1) walking,
(2) sitting down on a chair and then standing up,
(3) lying down on amat (height 33 cm) and then standing

up,
(4) lying down on a mat (height 2 cm) and then standing

up,
(5) kneeling on amat (height 2 cm) and then standing up.

Each actor performed more than 15 simulated ADLs for a
total of 205.
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Figure 2: Logical framework overview.

2.3. Preprocessing and SystemCalibration. Thefirst four com-
putational steps (Figure 2) deal with data acquisition, data
preprocessing, noise filtering, and system calibration.

The acceleration data on three axes (𝐴
𝑥
, 𝐴
𝑦
, and 𝐴

𝑧
) is

read out from the device worn by a user during the data col-
lection. Data was stored into a portable computer and con-
verted into gravitational units to represent acceleration data
in the range ±2𝑔, in order to make it possible to extract the
angle 𝛼 (described previously) and for not having orders of
magnitude too different in the features (during the training
of the classifier used to detect the fall events). The samples
coming from the device are filtered out by a low pass 8 order,
8Hz cut-off FIR (Finite Impulse Response) filter to reduce
the noise due to electronic components, environment, and
human tremor.

In order to correctly handle preprocessed data, a cali-
bration procedure was accomplished by recovering the ini-
tial conditions after the device mounting. During this
step the correct placing of hardware is verified by checking
if two acceleration axes are orthogonal to the Earth gravity
𝑔 (Figure 3): the acceleration values measured on the two
orthogonal components must be close to zero.

The calibration procedure is composed by the following
steps:

(i) the user wears the device in a standing position for 10
seconds;

(ii) the calibration routine calculates the average of the
acceleration on each axis over this period. These are
the initial acceleration values 𝐴

𝑥0
, 𝐴
𝑦0
, and 𝐴

𝑧0
;

(iii) if 𝐴
𝑥0
, 𝐴
𝑦0
, and 𝐴

𝑧0
will be close to those expected,

they will be considered as references in the fall detec-
tor algorithm, otherwise a routine to compensate the
sensed misplacement will be enabled.

With respect to Figure 3, the acceleration along 𝑥-component
will be close to −1 and almost zero for the others according
to (1). The expected values of acceleration on three axes 𝐴

𝑥0
,

𝐴
𝑦0
, and 𝐴

𝑧0
are also reported in Table 1.

In practice, it is difficult to locate the device exactly in
the right position, and the measured acceleration values will
differ slightly from those expected.The calibration procedure
is concluded if the following conditions are satisfied at the

x

y

z

Figure 3: Mounting position and calibration.

Table 1: Acceleration values along the three axes during the initial
position of Figure 3.

𝐴
ref
𝑥0

𝐴
ref
𝑦0

𝐴
ref
𝑧0

Initial position −1 0 0

same time (and the values𝐴
𝑥0
,𝐴
𝑦0
, and𝐴

𝑧0
will be recorded

and used as references in the feature extraction phase):
󵄨󵄨󵄨󵄨󵄨
𝐴
𝑥0

− 𝐴
ref
𝑥0

󵄨󵄨󵄨󵄨󵄨
< 0.3,

󵄨󵄨󵄨󵄨󵄨
𝐴
𝑦0

− 𝐴
ref
𝑦0

󵄨󵄨󵄨󵄨󵄨
< 0.3,

󵄨󵄨󵄨󵄨󵄨
𝐴
𝑧0

− 𝐴
ref
𝑧0

󵄨󵄨󵄨󵄨󵄨
< 0.3.

(2)

Since the values (𝐴ref
𝑥0
, 𝐴ref
𝑦0
, and 𝐴

ref
𝑧0
) are (−1, 0, and 0);

󵄨󵄨󵄨󵄨
𝐴
𝑥0

+ 1
󵄨󵄨󵄨󵄨
< 0.3,

󵄨󵄨󵄨󵄨󵄨
𝐴
𝑦0

󵄨󵄨󵄨󵄨󵄨
< 0.3,

󵄨󵄨󵄨󵄨
𝐴
𝑧0

󵄨󵄨󵄨󵄨
< 0.3. (3)

Otherwise a routine to compensate the sensed misplacement
is enabled, and the angles displacements of the sensor axes
(𝛼𝐴
𝑥0
, 𝛼𝐴
𝑦0
, and 𝛼𝐴

𝑧0
) are calculated using the following

trigonometric equation:

𝛼𝐴
𝑥0

= arctan(
𝐴
𝑥0

√(𝐴
𝑦0
)

2

+ (𝐴
𝑧0
)
2

),

𝛼𝐴
𝑦0

= arctan(

𝐴
𝑦0

√(𝐴
𝑥0
)
2

+ (𝐴
𝑧0
)
2

),

𝛼𝐴
𝑧0

= arctan(
𝐴
𝑧0

√(𝐴
𝑥0
)
2

+ (𝐴
𝑦0
)

2

).

(4)
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Figure 4: Typical acceleration waveform along each axis for a forward fall.

These values are stored and will be used for the correction
of the misplacement during the feature extraction phase,
described below.

2.4. Feature Extraction. Robust features are extracted in the
time domain in a 5 sec sliding window by considering both
quick and relevant acceleration changing along each axis (due
to the fall) and by the change in position registered after
the fall. The aim is to produce robust features taking into
account all the information for the distinction of falls from
other events. It is also important that such features have a low
dependence on both the position of the sensor (whether it is
placed on the waist, on the chest, or on the abdomen) and the
human body characteristics of the user. Moreover, the com-
putational cost must be limited for integration on embedded
computing solutions.

The waveform in Figure 4 represents a typical accelera-
tion signal of a forward fall on three axes and all phases are
indicated according to the taxonomyproposed in [16]. For the
features extraction process, both critical and postfall phases
are of interest. In the former, the shock is measured due to
the impact toward the ground, and a dynamic acceleration
changing is registered. In the latter (the body is already lying
on the floor) the static acceleration value records a great
change due to the new position of the individual with respect
to the calibration phase.

The 5 sec sliding window considered for features extrac-
tion is split in three parts as follow:

(1) from 0 sec to 0.5 sec: the maximum and minimum
values of the acceleration are found, and the ampli-
tude dynamics Δ𝐴 is calculated. It is proportional to
the shock strength;

(2) from 0.5 sec to 2 sec: the system is in a transitory
regime (samples are discarded);

(3) from 2 sec to 5 sec: the static-averaged acceleration
value𝐴 is calculated to evaluate the newuser position.
Acceleration data is averaged to filter out tremors and
the little movements of the end user.

During the system calibration phase it is verified that the
device is worn correctly (see previous section), and the posi-
tion changing is calculated as the difference between the value
of the 3D-static acceleration after the fall (in the third part
of the sliding window) and the one stored in the calibra-
tion phase. This difference, called Changing Position Offset
(CPO), has a value in the range of 0 to 2, and it is proportional
to the user displacement. In this way, for feature extraction,
a study of posture was not made: only the relative varying
posture analysis was considered causing a computational cost
reduction and improving the robustness of the setup. The
feature vector is made up of three parameters (one for each
axis), coming from the modulation of the CPO and the
dynamic acceleration peak, due to the impact of the fall.

If the routine to compensate the device misplacement is
enabled, for the CPO calculation, the axes angles of the sensor
in the initial condition need to be taken into account (𝛼𝐴

𝑥0
,

𝛼𝐴
𝑦0
, and 𝛼𝐴

𝑧0
, stored during the calibration phase). Using

(1), the CPO value for 𝑥-axis is obtained as

CPO
𝑥
=
󵄨󵄨󵄨󵄨󵄨
sin (𝛼𝐴

𝑥
− 𝛼𝐴
𝑥0
)
󵄨󵄨󵄨󵄨󵄨
, (5)

where 𝛼𝐴
𝑥
is the 𝑥-axis angle of the sensor in the third

part of the sliding window; it is calculated considering the
static averaged acceleration 𝐴

𝑥
and the same trigonometric

equation used in (4) as follows:

𝛼𝐴
𝑥
= arctan(

𝐴
𝑥

√(𝐴
𝑦
)

2

+ (𝐴
𝑧
)

2

). (6)
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Let 𝐴
0
initial acceleration value measured after the calibration phase

Let 𝛼𝐴
0
initial axis angle of the sensor measured after the calibration phase

Δ𝐴 → shock dynamics due to the impact calculated in the first part of the sliding window
𝐴 → Static averaged acceleration in the third part of the sliding window

If compensation device misplacement procedure is enabled
𝛼𝐴 is calculated → axis angle of the sensor in the third part of the sliding window
CPO =

󵄨󵄨󵄨󵄨󵄨
sin (𝛼𝐴 − 𝛼𝐴

0
)
󵄨󵄨󵄨󵄨󵄨
→ Changing Position Offset

else
CPO =

󵄨󵄨󵄨󵄨󵄨
𝐴 − 𝐴

0

󵄨󵄨󵄨󵄨󵄨
→ Changing Position Offset

End if

Let Δ𝐴
𝑥
,Δ𝐴
𝑦
,Δ𝐴
𝑧
, CPO

𝑥
, CPO

𝑦
, CPO

𝑧
, Δ𝐴 and CPO calculated for each axis

[𝑋, 𝑌, 𝑍] = [Δ𝐴
𝑥
⋅ CPO

𝑥
, Δ𝐴
𝑦
⋅ CPO

𝑦
, Δ𝐴
𝑧
⋅ CPO

𝑧
] → feature vector input for SVM

Pseudocode 1: Feature extraction pseudocode.

Position A: right side lateral fall

xy

z

Position B: backward fall

x

y

z

Position C: forward fall

x

y
z

Position D: sitting

x
y

z

Position E: walking

x
y

z

Position G: lying

x

y

z

Position F: kneeling

x

y
z

Figure 5: Example of different spatial configurations of the device during falls and ADLs.

The same procedure must be done for the two other axes.
Thanks to this routine, the change in the angle position

of the user along the three axes is measured. In this way
the information coming from the modulation of the CPO
remains highly selective for fall detection recognition even
if the device is placed incorrectly and the features remain
nearly the same. In this way the system could work efficiently
reducing the problems of device positioning at the expense of
an increase in the computational costs.

The process of feature extraction, described previous, is
summarized in the pseudocode shown in Pseudocode 1.

For the feature extraction, It makes sense to consider the
acceleration signal on each axis singularly, because a fall event
leads to a change in the value of the static acceleration in at
least two of the three acceleration axes (due to the orientation

change of sensing axes). This is evident comparing the
positions A, B, and C in Figure 5 (postfall phase of the lateral,
backward, and forward falls, resp., are depicted) with respect
to the initial position (see Figure 3). On the other hand, when
a sitting event (D in Figure 5) occurs, the change in static
acceleration can be neglected with respect to that of a fall;
it is possible to do the same considerations for kneeling and
walking (E and F). Instead, the axes orientation changes for a
lying event (position G), but the acceleration peak produced
is slower and lower than a fall, and through the product
between the value of the acceleration peak and CPO it is also
possible to discriminate this ADL.

Table 2 shows the nominal values of acceleration along
the three axes 𝐴

𝑥
, 𝐴
𝑦
, and 𝐴

𝑧
and the value of CPO

corresponding to the positions A–G of Figure 5.
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Figure 6: Example acceleration waveforms for a sitting event.
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Figure 7: Example acceleration waveforms for a lying event.

Table 2: CPO coefficients by varying spatial position.

𝐴
𝑥

𝐴
𝑦

𝐴
𝑧

CPO
Initial condition −1 0 0
Position A 0 −1 0 (1, 1, 0)
Position B 0 0 −1 (1, 0, 1)
Position C 0 0 1 (1, 0, 1)
Position D −1 0 0 (0, 0, 0)
Position E −1 0 0 (0, 0, 0)
Position F −1 0 0 (0, 0, 0)
Position G 0 0 −1 (1, 0, 1)

When the orientation of acceleration does not change, the
values of CPO are (close to) zero, and the elements of the
features also become (close to) zero. In Figures 6 and 7 the
waveforms of sitting and lying events are reported to make
a comparison with that of the fall (shown in Figure 4), when
the device is worn on the abdomen.

The difference among the features of the fall of Figure 4
and the sitting and lying events of Figures 6 and 7 is apparent
in Figures 8, 9, and 10.

It was actually verified that all the consideration made
thus so far remains valid whether the device is placed on the
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Figure 8: Features extracted of the forward fall in Figure 4.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

Time (s)

X-axis
Y-axis
Z-axis

Z(t=i)

Y(t=i)

X(t=i)g
(9

.8
1 m

/s2
)

Figure 9: Features extracted of the sitting event in Figure 6.

waist or on the chest. In Figures 11 and 12 the features of a
sequence of falls and daily events, when the device is worn
on the waist and on the chest, are shown. So it is also evident
that the features obtained discriminate the falls from ADLs
when the device is placed in other area of the torso.

It is important to highlight that the measurements of the
actions as shown in Figures 11 and 12 have been carried out
by simulating critical behaviours, that is, sitting with a strong
impact on the chair; bending down, lying down, and standing
up quickly; moderate backward fall.

2.5. Fall Detection Algorithm. Once features are extracted,
the fall events are detected by a one-class support vector
machine (OC-SVM). SVM is a robust classification tool (in
the presence of outliers too) with a good generalization
ability. Furthermore it is less computationally intensive than
other algorithms like neural networks [21].

One class SVM divides all samples into an objective field
and a nonobjective field and then nonlinearly maps those
sample into a higher dimensional features space with some
efficient operators, called kernel function.The target is to find
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Figure 10: Features extracted of the lying event in Figure 7.
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Figure 11: Features extracted of falls and ADLs simulated wearing the device on the waist.

a sphere that contains most of the normal data such that the
corresponding radius 𝑅 can be minimized as follows:

min 𝑅
2

+ 𝐶

𝑛

∑

𝑖=1

𝜉
𝑖
,

s.t. 󵄩󵄩󵄩󵄩
𝑎 − V
𝑖

󵄩󵄩󵄩󵄩

2

≤ 𝑅
2

+ 𝜉
𝑖
, 𝜉
𝑖
≥ 0,

(7)

where 𝑎 is the centre of the sphere and V
𝑖
a positive sample set.

The slack variables 𝜉
𝑖
allow some data points to lie outside the

sphere and the parameter𝐶 controls the trade-offbetween the

volume of the sphere and the number of errors.The objective
function is

max
𝑛

∑

𝑖=1

𝛼
𝑖
⟨V
𝑖
, V
𝑖
⟩ −

𝑛

∑

𝑖,𝑗=1

𝛼
𝑖
𝛼
𝑗
⟨V
𝑖
, V
𝑗
⟩ ,

s.t. 0 ≤ 𝛼
𝑖
≤ 𝐶,

𝑛

∑

𝑖=1

𝛼
𝑖
= 1.

(8)

The original data points are first mapped into a feature space,
because some data are not spherically distributed in the input
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Figure 12: Features extracted of falls and ADLs simulated wearing the device on the chest.

Table 3: Types of tested kernels.

Kernel Function
Linear 𝐾(V

𝑖
, V
𝑗
) = 1 + V𝑇

𝑖
V
𝑗

Polynomial 𝐾(V
𝑖
, V
𝑗
) = (1 + V𝑇

𝑖
V
𝑗
)
𝑝

Gaussian Radial Basis Function 𝐾(V
𝑖
, V
𝑗
) = exp (−𝛾󵄩󵄩󵄩󵄩󵄩V𝑖 − V

𝑗

󵄩󵄩󵄩󵄩󵄩

2

)

Sigmoid 𝐾(V
𝑖
, V
𝑗
) = tanh (𝑘V𝑇

𝑖
V
𝑗
− 𝛿)

space. For this reason the kernel function 𝑘(⋅, ⋅) is used as
follows:

max
𝑛

∑

𝑖=1

𝛼
𝑖
𝑘 (V
𝑖
, V
𝑖
) −

𝑛

∑

𝑖,𝑗=1

𝛼
𝑖
𝛼
𝑗
𝑘 (V
𝑖
, V
𝑗
) . (9)

The common types of kernel found in the literature are tested
(in Table 3 the functions are shown). They were analyzed
using the MATLAB tool STPRtool [22], changing the values
of their parameters.

In the literature the Gaussian Radial Basis Function
(GRBF) is often used in fall detectors [23–25]. For the features
extracted, GRBF and polynomial kernel functions give the
best results in terms of performance, even the polynomial
kernel shows a lower computational cost (relative number of
support vectors and relative execution time are considered).
The comparison with other kernel functions will be shown in
the following section.

The parameters of kernel were chosen to detect as many
falls as possible, and a simple post-processing step has been
implemented in order to reduce false negative events.

2.6. Postprocessing. In choosing the parameters of the tested
kernel functions, the value of sensitivity was given priority.
In this way some nonfall events are detected from SVM. To

reduce this problem a simple filtering by voting was added:
it detects an event such as a fall if the alarm coming from
the SVM classifier remains high a given time 𝑡. With this
approach the spikes or temporary anomalies are filtered too.
The optimum time 𝑡 for postprocessing is obtained from a
parametric analysis. The results are shown in the next para-
graph.

3. Results

This section will show a discussion about the measurements
of the experimental data processed in MATLAB. To validate
the implemented algorithm, the dataset previously described
has been considered.

Since the output of the fall detection step is binary, there
are four possible results.

(i) True Positive (TP): a fall happens, and the algorithm
detects it.

(ii) False Positive (FP): a fall does not occur, and the
algorithm reveals a fall.

(iii) True Negative (TN): a daily event is performed, and
the algorithm does not detect it.

(iv) False Negative (FN): a fall occurs, but the algorithm
does not detect it.

The performance of the system, with respect to both different
kernel functions of SVM and their parameters, can be
evaluated considering the following metrics:

sensitivity =
TP

TP + FN
,

specificity =
TN

TN + FP
.

(10)
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Table 4: Performance by varying the kernel functions.

Sensitivity
(%)

Specificity
(%)

Relative
support
vectors

Relative
execution

time
Linear (𝐶 = 10) 98.6 52.3 0.51x 0.2x
Linear (𝐶 = 100) 97.2 46.4 0.44x 0.2x
Polynomial (𝐶 = 20,
𝑃 = 2) 97.5 81.25 0.94x 0.8x

Polynomial (𝐶 = 2.8,
𝑃 = 3) 97.7 95.8 1x 1x

GRBF (𝐶 = 2.6, 𝛾 = 2) 98.1 83.1 1.1x 1.3x
GRBF (𝐶 = 2, 𝛾 = 3) 97.4 95.2 1.3x 1.5x
Sigmoid (𝐶 = 1, 𝑘 = 1,
𝛿 = 2) 98.8 36 0.3x 4x

Sigmoid (𝐶 = 100,
𝑘 = 5, 𝛿 = 2) 99.1 42 0.4x 4.1x

For completeness the results obtained with postprocessing
elaboration have been added. The algorithm is tested when
the device is placed on the waist, abdomen, or chest.

The one class SVM classifier has been trained by using
about 40 falls and 50 ADLs belonging to a large dataset
in which more than 250 falls and 200 daily events were
performed. The remaining 210 falls and 150 ADLs have
been used for testing. Table 4 shows the specificity and the
sensitivity for the kernel functions already described. The
complexity of the various kernel functions can be studied by
considering the relative number of vectors required and also
the relative execution time [26, 27]. The kernel with the most
significant values for the parameters is considered.

From Table 4 the polynomial kernel and GRBF kernel
give better results. Their capacity to detect a fall is higher
(more than 95% for sensitivity and specificity) than others.
GRBF (with 𝜎 = 3 and 𝐶 = 2) and the polynomial (with
𝑃 = 3 and 𝐶 = 2.8) provide similar values of specificity and
sensitivity, but the last one works faster, and its number of
vector is slightly lower, thereby it was chosen for this work.
Misclassifications are for falls presenting slow dynamics or
falls with partial recovery. It is important to see the result
of the linear function: its workload is very low (less support
vectors number and very low execution time), but it gives
many false positive, and its value of the specificity is low. The
function of GRBF is the most common used in the literature
for the detection of falls, due to its high ability to separate the
classes, even in the presence of many outliers (at the expense
of the convergence time). In thiswork it has been also possible
to obtain a high accuracy with the polynomial function
thanks to features extracted: they have a high degree of
intrinsic separability.

The implemented OC-SVM shows improvements in the
specificity and sensitivity with respect to a threshold-based
approach, and this can be verified in comparison with both
the frameworks presented in [17, 28], choosing the algorithms
where the same parameters of fall are used (the impact
detection and posture monitoring). For the comparison of
the fall detection algorithms were used the same hardware

Table 5: Comparison of the proposedOC-SVMmethod and thresh-
old-based algorithm.

Sensitivity (%) Specificity (%)
OC-SVM 97.7 94.8
Threshold based 89.2 85.7

Table 6: Performance after filtering by voting.

Polynomial (𝐶 = 2.8, 𝑃 = 3) Sensitivity (%) Specificity (%)
𝑡 = 0.4 s 97.7 94.8
𝑡 = 0.8 s 96.2 97.2
𝑡 = 1.2 s 86.4 98.1

(shown in Figure 1), benchmark dataset and training/test
sets described above. The values of thresholds were tuned
according to the falls presented in the dataset used to train
the OC-SVM scheme. The best results for threshold based
algorithm were obtained with Bourke’s algorithm and are
compared with the proposed OC-SVM in Table 5: the latter
seems more efficient, demonstrating its higher capacity to
generalize, detecting a bigger number of falls with low impact
magnitude than threshold-based algorithm. However, the
computational cost of thresholdbased is lower.

Due to (a) the reduction in the number of the features,
(b) the low computational cost of extracted features, and (c)
the used kernel, the overall system workload implemented
is compatible with an integration in embedded low-power
solutions (DSP, FPGA, and microcontroller).

A reduction of false positive (and so an improving
of specificity value), for the polynomial chosen, has been
measured with filtering by voting with a temporal window of
prefixed dimension (0.8 sec); see Table 6. Finally it was veri-
fied that the values of sensitivity and specificity remain almost
the same even if the axes of the sensor are placed differently
with respect to that shown in Figure 3 (the values of testing
dataset have been changed simulating same misplacements
of the device).

4. Conclusions

Theproposed supervised scheme overcomes the limitation of
well-known threshold-based approaches in which a heuristic
choice of the parameters is accomplished. High performance
in controlled conditions (events simulated) in terms of
sensitivity and specificity was obtained using only the 20% of
dataset for training. Performance metrics of different kernels
in one class SVM are compared: best results are obtainedwith
polynomial function and Gaussian Radial Basis Function.
The polynomial kernel is used in order to limit the compu-
tational workload. A study of posture was not made, but only
posture changing analysis was used, limiting the computa-
tional cost. Through the calibration step, the approach allows
to generalize the detection of fall events leading invariance
to physical characteristic of the end users. Future work will
be devoted to validate the solution in real conditions, test the
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methodology with a large set of different MEMS accelerome-
ters, and port the framework on embedded mobile solutions
as FPGA or DSP.
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